
N1089

1

Security TR Editor's Report

December 1, 2004
Randy Meyers

1. Introduction
Let me apologize for the latest draft of the Security TR (N1088) being a week and a half
late. I developed a nasty respiratory infection that required over twenty days of
antibiotics to shake.

Because the TR was running late and the time schedule for review was tight, after
consulting with John Benito, some of the new functions discussed in Redmond were not
included in the draft. This was merely due to time pressure, and not a statement about the
merits of those functions. The upcoming ISO registration of the TR is not a functionality
freeze, and so these functions are expected to go the next draft after the ISO registration
ballot (the TR is frozen during balloting) . I will write up a complete description of these
functions for the Wiki and put them in the pre-meeting mailing.

2. What's not in N1088?
The following functions left out of N1088 because of time pressure are:

2.1 printf_s family (from <stdio.h> and <wchar.h>)
from <stdio.h>: fprintf_s, printf_s, snprintf_s, sprintf,
vfprintf_s, vprintf_s, vsnprintf_s, vsprintf_s

from <wchar.h>: fwprintf_s, swprintf_s, vfwprintf_s, vwprintf_s,
wprintf_s, vswprintf_s

All these printf functions have the same prototypes as their non-_s counterparts, except
for sprintf_s and vsprintf_s, which match the prototypes for snprintf and
vsnprintf, respectively.

These all of these functions differ from the non-_s counterparts by not supporting the %n
format conversion specifier (a security risk) and by making it diagnosable undefined
behavior if pointers are null or the format string is invalid.

There is a possibility that sprintf_s (and related forms) might also share the ability of
snprintf_s (and related forms) to tell you the number of characters needed if the
destination string is too small.

N1089

2

2.2 From <stdlib.h>
errno_t mbstowcs_s(size_t *restrict retval,

wchar_t *restrict pwcs, rsize_t pwcsmax,
const char *restrict s, rsize_t n);

errno_t wcstombs_s(size_t *restrict retval,

char *s, rsize_t smax,
const wchar_t *pwcs, rsize_t n);

These functions are like their non-_s counterparts except that they now return an error
code, the new parameter retval is the non-_s return value, and the output string
pointer parameter is now followed by a "max" parameter giving the number of elements
in the output array. Of course, the max parameter is used to prevent overwriting the end
of the buffer.

2.3 From <wchar.h>
errno_t mbsrtowcs_s(size_t *restrict retval,

wchar_t *restrict dst, rsize_t dstmax,
const char **restrict src, rsize_t len,
mbstate_t *restrict ps);

errno_t wcsrtombs_s(size_t *restrict retval,

char *restrict dst, rsize_t dstmax,
const wchar_t **restrict src, rsize_t len,
mbstate_t *restrict ps);

errno_t wcrtomb_s(size_t *restrict retval,

char *restrict s, size_t smax,
wchar_t wc, mbstate_t * restrict ps);

These functions are like their non-_s counterparts except that they now return an error
code, the new parameter retval is the non-_s return value, and the output string
pointer parameter is now followed by a "max" parameter giving the number of elements
in the output array. Of course, the max parameter is used to prevent overwriting the end
of the buffer.

2.4 Special arguments to strncpy_s, etc
Microsoft defines a special macro:

#define _TRUNCATE (size_t)-1

That can be used as the fourth argument to strncpy_s. E.g.,

strncpy_s(dest, sizeof dest, verylongsrc, _TRUNCATE);

N1089

3

This tells strncpy_s to truncate verylongsrc to fit into dest if necessary (dest
is always null terminated). If strlen(verlongsrc) < sizeof dest, and thus
verylongsrc copied without truncation, strncpy_s returns zero. Alternatively, if
strlen(verlongsrc) >= sizeof dest, and thus the string copied but was
truncated, strncpy_s returns a non-zero errno_t status meaning the string copied
but was truncated.

3.0 Changes in N1088

3.1 New functions
Added to <stdio.h>: tmpfile_s, fopen_s, freopen_s
Added to <stdlib.h>: wctomb_s

3.2 rand_s removed
As requested by the committee, the rand_s function and associated macros were removed
from the TR. (Just too hard to say anything meaningful, and possibly too much of a
burden to implement.)

3.3 scanf_s family
The scanf family no longer use precision specifiers in the format string to get the
maximum size of arrays being read. Instead, as in earlier drafts of the TR, they simply
require that a size argument follow an argument matching a c, s, or [conversion
specifier in the format.

3.4 Use of __STDC_WANT_SECURE_LIB_ _
As requested by the committee, Subclause 5.1.1 Paragraph 4 now requires that the "want"
macro be defined the same way anytime any secure header is included. You can no
longer get the secure version of <stdio.h> but the plain version of <string.h> (at least
within the same compilation unit).

3.5 Reserved names
As requested by the committee, Subclause 5.1.2 was added to state under what conditions
secure names are reserved.

3.6 Diagnosed Undefined Behavior
Several of the changes requested by the committee merged into one complex, extensive
edit of the document. Most of the change bars in the document arose from this edit.

First, there was the committee's desire to remove undefined behavior. The previous draft
of the TR (N1078) contained many explicit instructions in many of the function
descriptions about what to do if an argument was, for example, unexpectedly null. In that
draft, such cases called for the function to return an error code.

My previous editor's report (N1079) raised that as an issue. Previous to that draft, such
cases were simply undefined behavior, and Mic rosoft took advantage of the leeway that

N1089

4

allowed to diagnose such cases at runtime, and call user written handlers to handle the
situation. The committee also knew of similar cases in C99 handled similarly by
debugging environments. Turning those situations into error codes that might be ignored
(out of laziness or ignorance) by the program was not an improvement.

In Redmond, the general issue of undefined behavior was discussed. The latitude given
by undefined behavior which permits an implementation to allow a program quietly to
corrupt memory and continue running was the very thing that the secure library was
designed to prevent. To the extent possible, undefined behavior should be removed from
the secure library. I was instructed to remove as much undefined behavior as possible.

The committee then endorsed an idea tentatively called "secure constrained behavior,"
which would permit an implementation to diagnose and stop a program that does
something bad, and would require the implementation to prevent a program from quietly
corrupting memory and continuing to run. Returning a failure code rather than
overwriting memory in strncpy_s (for example) was seen as an acceptable solution, as
was aborting the program or failing an assert.

Along with this, the committee approved the concept of a range limited version of
size_t, called rsize_t. rsize_t values larger than RSIZE_MAX are suspect, and
should be diagnosed by functions in the secure library. This was another case of "secure
constrained behavior."

In this draft, the concept with the working title "secure constrained behavior" became
"diagnosed undefined behavior," a phrase that reads better when used in function
descriptions in the TR. Diagnosed undefined behavior is behavior that previously would
have been just undefined behavior. But, under the new scheme, diagnosed undefined
behavior must be diagnosed by the implementation and the implementation will act in a
benign way afterwards. From a programmer's point of view, all undefined behavior, like
dereferencing a null pointer, is bad, but in some contexts, it will be diagnosed. Hence,
the name.

Subclause 3.1 defines diagnosed undefined behavior and explains the model. I strongly
urge you to read that definition to get the details, but a short summary of the model is
this: Parts of the TR state that certain conditions are diagnosed undefined behavior. (For
example, a null pointer for the format string to scanf_s.) The implementation must check
for any such condition, and "diagnose" it by calling an implementation-defined function.

That implementation-defined function need not do anything. It might just return. It
might halt the program. It might be a failing assert. If that implementation-defined
function returns, then the implementation must behave according to the rules associated
with the particular condition of diagnosed undefined behavior. For example, scanf_s
says that if there is diagnosed undefined behavior, scanf_s does not attempt any input.
Finally, the "Returns" section in the write up of a function usually gives a special return
value if there is diagnosed undefined behavior. For example, scanf_s returns EOF if
there is diagnosed undefined behavior.

N1089

5

This model permits implementations to diagnose dangerous conditions and halt the
program if necessary (or call a handler, or what have you). The model requires that
implementations behave gracefully in the presence of such conditions, and to return an
error code rather than corrupting memory if they allow programs to run after such
conditions are detected.

In terms of edits, almost every function description has a new first paragraph listing the
diagnosed undefined behaviors for that function. The "Returns" clause usually has a
short statement about what should be returned if undefined behaviors occur.

Making this edit sharpened a distinction in my mind. There are really two types of error
conditions in programs. The first are errors that should never occur in a properly written
program (e.g., dereferencing a null pointer). The second is problems that are unfortunate
but a properly written program should be prepared to deal with if they occur (e.g., trying
to fopen a missing file). The first category is a good candidate for diagnosed undefined
behavior. The second category should not be diagnosed undefined behavior. Care
should always be taken not to incorrectly make something diagnosed undefined behavior.

3.7 rsize_t
As discussed above, input size_t parameters to functions were changed to have
rsize_t type, and it is diagnosed undefined behavior if the values of such parameters
exceed RSIZE_MAX (defined in Subclause 5.3).

3.8 Return Values
As discussed in committee, many implementations have a far more interesting set of
errno values than in the Standard, and they would like to use those values as return codes
from the secure library.

As requested by the committee, I changed functions that return an errno_t value to return
zero for success, and non-zero for failure.

4. Other issues

4.1 strnlen_s, wcsnlen_s
I did not change the size_t parameters to these two functions to rsize_t. My reason is that
these functions are most useful in dodgy circumstances, and another layer of checking in
them might get in the way.

On the other hand, I am lightheaded from all that coughing. This should be reconsidered
at the next meeting.

4.2 qsort_s
The qsort_s function does have diagnosed undefined behavior, but it returns void. So,
on implementations that choose not to halt the program when there is diagnosed

N1089

6

undefined behavior, the function simply does nothing and returns. Perhaps it should be
changed to return an errno_t?

