
SC22 WG14 N1173

Rationale for TR 24731

Extensions to the C Library
Part I: Bounds-checking interfaces

SC22 WG14 N1173

Linux® is the registered trademark of Linus Torvalds.
POSIX® is a registered trademark of the Institute of Electrical and Electronic Engineers.
UNIX® is a registered trademark of The Open Group.

SC22 WG14 N1173

1 Introduction... 1
1.1 Goals ... 1

1.1.1 Mitigate certain security vulnerabilities.. 2
1.1.2 Guard against overflowing a buffer .. 2
1.1.3 Do not produce unterminated strings.. 2
1.1.4 Do not unexpectedly truncate strings.. 3
1.1.5 Provide a library useful to existing code... 3
1.1.6 Preserve the null terminated string datatype... 3
1.1.7 Do not require size arguments for unmodified strings................................ 3
1.1.8 Only require local edits to programs... 3
1.1.9 Library based solution... 4
1.1.10 Support compile-time checking .. 4
1.1.11 Make failures obvious... 4

1.1.11.1 Zero buffers, null strings... 4
1.1.11.2 Runtime-constraint handler mechanism ... 4

1.1.12 Support re-entrant code... 4
1.1.13 Consistent naming scheme.. 5
1.1.14 Have a uniform pattern for the function parameters and return type.......... 5
1.1.15 Deference to existing technology.. 5

2 References... 6
3 Terms, definitions, and symbols ... 6
4 Conformance... 7
5 Predefined macro names ... 7
6 Library... 7

6.1 Introduction... 7
6.1.1 Standard headers ... 7
6.1.2 Reserved identifiers .. 8
6.1.3 Use of errno ... 8
6.1.4 Runtime-constraint violations... 8

6.2 Errors <errno.h>.. 9
6.3 Common definitions <stddef.h> ... 10
6.4 Integer types <stdint.h> .. 10
6.5 Input/output <stdio.h> .. 11

6.5.1 Operations on files .. 11
6.5.1.1 The tmpfile_s function.. 11
6.5.1.2 The tmpnam_s function .. 11

6.5.2 File access functions ... 12
6.5.3 Formatted input/output functions.. 12

6.5.3.1 The printf family of functions... 12
6.5.3.1.1 snprintf/vsnprintf versus sprintf/vsprintf .. 13

6.5.3.2 The scanf family of functions ... 14
6.5.4 Character input/output functions... 15

6.5.4.1 The gets_s function... 15
6.6 General utilities <stdlib.h> ... 16

6.6.1 Runtime-constraint handling... 16
6.6.2 Communication with the environment.. 17

SC22 WG14 N1173

6.6.2.1 The getenv_s function... 17
6.6.3 Searching and sorting utilities... 17
6.6.4 Multibyte/wide character conversion functions.. 18
6.6.5 Multibyte/wide string conversion functions ... 18

6.7 String handling <string.h> .. 18
6.7.1 Copying functions... 18

6.7.1.1 The memcpy_s function.. 18
6.7.1.2 The memmove_s function... 19
6.7.1.3 The strcpy_s function.. 19

6.7.1.3.1 Overlapping operands ... 19
6.7.1.4 The strncpy_s function.. 20

6.7.2 Concatenation functions.. 21
6.7.2.1 The strcat_s function... 21
6.7.2.2 The strncat_s function... 21

6.7.3 Search functions.. 22
6.7.3.1 The strtok_s function .. 22

6.7.4 Miscellaneous functions.. 23
6.7.4.1 The strerror_s function.. 23
6.7.4.2 The strerrorlen_s function... 23
6.7.4.3 The strnlen_s function... 24

6.8 Date and time <time.h> .. 24
6.8.1 Components of time.. 24
6.8.2 Time conversion functions.. 24

6.8.2.1 The asctime_s function ... 24
6.8.2.2 The ctime_s function... 24
6.8.2.3 The gmtime_s function ... 25
6.8.2.4 The localtime_s function... 25

6.9 Extended multibyte and wide character utilities <wchar.h>............................. 25
6.9.1 Formatted wide character input/output functions 25
6.9.2 General wide string utilities .. 26

6.9.2.1 Wide string copying functions .. 26
6.9.2.2 Wide string concatenation functions... 26
6.9.2.3 Wide string search functions... 26

6.9.2.3.1 The wcstok_s function .. 26
6.9.2.4 Miscellaneous functions.. 26

6.9.3 Extended multibyte/wide character conversion utilities 26

SC22 WG14 N1173

1 Introduction
November 3, 1988 the Internet was mentioned for one of the first times in news
broadcasts. Most laymen had never heard of the Internet, which at the time (only!)
consisted of around 60,000 computers, most of them enterprise or departmental sized
machines, and technical workstations. The news story did not show the Internet is a very
favorable light: the day before, for the first time, the Internet was under a large scale
attack. Estimates vary, but as many as 10% of the computers on the Internet had been
infected by a worm program.

The Morris worm, or Great Internet Worm, was able to infect computers with different
instruction sets from different manufacturers running different versions of the UNIX
operating system. The worm was able to infect systems remotely over the network
without an account or privileges on the target machine. The worm program used multiple
different attacks (including a password dictionary attack), but one of its attacks would
become a model for many attacks against many different operating systems in the future.
This form of attack has become so common that the design of some recent
microprocessors include a “no execute” memory page bit to mitigate the attack.

The attack is the buffer overrun. This attack can be used anytime a program writes past
the end of an array while processing data that directly or indirectly came from the user.
In the general form, this attack provides a way for an attacker to change a program’s
memory in a way not intended by the programmer, and allows the attacker to set
variables or even change the code of the program

The specific buffer overrun attack used by the Morris worm was to send a line of input to
the fingerd daemon. This daemon allowed remote users to request information about
users on the local computer (for example, what was the user’s phone number). The
daemon was constantly reading requests for service over the network using the gets
function. The gets function does not check that the line of input fits within the
destination array: if the line is too long, it stores to memory locations following the end
of the array. The Morris worm took advantage of this by sending a large line input that
when it overflowed the buffer wrote new code into the daemon. The worm then had
control of a program with root privileges on the remote host.

Buffer overrun attacks continue to be a security problem. Roughly 10% of vulnerability
reports cataloged by CERT from 01/01/2005 to 07/01/2005 involved buffer overflows.
Preventing buffer overruns is the primary, but not the only, motivation for this technical
report.

1.1 Goals
The committee had many goals in mind as it developed this technical report. In some
cases, different goals conflict, and required the committee to make trade-offs. For
example, the goal to have a uniform pattern for the function parameters and return type
conflicts with the goal to minimize source code changes. In order to get the best result,

 1

SC22 WG14 N1173

the goals were evaluated for each function in this technical report individually. Thus,
different functions balanced conflicting goals differently.

The remainder of the subclause lists the goals for the technical report. More important
goals tend to be listed first, but this ordering is intrinsically loose because different goals
had different importance for different functions.

1.1.1 Mitigate certain security vulnerabilities
Security is a big topic, and in its broadest sense, affects not just coding, but design
philosophy, design technique, development approach, testing, deployment, system policy,
and even use of programs. For example, the best designed, most carefully written
program can be made insecure if installed with protections that allow its file to be
modified. Likewise, security can be undone if a user protects a resource with an easily
guessed password.

This technical report limits itself to a narrow aspect of security: functions to mitigate
certain security problems. Those problems are:

1. Buffer overrun attacks
2. Attacks based on the %n printf specifier
3. Default protections associated with program-created files

(Buffer overrun attacks are discussed above. The other problems will be discussed with
the functions affected.)

Note that this library only mitigates, that is lessens, these problems. When used properly,
these functions decrease the danger from certain attacks, but any other security
vulnerabilities remain. Programs can also still remain vulnerable due to bugs in the
program (was the correct array size passed?) or even the implementation or the hardware.
Security is always a matter of degree.

1.1.2 Guard against overflowing a buffer
This goal follows directly from the above goal. The functions in this technical report
should not store data outside of its intended target. Whenever data is stored to an array, a
bounds should be used verify that other storage is not being modified.

1.1.3 Do not produce unterminated strings
If a string lacks the terminating null character, the program may be tricked into accessing
storage after the string as legitimate data. This may cause a program to process a string
that it should not, which might be a security flaw in itself. It may also cause the program
to abort, which might be a denial of service attack.

Note also the emphasis is not to produce unterminated strings. This library does not
address processing of already existing unterminated strings (although the strnlen_s
and wcsnlen_s function provide limited support for that). There are two reasons.
First, if you prevent the creation of unterminated strings, then need to process them is
greatly lessened. Second, if you associate a bounds with every string that is only used as

 2

SC22 WG14 N1173

input to a function, you vastly increase the size of the library, and require a much larger
migration effort by existing programs, for comparatively little benefit.

1.1.4 Do not unexpectedly truncate strings
In general, when a function produces a string result, it should not quietly truncate the
result to fit the output array. Such truncation may be a sign that an output buffer really
should be larger. It might also be a security flaw: if a large string is verified for some
purpose, and then unintentionally shortened, the new shorter string might not be valid for
the same purpose. For example, if a daemon guards access to a group of files, it might
verify that a particular 1000 character filepath was a valid access. If an erroneously small
buffer then causes that filepath to be truncated to only 256 characters after the longer
string was verified, the daemon would access the wrong file thinking that the path had
been vetted.

1.1.5 Provide a library useful to existing code
The target client for this library is existing C code. The library should require only a
reasonable effort to switch to the more secure functions in order to make feasible an
improvement in security. If the costs are too high, existing code might never be
modified, and thus not see any improvement in security.

The committee was fortunate to get feedback from organizations attempting to switch to
this library as this technical report was being developed.

1.1.6 Preserve the null terminated string datatype
The null terminated string is a pervasive datatype, and is used by non-standard libraries
as well as user-written code. A new datatype, such as a string representation with a built-
in bounds, would have some advantages. For example, it would remove the requirement
that the programmer keep track of the array size for strings separately. However, such a
new datatype would not be limited to calls to the library functions in this technical report.
In general, much of the user-written code that calls these library functions would have to
be changed to also process the new datatype. A user function that calls the library with
the new datatype would probably need to be modified to have parameters of the new
datatype. Thus the caller of the user function would also have to change, which would in
general require further changes to the program. In order to minimize that cost to migrate
a program to the new library, the null terminated string datatype is the focus of this
technical report.

1.1.7 Do not require size arguments for unmodified strings
Although functions that create strings have an additional parameter giving the number of
elements in the target array, functions that do not modify strings are unchanged. This
minimizes the number of new functions in this technical report, and allows edits to
existing code to be minimal.

1.1.8 Only require local edits to programs
The functions in this library can replace their less secure counterparts with only a local
change affecting only a line or two of code. These edits are almost mechanical in nature.

 3

SC22 WG14 N1173

Limiting the scope of the edits makes it more economical and feasible to migrate a large
program to this library.

See the gets_s function (Subclause 6.5.4.1) for a detailed discussion of this goal.

1.1.9 Library based solution
The committee wanted the technical report to concentrate on a library based solution.
(The only requirement on compilers is predefined macro names, and in most
implementations, they could be provided by compile switches or options without
modifying the compiler itself.) A library based solution is easier to implement and
distribute, and shortens the timeframe before security improvements could occur.

1.1.10 Support compile-time checking
While the committee wanted a solution that did not require compiler support, the
committee was mindful that a compiler could be a useful tool in migrating a program to
the new library. A compiler can flag calls to functions that should be replaced with calls
to functions in this library. A compiler could have built-in knowledge of the scanf_s
functions, and aid in getting their arguments right. A compiler could enforce checking
return codes for functions returning errno_t. Footnotes were used in the technical
report to point out situations where compiler support would be useful.

1.1.11 Make failures obvious
Both program correctness and security are harmed when a failure goes unnoticed and
unhandled. Because of this, the library tries to make failures more obvious, so that it is
unlikely that a program will quietly ignore the failure.

1.1.11.1 Zero buffers, null strings
One way failure is made more obvious is to produce a result that is obviously wrong. For
example, the memory copy functions zero the output buffer if an error occurs. Likewise,
the string functions produce a null string result if an error (such as unexpected truncation)
occurs.

1.1.11.2 Runtime-constraint handler mechanism
If a library function detects an error, such as invalid arguments or not enough room in an
output buffer, a special “runtime-constraint” handler function is called. This function
might print a message and/or abort the program. The programmer has control of the
handler function called via the set_constraint_handler_s function, and can
make the handler simply return if desired. If the handler simply returns, the function that
invoked the handler indicates a failure to its caller using its return value.

1.1.12 Support re-entrant code
The functions in the technical report should not rely on static internal state. Static
internal state prevents the functions from being re-entrant, and leads to bugs.

 4

SC22 WG14 N1173

1.1.13 Consistent naming scheme
Names of functions in the technical report end in “_s”. This naming pattern makes clear
that these functions are an extension to the standard library, that they came from this
technical report, and also decreases the conflict with function names from other
standards.

1.1.14 Have a uniform pattern for the function parameters and
return type

Many functions in the technical report return a value of type errno_t. This typedef is
used to indicate that the function is returning an error code normally associated with
errno. In some cases, the committee thought that it would complicate migration to the
library if a more secure function returned a different value than its less secure
counterpart, and did not follow this pattern.

Functions have a parameter giving the number of elements in any array the function
modifies. That parameter appears right after the parameter pointing to the array. The
parameter’s name usually includes the word “max.” For example,

 errno_t tmpnam_s(char *s, rsize_t maxsize);

1.1.15 Deference to existing technology
The committee has a long tradition of respecting existing technology, and prefers to
standardize features and functions that have already proven themselves by actual use by
programmers.

The committee considered three particularly important sources of existing technology
while producing this technical report:

1. ISO/IEC 9945:2003, also known as the Single Unix Specification or POSIX
2. The OpenBSD functions strlcpy and strlcat
3. Experiences of companies performing security overhauls of large code bases

In most cases, the committee discovered that existing functions from the above sources
would need modification to meet the goals of the technical report. For example, many
existing functions lacked parameters giving the number of elements in an output array.
Also, the runtime-constraint handler mechanism impacted every function (except
strnlen_s and wcsnlen_s) in this technical report in two ways. First, the functions
are required to invoke the handler when appropriate. Second, the function specifications
now explicitly list conditions that would have been undefined behavior in ISO/IEC
9899:1999, and require specific behavior from the functions (such as returning error
codes and leaving variables in known states) in addition to calling the handler.

The subclauses for different functions will discuss existing technology when appropriate.

 5

SC22 WG14 N1173

2 References
The technical report references the expected related standards necessary to complete its
specification. Chief among those is the C Standard itself, ISO/IEC 9899:1999, along
with its Technical Corrigenda.

As Clause 1 of the technical report states, the technical report is to be read as if it was
merged into C Standard. This has the effect of making statements and requirements in
ISO/IEC 9899:1999 and its Technical Corrigenda apply to the technical report unless a
corresponding section of this technical report states otherwise.

For example, Subclause 7.1.4 of ISO/IEC 9899:1999 permits any function declared in a
standard header to be additionally implemented as a function-like macro. That
permission extends to the functions in the technical report, since the sections of the
technical report are to be read as if they were merged into ISO/IEC 9899:1999.

3 Terms, definitions, and symbols
The committee decided that many cases of what ISO/IEC 9899 would call undefined
behavior should be detected and prevented when using the functions in the technical
report. Examples of such undefined behavior include dereferencing a null pointer or
storing a value to an array outside of the array bounds.

Such behaviors could no longer be called undefined behavior, since ISO/IEC 9899
permits the implementation to fail in an unpredictable way whenever undefined behavior
occurs, while the technical report requires the implementation to behave in a specified
and predictable way that potentially allows programs to recover from the problem (see
Subclause 6.1.4).

The committee decided to call this new category of behavior a runtime-constraint based
on its similarity to constraints in the Language Clause of ISO/IEC 9899. Constraints are
violations of language rules that an implementation shall detect and diagnose. Runtime-
constraints are violations of the runtime requirements of a function that the
implementation must detect and diagnose by a call to a handler and, if the handler
returns, by a failure indicator of some kind returned to the caller of the “failed” function
call. Like constraints, runtime-constraints appear in special subheaders in the document
as statements using the words “shall” or “shall not” to place requirements on the
program.

Note that runtime-constraints are disjoint from constraints. Constraints are rules the
program must follow during translation time. Runtime-constraints are rules that the
program must follow at runtime. A runtime-constraint is not a special case of constraint:
it is merely a parallel concept.

Other names considered for runtime-constraints were “diagnosed undefined behavior”
and “usage requirements.”

 6

SC22 WG14 N1173

4 Conformance
The Clause in ISO/IEC 9899 corresponding to this one needed to be modified to
acknowledge that “shall” and “shall not” requirements also appear in runtime-constraints
sections.

5 Predefined macro names
A macro is provided to allow users to determine if the technical report is supported by the
implementation. The value of the macro is the year and month that the features of the
technical report were last changed significantly.

Most implementations provide some way to predefine macros using command line or
programming environment options. Thus, the compiler or preprocessor need not be
modified to produce an implementation that conforms to the technical report. A library-
only solution can simply require that programmers make use of the facilities to predefine
the required macro.

6 Library

6.1 Introduction

6.1.1 Standard headers
ISO/IEC 9899 in Subclause 7.1.3 prohibits adding additional functions to the standard
headers unless the names of the additional functions match certain patterns of reserved
identifiers. The rationale for this prohibition is that adding additional identifiers to a
standard header potentially breaks strictly conforming programs, and a conforming
implementation must accept every strictly conforming program, subject to translation
limits.

For example, the following is a strictly conforming program:

#include <stdio.h>
int myfunc(void) {return 0;}
int main(int argc, char **argv) {return myfunc();}

However, if the implementation added the following prototype to <stdio.h>:

extern float myfunc(char *);

then the program would contain a constraint violation since all the declarations of
myfunc in the same scope would not have compatible types.

The technical report adds many identifiers to standard headers that do not match reserved
identifiers. To prevent this from making an implementation not conform to ISO/IEC
9899, the functions, type names, and macros added by the technical report are under the

 7

SC22 WG14 N1173

control of a macro named __STDC_WANT_LIB_EXT1__, whose name does match the
pattern of reserved names in ISO/IEC 9899. (Typographical note: the macro name begins
and ends in two underscore characters.)

If this macro is defined to be 1, the additional identifiers in the technical report are
defined by their respective headers. If the macro is defined to be 0, the additional
identifiers are not defined, and the implementation is (not prevented from being)
conforming to ISO/IEC 9899.

If the macro is not defined, the implementation may choose to behave as if the macro was
defined to be either 1 or 0. Many implementations do not conform to ISO/IEC 9899 by
default, and one of the most frequent reasons for that is the desire to define extra
functions in standard headers, particularly functions required by other standards, such as
POSIX. The committee decided to allow implementations to acknowledge this
marketplace reality, and allow implementations to do what is best for their customers.

Note that most implementations provide a way to predefine a macro in the command line
or build environment options. Programmers need not change their sources to define
__STDC_WANT_LIB_EXT1__.

Some of the identifiers defined in the technical report do match reserved name patterns in
ISO/IEC 9899, and thus do not raise conformance issues. However, the committee
though it cleaner if all identifiers were uniformly protected by
__STDC_WANT_LIB_EXT1__ rather than only the ones that needed it. This also
eliminates conflicts with implementations and programs that intruded into the reserved
identifiers.

6.1.2 Reserved identifiers
This subclause duplicated from ISO/IEC 9899:1999 for the purposes of exposition.

6.1.3 Use of errno
errno has fallen into disfavor, and the committee largely considers it a traditional
feature maintained for compatibility. The technical report allows an implementation to
set errno, but does not require it to do so. In general, functions in the technical report
return some sort of indication of failure, and make errno superfluous.

See Subclause 6.2.

6.1.4 Runtime-constraint violations
Except for strnlen_s and wcsnlen_s, functions in the technical report have a
“Runtime-constraints” section that lists a series of “shall” or “shall not” statements that
the program must satisfy when calling a library function. The implementation is required
to enforce the runtime-constraints. Typically, this is done by the library function
checking the conditions immediately upon entry, or as it is performing its task and
gathers enough information to make a decision about a particular runtime-constraint.

 8

SC22 WG14 N1173

Some “Runtime-constraints” sections contain prohibitions (e.g., the function does not
modify the object pointed to by a parameter) or requirements (e.g., the function stores
zero in the object pointed to by a parameter) that apply if any runtime-constraint is
violated by a function. The function must not do anything prohibited, and must do
anything required by the “Runtime-constraints” section before calling the handler. See
Subclause 6.6.1.

Should the handler return, the function immediately returns a value to its caller. The
“Returns” section of the function will describe the value returned if a runtime-constraint
occurs and the handler returns.

The runtime-constraints of functions in the technical report are conditions that would be
undefined behavior for a function in ISO/IEC 9899. This technical report eliminates
much undefined behavior, but undefined behavior still exists. Some cases of undefined
behavior are too expensive to detect for many implementations, and the functions defined
in ISO/IEC 9899:1999 have whatever undefined behaviors specified in that standard.

However, ISO/IEC 9899:1999 defines undefined behavior as “behavior, upon use of a
nonportable or erroneous program construct or of erroneous data, for which this
International Standard imposes no requirements.” Since there are no requirements, an
implementation is free to turn any undefined behavior into a runtime-constraint violation.
This is true of functions in ISO/IEC 9899:1999 as well as functions in this technical
report.

6.2 Errors <errno.h>
Although errno itself is considered somewhat outmoded (see Subclause 6.1.3), the
concept of a set of errno values to indicate various failure conditions is used by many
functions in the technical report. Many functions return a value that would be the value
to which the functions set errno, if the functions did set errno. Although ISO/IEC
9899:1999 defines only three different specific values for errno, other standards and
conventions define many more.

Because of the usefulness that the set of errno values represents, the technical report
defines a typedef, errno_t, to represent this set of values. The type of errno_t is
required to be int, which is also the type of errno itself.

The fact that errno_t must be int sets it apart from typedefs in ISO/IEC 9899.
ISO/IEC 9899 has comparatively few typedefs, and all of them represent types that may
differ between implementations.

The committee recognized that errno_t is very useful pedagogically, and that declaring
a function to return errno_t is a valuable shorthand to express the true high-level
significance of the return value to the programmer. Declaring types as an aid to
understanding is part of modern programming style. Such types are beneficial even if
they do not vary between implementations.

 9

SC22 WG14 N1173

6.3 Common definitions <stddef.h>
The type rsize_t is similar to size_t (see Subclause 6.4) and like size_t, is
declared in the headers that use it. Since it is defined in multiple headers, the declarations
need to be protected with conditional inclusion based on a macro whose name matches a
reserved pattern from ISO/IEC 9899:1999 Subclause 7.1.3. For example:

#if __STDC_WANT_LIB_EXT1__ == 1
#ifndef __RSIZE_T
#define __RSIZE_T
typedef size_t rsize_t;
#endif
#endif

See Subclause 6.2 for a discussion on the pedagogical use of typedefs.

6.4 Integer types <stdint.h>
A common error when calculating the size of objects is to produce a “negative” number.
There are several ways this might happen. Pointers might be subtracted in the wrong
order. The size might be updated when bytes are used in the object, and a bug might
cause too many bytes to be used. Mixed 64-bit and 32-bit code might erroneously sign
extend a count that should not be extended. Although the “true” arithmetic value of a
calculated size might be negative, the size_t type is unsigned, and a negative value
stored in it will appear as a large positive value.

Anytime the size of an object is wrong, there is the possibility that bytes outside of the
object might be modified when storing to the object. In addition to being undefined
behavior, this might a vulnerability that could be exploited by a buffer overrun attack.

The committee wished to allow implementations to place reasonable limits on the size of
objects, so that suspiciously large object sizes could be runtime-constraint violations.
The typedef rsize_t is has the same type as size_t, but indicates that functions that
have parameters of type rsize_t will range check the value of the parameter. The
macro RSIZE_MAX is the upper limit for runtime-constraint checking of the values of
type rsize_t.

An implementation is free to make RSIZE_MAX the maximum value that the
representation of the type rsize_t can store. In that case, all values of type rsize_t
are not runtime-constraint violations, and the functions in the technical report need not
check the values of any rsize_t parameters.

The RSIZE_MAX macro need not expand to a constant expression. Some
implementations might wish to adjust the value of RSIZE_MAX dynamically. For
example, RSIZE_MAX might reflect the amount of memory actually allocated to the
program as opposed to the size of the address space. Another example, implementations
that support both 32-bit and 64-bit address spaces might determine the appropriate value

 10

SC22 WG14 N1173

for RSIZE_MAX at runtime. The committee rejected a suggestion to provide a function
to change the value of RSIZE_MAX at runtime: it is premature to adopt such an interface
until its need has been proven.

Note that RSIZE_MAX is the limit on the size of any single object: it is not the limit of all
objects taken together. For example, if RSIZE_MAX was a fraction of the size of the
address space, multiple objects might be allocated to completely fill the address space.
Thus, RSIZE_MAX does not limit the total amount of memory a program might allocate.

6.5 Input/output <stdio.h>

6.5.1 Operations on files
The two functions in this subclause, tmpfile_s and tmpnam_s, deal with
implementation-generated temporary files. Some implementations chose the patterns
used to name temporary files years ago when filesystems placed draconian limits on
length of files and before multithreaded applications were common. Because of this, on
those implementations, the existing C functions generate temporary file names that are
too short and too prone to race conditions. The race conditions might not only occur in
multithreaded applications, but even when the same user runs multiple copies of the same
application.

Unfortunately, changing the algorithm that generates temporary filenames, especially if
the length of the temporary filenames grows, can be compatibility problem. For example,
the tmpnam function in ISO/IEC 9899:1999 assumes that the array to be used to store
the result is big enough (the number of elements in the array is not passed to tmpnam).
The macro L_tmpnam can be used to declare arrays of the proper size for use with
tmpnam. However, L_tmpnam is a macro whose value is an integer constant
expression fixed at compile-time. If the library is dynamically linked to the application
rather than statically linked, a new tmpnam that requires larger arrays would overwrite
the end of the result array in any program not recompiled.

By providing two new functions, tmpfile_s and tmpnam_s, implementations get a
chance to modernize their algorithm for generating temporary file names.

6.5.1.1 The tmpfile_s function
In addition to the improvements given in Subclause 6.5.1, the tmpfile_s function
protects the temporary file from unauthorized access by setting its file protection and
opening the file with exclusive access.

6.5.1.2 The tmpnam_s function
In addition to the improvements given in Subclause 6.5.1, the tmpnam_s function is
protected from overwriting the end of the result array.

 11

SC22 WG14 N1173

Programs that use the tmpnam_s function have a potential race condition. After the
program obtains a temporary name using tmpnam_s, but before the program can create
a file using that name, someone else may create a file with that same name. The
possibility of this problem can be reduced, but not eliminated, if the implementation
chooses temporary filenames that are long, unusual, and contain a thread id.
Because of this race condition, tmpfile_s should be used when possible. But, if the
program needs to repeatedly open and close the temporary file, or to create a temporary
directory rather than a file, tmpnam_s should be used.

6.5.2 File access functions
When creating a file, the fopen_s and freopen_s functions improve security by
protecting the file from unauthorized access by setting its file protection and opening the
file with exclusive access.

6.5.3 Formatted input/output functions

6.5.3.1 The printf family of functions
The printf family of functions is susceptible to a variety of security attacks if the format
string comes directly or indirectly from the user. Consider a program like the following:

#include <stdio.h>
int main(int argc, char **argv)
{
 printf(argv);
 return 0;
}

If a user runs this program with the argument string “%x,%x,%x”, the program might
print various stack entries (this is undefined behavior). If one of the values appears to be
an address, running the program again with a properly placed %s in the argument string
might cause storage at that address to be displayed. Carefully crafted, potentially very
long format strings could be prepared by an attacker to view an arbitrary number of bytes
back in the stack. Since the format itself may be on the stack, the attacker might use
these techniques to search for the format, and then construct a format that references its
own locations as the arguments corresponding to its conversion specifiers. Since the
format can contain literal characters in addition to conversion specifiers, the format might
reference these literal characters as the argument corresponding to a %s specifier in order
to dump memory from any address the attacker chooses.

In a simple program, the dangers of such probing are minimal. However, some real
world programs have variables that contain confidential information that is not normally
displayed by the program. Techniques like the above could cause the program to divulge
such information to an unauthorized user.

 12

SC22 WG14 N1173

Even worse, the %n format specifier can be used to change memory in the program. The
%n specifier stores the number of characters written thus far by the printf function to the
value pointed to by the corresponding argument. Since the corresponding argument
might be literal characters in the format itself, an arbitrary address may be the target of
the %n specifier. By performing overlapping stores that offset from each other by a
single byte, an arbitrary sequence of bytes could be stored.

The committee briefly discussed requiring formats to be compile-time constants.
However, internationalization frequently requires that all formats come from an external
source, such as a message catalog.

The committee decided to merely warn in this Rationale of the dangers of formats from
untrusted sources, and to remove support for the %n specifier in a new _s family of
printf functions.

Format attacks are very difficult, but they have been made against real programs. The
wu-ftpd FTP daemon contained a format string vulnerability that allowed remote users to
gain root privileges on UNIX and LINUX systems.

Implementations might wish to implement an optional warning for non-literal format
strings.

Some implementations know at runtime the actual number of arguments passed to
functions that take a variable number of arguments. Such implementations might use
such information to recognize a runtime-constraint violation if a conversion specifier
does not correspond to an argument actually passed in the function call.

Implementations should review any extensions they have made to format specifiers. If
any extension allows the format string to modify memory like %n, that extension should
not be supported in the new _s family of printf functions.
.

6.5.3.1.1 snprintf/vsnprintf versus sprintf/vsprintf
The snprintf function was an earlier attempt by the committee to fix buffer overflows
associated with sprintf. Once %n conversion specifiers were prohibited in both
snprintf_s and sprintf_s, and once the buffer overflow was fixed in
sprintf_s, the committee was left with two fairly similar functions.

The committee decided to use one of the functions to support truncation (Subclause
1.1.4). The snprintf_s function will truncate its result to fit the supplied output
array, while sprintf_s will raise a runtime-constraint violation if the result does not
fit. The justification for supporting truncation in snprintf_s is that snprintf
supported truncation, and the printf functionality is so complex it is hard for a
programmer to force truncation when it is needed unless it is explicitly supported by a
printf-family function.

 13

SC22 WG14 N1173

The sprintf_s function differs from other printf-family functions (including
sprintf itself) in its return value. Unlike the other functions, it returns zero rather than
a negative number if a runtime-constraint violation occurs. The reason for this if the
committee wanted to allow the return value of sprintf_s to be added to a running
total that keeps track of the number of characters written to a string. The sprintf
function could be used that way on some implementations. The sprintf function only
returns a negative value if a multibyte encoding error occurs, and some implementations
do not have any encoding errors. Programmers on such systems might rely on that
property, and so sprintf_s only returns negative values for the same cases as
sprintf.

6.5.3.2 The scanf family of functions
The scanf family of functions is even more vulnerable than the printf family if the
format comes from an untrusted source (see Subclause 6.5.3.1) since all the specifiers in
scanf-family functions allow memory to be modified. Do not obtain a scanf-family
format directly or indirectly from the user. Implementations might wish to implement an
optional warning for non-literal format strings.

The scanf-family functions also contain a much easier to exploit vulnerability. They do
not check the size of arrays used to store the results of %c, %s, and %[conversion
specifiers. (Some people might think the %c specifier does not write to an array since
without a field width, it reads a single character. However, this is merely the degenerate
case of an array of length one. The %c specifier reads an array of however many
characters specified by its field width, and by default the field width is 1.)

The new _s family of scanf functions fixes the buffer overrun vulnerability by
requiring an extra argument after any argument corresponding to any %c, %s, and %[
conversion specifiers. (Even %c specifiers without a field width take the extra
argument.) The extra argument gives the number of elements in the array that is the
target of the specifier.

The committee considered an alternative proposal that would require a precision of “.*”
be used with any %c, %s, and %[conversion specifier in the format of one of the new _s
family of scanf functions. This would have the same effect as the solution that was
accepted: an argument corresponding to one of these specifiers would be immediately
followed by another argument giving its length. However, this approach would force
programmers to modify not only the argument list when migrating to the new _s
scanf functions, but the format string as well. Since the format string might not be a
literal, and might not even be present in the same source file as the function call, this was
seen as too great a burden.

Some implementations know at runtime the actual number of arguments passed to
functions that take a variable number of arguments. Such implementations might use

 14

SC22 WG14 N1173

such information to recognize a runtime-constraint violation if a conversion specifier
does not correspond to an argument actually passed in the function call.

6.5.4 Character input/output functions

6.5.4.1 The gets_s function
The gets_s function might be the best example of a function added to meet the goal of
only requiring only small, local edits (Subclause 1.1.8) to migrate to the new library.

The gets function was exploited by the original buffer overrun attack used by the Great
Internet Worm of 1988. The 1989 C Standard contained a better version of this function,
fgets, that fixed the vulnerability. Yet, some programs still use gets. The reason for
this is the differences between fgets and gets that make fgets a better function also
complicate switching from gets to fgets.

The programmer who uses gets has made two (perhaps unwise) simplifying
assumptions that affect the way the code is written. The first is that every call to gets
will read one line of input, or will encounter EOF (or an I/O error). The second is that
every line of input will fit in the array supplied as an argument to gets. Furthermore, the
line returned by gets will have any newline character stripped from the string.

In contrast, fgets does not always read a full line of input every time it is called: it only
reads as much as will fit in the supplied array. Furthermore, the returned string may or
may not be terminated with a newline. The lack of a newline indicates that either the
input line was longer that the array to store it (and more calls to fgets are needed to finish
reading the line) or that the line is an unterminated line before EOF or an input error. A
correct program that uses fgets either needs to be able to process partial lines or to loop
to finish reading the full line of input before processing it. If the program also depends
upon the newline character being deleted from the input line, the program will have to
delete the newline itself.

The gets function is a security vulnerability, and programs should not use it. However,
fgets, while having many advantages, may also require too much effort as an
alternative. (Even a modest increase in effort may derail an effort to modernize a
program that is tens or hundreds of thousands of lines long.)

The committee decided to provide a function, gets_s, which allows programs to keep
the assumptions they have when using gets, but the function makes it a runtime-
constraint violation if those assumptions are violated. Every successful call to gets_s
reads a full line of input (and deletes the newline). Every successful call fits the input
line into the supplied array. If the call to gets_s is not successful, for example because
the array is not big enough to hold the full line of input, the runtime-constraint handler is
called, and if the handler returns, gets_s returns a null pointer to indicate the failure of
the input operation.

 15

SC22 WG14 N1173

Programmers can use gets_s to fix the gets security vulnerability in existing
programs without having to think through the issues involved in migrating to fgets. A
project fixing a large code base need not take the position, we will fix the easy functions
now, and deal with gets when we have time.

There is another case where gets_s might prove useful. Some earlier projects to fix
security problems in code bases might have blindly replaced gets calls with fgets
calls without thinking through the issues described above. Such programs might be better
served by changing now problematic fgets calls to gets_s calls.

6.6 General utilities <stdlib.h>

6.6.1 Runtime-constraint handling
The set_constraint_handler_s function allows the programmer to control the
handler that is called by functions in the technical report when a runtime-constraint
violation occurs (Subclause 6.1.4). The runtime-constraint handler mechanism makes
violations more visible (Subclause 1.1.11).

The second argument to the handler allows an implementation to pass additional
information to the handler. For example, the implementation might pass a pointer to an
object giving the name of the function that detected the runtime-constraint violation and
the line number when the violation was detected.

The abort_handler_s and ignore_handler_s functions represent handlers for
two common situations, and are provided simply for convenience. Note that the
implementation default handler need not be either abort_handler_s or
ignore_handler_s. (The implementation default handler is used if
set_constraint_handler_s has never been called or if a null pointer is passed as
the handler argument to set_constraint_handler_s.)

Programmers may wish to implement runtime-constraint checking in their own code, and
to call the current runtime-constraint handler when a violation is detected. The following
code fragment gets a pointer to the currently registered runtime-constraint handler and
then calls it:

// Get the current handler
constraint_handler_t handler =

set_constraint_handler_s(NULL);
// Restore the current handler
set_constraint_handler_s(handler);
// Call it to report a domain error
handler("Domain Error", NULL, EDOM);

Most implementations will probably use a pointer to function in their implementation of
the set_constraint_handler_s function to hold the address of the currently

 16

SC22 WG14 N1173

registered handler. Unfortunately, pointers to functions are employed by many security
exploits. If an exploit deposits new code into a program, the exploit must find a way to
cause that new code to be executed. The most common way is to alter the return address
on the stack to point to the new code, but an alternative is to find a pointer to a function,
and store the address of the new code in that pointer.

The committee thought that the benefit of a user-settable runtime-constraint handler
justified providing another pointer to function that might be exploited. There are steps
that an implementation can take to mitigate the vulnerability of the pointer. Some
possibilities are:

• Dynamically allocate the pointer or otherwise arrange for the address of the
pointer to change every time the program runs

• Write-protect the page containing the pointer, and have
set_constraint_handler_s only write-enable the storage when it is
updating the pointer’s value.

• “Encode” the value of the pointer, so that it is not a pure address.

Note that anytime a program terminates by a call to the abort function, including when a
runtime-constraint handler calls abort, that some resources managed by the program
might not be released. For example, output buffers may not be flushed and temporary
files may not be deleted.

6.6.2 Communication with the environment

6.6.2.1 The getenv_s function
The getenv_s fixes the reentrancy problems with gets (Subclause 1.1.12) and fixes a
possible buffer overflow. The getenv_s function can also be used to get the size
needed to represent the result. This allows the programmer to first call getenv_s to get
the size, then allocate a buffer to hold the result, and then call getenv_s again to
actually obtain the result.

6.6.3 Searching and sorting utilities
The bsearch_s and qsort_s functions allow a context argument to be passed to the
comparison function. This allows for more sophisticated comparisons. For example, the
comparison might be done in a specific locale or with a private collation table. Without
the extra argument, either the programmer would have to write separate comparison
functions for each “context,” or would have to use global variables to provide the extra
“context” to the comparison function. The bsearch_s and qsort_s functions remove
this reentrancy problem (Subclause 1.1.12).

An early implementation of the bsearch_s and qsort_s functions that performed
runtime-constraint-like checks discovered that many legitimate uses of these functions
operated on arrays of zero elements. The committee decided to require reasonable
behavior if the number of elements in the array was zero (bsearch_s fails to find the
key and qsort_s does not alter the array).

 17

SC22 WG14 N1173

6.6.4 Multibyte/wide character conversion functions
The wctomb_s function adds an extra parameter to prevent a buffer overflow.

The wctomb_s function is designed to be used in loops that process a string a character
at a time. As such, it is not appropriate for wctomb_s to null terminate its result.

The wctomb_s function has internal state, which is a reentrancy problem (Subclause
1.1.12). The wcrtomb_s function (Subclause 6.9.3) fixes this problem, and should be
used when possible. The wctomb_s function is provided because requiring the program
to manage the conversion state may complicate migrating to the more secure functions in
the technical report (Subclause 1.1.8).

6.6.5 Multibyte/wide string conversion functions
The mbstowcs_s and wcstombs_s functions have an additional parameter giving the
size of the array that is the destination of the conversion in order to prevent buffer
overflow.

These functions have a feature lacking in the mbstowcs and wcstombs functions: If
the destination pointer is null, mbstowcs_s and wcstombs_s will store the length of
the result. This allows a program to call these functions to determine the amount of space
needed, then to allocate space for the result, and then call these functions a second time to
actually obtain the result.

The mbstowcs_s and wcstombs_s functions have internal state, which is a
reentrancy problem (Subclause 1.1.12). The mbsrtowcs_s and wcsrtombs_s
functions (Subclause 6.9.3) fix this problem, and should be used when possible. The
mbstowcs_s and wcstombs_s functions are provided because requiring the program
to manage the conversion state may complicate migrating to the more secure functions in
the technical report (Subclause 1.1.8).

The mbstowcs_s and wcstombs_s functions can be implemented as a wrapper
around mbsrtowcs_s and wcsrtombs_s.

6.7 String handling <string.h>

6.7.1 Copying functions

6.7.1.1 The memcpy_s function
The memcpy_s function has an additional parameter giving the size of the destination
array in order to prevent buffer overflow. If a runtime-constraint violation occurs, the
destination array is zeroed to increase the visibility of the problem (Subclause 1.1.11).

In order to reduce number of cases of undefined behavior, the memcpy_s function must
report a constraint-violation if an attempt is being made to copy overlapping objects. For

 18

SC22 WG14 N1173

some functions in the library (for example, the printf_s and scanf_s functions),
detecting overlapping operands is too difficult to be practical. However, experience with
the memmove function has shown that it is practical to detect overlapping operands in a
memcpy-like function.

6.7.1.2 The memmove_s function
The memmove_s function has an additional parameter giving the size of the destination
array in order to prevent buffer overflow. If a runtime-constraint violation occurs, the
destination array is zeroed to increase the visibility of the problem (Subclause 1.1.11).

6.7.1.3 The strcpy_s function
The strcpy_s function has an additional parameter giving the size of the destination
array in order to prevent buffer overflow. If a runtime-constraint violation occurs, the
destination array is set to a null string to increase the visibility of the problem (Subclause
1.1.11).

Because truncating a source string to fit in the destination can be a security vulnerability
(Subclause 1.1.4), the strcpy_s function does not truncate, and treats such cases as a
runtime-constraint violation. However, if the programmer wishes to force truncation,
there is an idiom using strncpy_s (See Subclause 6.7.1.4) that can be used.

The strcpy_s function is similar to the OpenBSD function strlcpy, but has some
important differences. The strlcpy function truncates the source string to fit in the
destination if the destination is shorter than the source. Since truncation is a possible
security vulnerability, the committee decided this was unacceptable. The strlcpy
function does not perform all of the runtime-constraint checks that strcpy_s does, and
so is less robust. The strlcpy function does not make failures obvious by setting the
destination to a null string or calling a handler if the call fails. The strlcpy function
has been criticized by some programmers as forcing them to check its return value to see
if the function failed. The committee decided to give such programmers the option to
delegate that job to an automatically called handler when using strcpy_s.

6.7.1.3.1 Overlapping operands
The strcpy_s function must detect a runtime-constraint violation if its source and
destination operands overlap. Unlike the memcpy_s function, this is harder to detect
since the length of its source operand is not immediately available. While it would be
possible to call strnlen_s to get the source string’s length, this would cause
strcpy_s to become a two pass algorithm. The first pass would walk the source string
to get its length. The second pass would walk the source string to copy it. This would
likely make the function twice as slow.

A more efficient way to check the overlap runtime-constraint is to attempt to copy the
source to the destination. A side-effect of copying the source is determining its length.

 19

SC22 WG14 N1173

Then, the overlap runtime-constraint can be easily checked, and the function need only
walk the source string once.

This single pass algorithm is permitted for two reasons. First, runtime-constraints need
not be checked when the function is first entered. The only requirement is that the
runtime-constraints be checked early enough to prevent the function from performing any
action that is prohibited if a runtime-constraint violation occurs. There is nothing
prohibited about copying the source or modifying the destination in the specification of
the strcpy_s function. Second, the specification of the strcpy_s function permits
the function to modify every byte in the destination after the terminating null character.
If a runtime-constraint violation occurs, a null character is written to the first element of
the destination. Thus, if a runtime-constraint occurs, the function was permitted to
attempt the copy and smash all of the elements of the destination array.

6.7.1.4 The strncpy_s function
The strncpy_s function has an additional parameter giving the size of the destination
array in order to prevent buffer overflow. If a runtime-constraint violation occurs, the
destination array is set to a null string to increase the visibility of the problem (Subclause
1.1.11).

The strncpy_s function stops copying the source string to the destination array when
the first of the following two conditions occurs:

1. The null terminating the source string is copied to the destination.
2. The number of characters specified by the n parameter have been copied

The result in the destination is provided with a null character terminator if one was not
copied from the source. The result including the null terminator must fit within the
destination or a runtime-constraint violation occurs. Storage outside of the destination
array is never modified.

Because the number of characters in the source is limited by the n parameter and the
destination has a separate parameter giving the maximum number of elements in the
destination, the strncpy_s function can copy a substring safely, not just an entire
string or its tail.

Because unexpected string truncation is a possible security vulnerability (Subclause
1.1.4), strncpy_s does not truncate the source (as delimited by the null terminator and
the n parameter) to fit the destination. Truncation is a runtime-constraint violation.
However, there is an idiom which allows a program to force truncation using the
strncpy_s function. If the n argument is the number of elements minus one in the
destination, strncpy_s will copy the entire source to the destination or truncate it to fit
(as always, the result will be null terminated). For example, the following call will copy
src to the dest array resulting in a properly null terminated string in dest. The copy
will stop when dest is full (including the null terminator) or when all of src has been
copied:

 20

SC22 WG14 N1173

strncpy_s(dest, sizeof dest, src, (sizeof dest)-1);

While OpenBSD function strlcpy is similar to strncpy, it is more similar to
strcpy_s than strncpy_s. Unlike strlcpy, strncpy_s does support copying
substrings in a safe and secure manner. For more discussion of strlcpy, see Subclause
6.7.1.3.

The issues with detecting the overlapping operands runtime-constraint are similar to
those in Subclause 6.7.1.3.1.

6.7.2 Concatenation functions

6.7.2.1 The strcat_s function
The strcat_s function has an additional parameter, s1max, giving the size of the
destination array in order to prevent buffer overflow. The original string in the
destination plus the new characters appended from the source must fit and be null
terminated to avoid a runtime-constraint violation. If a runtime-constraint violation
occurs, the destination array is set to a null string to increase the visibility of the problem
(Subclause 1.1.11).

Because truncating a source string to fit in the destination can be a security vulnerability
(Subclause 1.1.4), the strcat_s function does not truncate, and treats such cases as a
runtime-constraint violation. However, if the programmer wishes to force truncation,
there is an idiom using strncat_s (See Subclause 6.7.2.2) that can be used.

The strcat_s function is similar to the OpenBSD function strlcat, but has some
important differences. The strlcat function truncates the source string to fit in the
destination if the free space in the destination is shorter than the source. Since truncation
is a possible security vulnerability, the committee decided this was unacceptable. The
strlcat function does not perform all of the runtime-constraint checks that
strcat_s does, and so is less robust. The strlcat function does not make failures
obvious by setting the destination to a null string or calling a handler if the call fails. The
strlcat function has been criticized by some programmers as forcing them to check its
return value to see if the function failed. The committee decided to give such
programmers the option to delegate that job to an automatically called handler when
using strcat_s.

The issues with detecting the overlapping operands runtime-constraint are similar to
those in Subclause 6.7.1.3.1.

6.7.2.2 The strncat_s function
The strncat_s function has an additional parameter giving the size of the destination
array in order to prevent buffer overflow. The original string in the destination plus the
new characters appended from the source must fit and be null terminated to avoid a

 21

SC22 WG14 N1173

runtime-constraint violation. If a runtime-constraint violation occurs, the destination
array is set to a null string to increase the visibility of the problem (Subclause 1.1.11).

The strncat_s function stops appending the source string to the destination array
when the first of the following two conditions occurs:

1. The null terminating the source string is copied to the destination.
2. The number of characters specified by the n parameter have been copied

The result in the destination is provided with a null character terminator if one was not
copied from the source. The result including the null terminator must fit within the
destination or a runtime-constraint violation occurs. Storage outside of the destination
array is never modified.

Because the number of characters in the source is limited by the n parameter and the
destination has a separate parameter giving the maximum number of elements in the
destination, the strncat_s function can append a substring safely, not just an entire
string or its tail.

Because unexpected string truncation is a possible security vulnerability (Subclause
1.1.4), strncat_s does not truncate the source (as specified by the null terminator and
the n parameter) to fit the destination. Truncation is a runtime-constraint violation.
However, there is an idiom which allows a program to force truncation using the
strncat_s function. If the n argument is the number of elements minus one
remaining in the destination, strncat_s will append the entire source to the
destination or truncate it to fit (as always, the result will be null terminated). For
example, the following call will append src to the dest array resulting in a properly
null terminated string in dest. The concatenation will stop when dest is full
(including the null terminator) or when all of src has been appended:

strncat_s(dest, sizeof dest, src,
 (sizeof dest)-strnlen_s(dest, sizeof dest)-1);

While OpenBSD function strlcat is similar to strncat, it is more similar to
strcat_s than strncat_s. Unlike strlcat, strncat_s does support appending
substrings in a safe and secure manner. For more discussion of strlcat, see Subclause
6.7.2.1.

The issues with detecting the overlapping operands runtime-constraint are similar to
those in Subclause 6.7.1.3.1.

6.7.3 Search functions

6.7.3.1 The strtok_s function
The strtok_s function fixes two problems in the strtok function:

 22

SC22 WG14 N1173

1. A new parameter, s1max, prevents strtok_s from storing outside of the string
being tokenized. (The string being divided into tokens is both an input and output
of the function since strtok_s stores null characters into the string.)

2. A new parameter, ptr, eliminates the static internal state that prevents strtok
from being re-entrant (Subclause 1.1.12). (The ISO/IEC 9899 function wcstok
and the ISO/IEC 9945 (POSIX) function strtok_r fix this problem
identically.)

The strtok_s function differs from the POSIX strtok_r function by guarding
against storing outside of the string being tokenized, and by checking runtime-
constraints.

Some might point out that the strtok function has a somewhat clumsy interface, and
question whether it is wise to provide a function with similar shortcomings. For example,
strtok modifies the string that it tokenizes, which make it unsuitable to parse a const
string or a string literal. However, providing a more secure version of strtok is consistent
with the goals of the technical report (Subclauses 1.1.2, 1.1.5, and 1.1.8).

6.7.4 Miscellaneous functions

6.7.4.1 The strerror_s function
The strerror_s function has an additional parameter (compared to strerror)
giving the size of the destination array in order to prevent buffer overflow.

Unlike the other functions in the technical report, the strerror_s function supports
string truncation. If the error message is too long for the destination, it is truncated to fit.
A terminating ellipsis is added to the result to indicate that truncation occurred. The
result is always a properly null terminated string that fits within the destination array.

The justification for supporting truncation in this function is that its purpose is to obtain
an error message when something goes wrong. The last thing many programs will do
before aborting is to display an error message obtained by strerror_s. Given this
use, providing as much information about what went wrong is desirable.

The use of an ellipsis to indicate that the message string was truncated is consistent with
other uses of ellipsis in C programming (for example, function prototypes), and in this
case is more of a C Language cultural convention than an English language one.

6.7.4.2 The strerrorlen_s function
The committee received several requests for a new function to obtain the full, untruncated
length of the message string that strerror_s would return. This would allow a
program to determine the size of the array needed to store a result from strerror_s so
that the program could allocate the buffer before calling strerror_s.

 23

SC22 WG14 N1173

The Open Group and others specifically requested that a new function be used for this
purpose, rather than having strerror_s return the length of the full message. Thus,
strerrorlen_s was added to the technical report.

6.7.4.3 The strnlen_s function
The strnlen_s function is useful when dealing with strings that might lack their
terminating null character. That the function returns the number of elements in the array
when no terminating null character is found causes many calculations to be more
straightforward. The technical report itself uses strnlen_s extensively in expressing
the runtime-constraints of functions.

The strnlen_s function is identical the Linux function strnlen.

Because functions in the technical report do not produce unterminated strings (Subclause
1.1.3), in most cases there is no need to replace calls to the strlen function with calls
to strnlen_s.

6.8 Date and time <time.h>

6.8.1 Components of time
The concept of a normalized time existed in ISO/IEC 9899, but was never named. For
convenience, the term is defined here in the technical report.

6.8.2 Time conversion functions

6.8.2.1 The asctime_s function
The asctime_s function fixes static internal state problem (Subclause 1.1.12) with the
asctime function. In addition to the caller supplying a pointer to where to store the
result, another parameter gives the number of elements in the result array, so that the
function does not write past the end of the buffer.

This function is similar to the POSIX asctime_r function, but that function lacks the
parameter giving the size of the result array, and does not perform runtime-constraint
checks (like verifying that the calendar year is reasonable).

The format of the string produced by asctime and asctime_s is well known, and
many programs (and even command scripts) depend upon it. Although the strftime
function provides more flexible formatting, if the exact format of the asctime result is
desired, the asctime_s will produce it safely with a minimum change to the program
(see Subclause 1.1.8).

6.8.2.2 The ctime_s function
The ctime_s function fixes static internal state problem (Subclause 1.1.12) with the
ctime function. In addition to the caller supplying a pointer to where to store the result,

 24

SC22 WG14 N1173

another parameter gives the number of elements in the result array, so that the function
does not write past the end of the buffer.

This function is similar to the POSIX ctime_r function, but that function lacks the
parameter giving the size of the result array, and does not perform runtime-constraint
checks (like verifying that the calendar year is reasonable).

The format of the string produced by ctime and ctime_s is well known, and many
programs (and even command scripts) depend upon it. Although the strftime
function provides more flexible formatting, if the exact format of the ctime result is
desired, the ctime_s will produce it safely with a minimum change to the program (see
Subclause 1.1.8).

6.8.2.3 The gmtime_s function
The gmtime_s function fixes static internal state problem (Subclause 1.1.12) with the
gmtime function.

This function is similar to the POSIX gmtime_r function, differing only in that
gmtime_s checks runtime-constraints. The committee debated whether the gmtime_s
function should be named gmtime_r, but decided against it for two reasons. First, the
committee wanted all of the function names in the technical report to follow a uniform
pattern (Subclause 1.1.13). Second, the runtime-constraint support does make these
functions different.

6.8.2.4 The localtime_s function
The localtime_s function fixes static internal state problem (Subclause 1.1.12) with
the localtime function.

This function is similar to the POSIX localtime_r function, differing only in that
localtime_s checks runtime-constraints. The committee debated whether the
localtime_s function should be named localtime_r, but decided against it for
two reasons. First, the committee wanted all of the function names in the technical report
to follow a uniform pattern (Subclause 1.1.13). Second, the runtime-constraint support
does make these functions different.

6.9 Extended multibyte and wide character utilities <wchar.h>

6.9.1 Formatted wide character input/output functions
The rationale for these functions is the same as their multibyte counterparts (Subclause
6.5.3).

 25

SC22 WG14 N1173

6.9.2 General wide string utilities

6.9.2.1 Wide string copying functions
The rationale for these functions is the same as their multibyte counterparts (Subclause
6.7.1).

6.9.2.2 Wide string concatenation functions
The rationale for these functions is the same as their multibyte counterparts (Subclause
6.7.2).

6.9.2.3 Wide string search functions

6.9.2.3.1 The wcstok_s function
The wcstok_s function has a new parameter, s1max, that prevents wcstok_s from
storing outside of the wide string being tokenized. (The wide string being divided into
tokens is both an input and output of the function since wcstok_s stores null wide
characters into the wide string.)

6.9.2.4 Miscellaneous functions
The rationale for the wcsnlen_s function is the same as its multibyte counterpart
(Subclause 6.7.4.3).

6.9.3 Extended multibyte/wide character conversion utilities
The rationale for these functions is same as the function in Subclauses 6.6.4 and 6.6.5,
except that these functions also fix the static internal state problem. The functions in this
Subclause should be preferred over the functions in Subclauses 6.6.4 and 6.6.5 when the
cost of modifying the program to manage the state is reasonable (see Subclause 1.1.8).

 26

	1
	1 Introduction
	1.1 Goals
	1.1.1 Mitigate certain security vulnerabilities
	1.1.2 Guard against overflowing a buffer
	1.1.3 Do not produce unterminated strings
	1.1.4 Do not unexpectedly truncate strings
	1.1.5 Provide a library useful to existing code
	1.1.6 Preserve the null terminated string datatype
	1.1.7 Do not require size arguments for unmodified strings
	1.1.8 Only require local edits to programs
	1.1.9 Library based solution
	1.1.10 Support compile-time checking
	1.1.11 Make failures obvious
	1.1.11.1 Zero buffers, null strings
	1.1.11.2 Runtime-constraint handler mechanism

	1.1.12 Support re-entrant code
	1.1.13 Consistent naming scheme
	1.1.14 Have a uniform pattern for the function parameters and return type
	1.1.15 Deference to existing technology

	2 References
	3 Terms, definitions, and symbols
	4 Conformance
	5 Predefined macro names
	6 Library
	6.1 Introduction
	6.1.1 Standard headers
	6.1.2 Reserved identifiers
	6.1.3 Use of errno
	6.1.4 Runtime-constraint violations

	6.2 Errors <errno.h>
	6.3 Common definitions <stddef.h>
	6.4 Integer types <stdint.h>
	6.5 Input/output <stdio.h>
	6.5.1 Operations on files
	6.5.1.1 The tmpfile_s function
	6.5.1.2 The tmpnam_s function

	6.5.2 File access functions
	6.5.3 Formatted input/output functions
	6.5.3.1 The printf family of functions
	6.5.3.1.1 snprintf/vsnprintf versus sprintf/vsprintf

	6.5.3.2 The scanf family of functions

	6.5.4 Character input/output functions
	6.5.4.1 The gets_s function

	6.6 General utilities <stdlib.h>
	6.6.1 Runtime-constraint handling
	6.6.2 Communication with the environment
	6.6.2.1 The getenv_s function

	6.6.3 Searching and sorting utilities
	6.6.4 Multibyte/wide character conversion functions
	6.6.5 Multibyte/wide string conversion functions

	6.7 String handling <string.h>
	6.7.1 Copying functions
	6.7.1.1 The memcpy_s function
	6.7.1.2 The memmove_s function
	6.7.1.3 The strcpy_s function
	6.7.1.3.1 Overlapping operands

	6.7.1.4 The strncpy_s function

	6.7.2 Concatenation functions
	6.7.2.1 The strcat_s function
	6.7.2.2 The strncat_s function

	6.7.3 Search functions
	6.7.3.1 The strtok_s function

	6.7.4 Miscellaneous functions
	6.7.4.1 The strerror_s function
	6.7.4.2 The strerrorlen_s function
	6.7.4.3 The strnlen_s function

	6.8 Date and time <time.h>
	6.8.1 Components of time
	6.8.2 Time conversion functions
	6.8.2.1 The asctime_s function
	6.8.2.2 The ctime_s function
	6.8.2.3 The gmtime_s function
	6.8.2.4 The localtime_s function

	6.9 Extended multibyte and wide character utilities <wchar.h>
	6.9.1 Formatted wide character input/output functions
	6.9.2 General wide string utilities
	6.9.2.1 Wide string copying functions
	6.9.2.2 Wide string concatenation functions
	6.9.2.3 Wide string search functions
	6.9.2.3.1 The wcstok_s function

	6.9.2.4 Miscellaneous functions

	6.9.3 Extended multibyte/wide character conversion utilities

