/* * Simple allocator for internal RAM in ETRAX FS * * Copyright (c) 2004 Axis Communications AB. */ #include <linux/list.h> #include <linux/slab.h> #include <asm/io.h> #include <memmap.h> #define STATUS_FREE 0 #define STATUS_ALLOCATED 1 #ifdef CONFIG_ETRAX_L2CACHE #define RESERVED_SIZE 66*1024 #else #define RESERVED_SIZE 0 #endif struct intmem_allocation { struct list_head entry; unsigned int size; unsigned offset; char status; }; static struct list_head intmem_allocations; static void* intmem_virtual; static void crisv32_intmem_init(void) { static int initiated = 0; if (!initiated) { struct intmem_allocation* alloc; alloc = kmalloc(sizeof *alloc, GFP_KERNEL); INIT_LIST_HEAD(&intmem_allocations); intmem_virtual = ioremap(MEM_INTMEM_START + RESERVED_SIZE, MEM_INTMEM_SIZE - RESERVED_SIZE); initiated = 1; alloc->size = MEM_INTMEM_SIZE - RESERVED_SIZE; alloc->offset = 0; alloc->status = STATUS_FREE; list_add_tail(&alloc->entry, &intmem_allocations); } } void* crisv32_intmem_alloc(unsigned size, unsigned align) { struct intmem_allocation* allocation; struct intmem_allocation* tmp; void* ret = NULL; preempt_disable(); crisv32_intmem_init(); list_for_each_entry_safe(allocation, tmp, &intmem_allocations, entry) { int alignment = allocation->offset % align; alignment = alignment ? align - alignment : alignment; if (allocation->status == STATUS_FREE && allocation->size >= size + alignment) { if (allocation->size > size + alignment) { struct intmem_allocation* alloc; alloc = kmalloc(sizeof *alloc, GFP_ATOMIC); alloc->status = STATUS_FREE; alloc->size = allocation->size - size - alignment; alloc->offset = allocation->offset + size + alignment; list_add(&alloc->entry, &allocation->entry); if (alignment) { struct intmem_allocation *tmp; tmp = kmalloc(sizeof *tmp, GFP_ATOMIC); tmp->offset = allocation->offset; tmp->size = alignment; tmp->status = STATUS_FREE; allocation->offset += alignment; list_add_tail(&tmp->entry, &allocation->entry); } } allocation->status = STATUS_ALLOCATED; allocation->size = size; ret = (void*)((int)intmem_virtual + allocation->offset); } } preempt_enable(); return ret; } void crisv32_intmem_free(void* addr) { struct intmem_allocation* allocation; struct intmem_allocation* tmp; if (addr == NULL) return; preempt_disable(); crisv32_intmem_init(); list_for_each_entry_safe(allocation, tmp, &intmem_allocations, entry) { if (allocation->offset == (int)(addr - intmem_virtual)) { struct intmem_allocation *prev = list_entry(allocation->entry.prev, struct intmem_allocation, entry); struct intmem_allocation *next = list_entry(allocation->entry.next, struct intmem_allocation, entry); allocation->status = STATUS_FREE; /* Join with prev and/or next if also free */ if ((&prev->entry != &intmem_allocations) && (prev->status == STATUS_FREE)) { prev->size += allocation->size; list_del(&allocation->entry); kfree(allocation); allocation = prev; } if ((&next->entry != &intmem_allocations) && (next->status == STATUS_FREE)) { allocation->size += next->size; list_del(&next->entry); kfree(next); } preempt_enable(); return; } } preempt_enable(); } void* crisv32_intmem_phys_to_virt(unsigned long addr) { return (void *)(addr - (MEM_INTMEM_START + RESERVED_SIZE) + (unsigned long)intmem_virtual); } unsigned long crisv32_intmem_virt_to_phys(void* addr) { return (unsigned long)((unsigned long )addr - (unsigned long)intmem_virtual + MEM_INTMEM_START + RESERVED_SIZE); } static int __init crisv32_intmem_setup(void) { crisv32_intmem_init(); return 0; } device_initcall(crisv32_intmem_setup);