/******************************************************************************* * Filename: target_core_transport.c * * This file contains the Generic Target Engine Core. * * (c) Copyright 2002-2013 Datera, Inc. * * Nicholas A. Bellinger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ******************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "target_core_internal.h" #include "target_core_alua.h" #include "target_core_pr.h" #include "target_core_ua.h" #define CREATE_TRACE_POINTS #include static struct workqueue_struct *target_completion_wq; static struct kmem_cache *se_sess_cache; struct kmem_cache *se_ua_cache; struct kmem_cache *t10_pr_reg_cache; struct kmem_cache *t10_alua_lu_gp_cache; struct kmem_cache *t10_alua_lu_gp_mem_cache; struct kmem_cache *t10_alua_tg_pt_gp_cache; struct kmem_cache *t10_alua_lba_map_cache; struct kmem_cache *t10_alua_lba_map_mem_cache; static void transport_complete_task_attr(struct se_cmd *cmd); static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev); static int transport_put_cmd(struct se_cmd *cmd); static void target_complete_ok_work(struct work_struct *work); int init_se_kmem_caches(void) { se_sess_cache = kmem_cache_create("se_sess_cache", sizeof(struct se_session), __alignof__(struct se_session), 0, NULL); if (!se_sess_cache) { pr_err("kmem_cache_create() for struct se_session" " failed\n"); goto out; } se_ua_cache = kmem_cache_create("se_ua_cache", sizeof(struct se_ua), __alignof__(struct se_ua), 0, NULL); if (!se_ua_cache) { pr_err("kmem_cache_create() for struct se_ua failed\n"); goto out_free_sess_cache; } t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", sizeof(struct t10_pr_registration), __alignof__(struct t10_pr_registration), 0, NULL); if (!t10_pr_reg_cache) { pr_err("kmem_cache_create() for struct t10_pr_registration" " failed\n"); goto out_free_ua_cache; } t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 0, NULL); if (!t10_alua_lu_gp_cache) { pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" " failed\n"); goto out_free_pr_reg_cache; } t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", sizeof(struct t10_alua_lu_gp_member), __alignof__(struct t10_alua_lu_gp_member), 0, NULL); if (!t10_alua_lu_gp_mem_cache) { pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" "cache failed\n"); goto out_free_lu_gp_cache; } t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", sizeof(struct t10_alua_tg_pt_gp), __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); if (!t10_alua_tg_pt_gp_cache) { pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" "cache failed\n"); goto out_free_lu_gp_mem_cache; } t10_alua_lba_map_cache = kmem_cache_create( "t10_alua_lba_map_cache", sizeof(struct t10_alua_lba_map), __alignof__(struct t10_alua_lba_map), 0, NULL); if (!t10_alua_lba_map_cache) { pr_err("kmem_cache_create() for t10_alua_lba_map_" "cache failed\n"); goto out_free_tg_pt_gp_cache; } t10_alua_lba_map_mem_cache = kmem_cache_create( "t10_alua_lba_map_mem_cache", sizeof(struct t10_alua_lba_map_member), __alignof__(struct t10_alua_lba_map_member), 0, NULL); if (!t10_alua_lba_map_mem_cache) { pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" "cache failed\n"); goto out_free_lba_map_cache; } target_completion_wq = alloc_workqueue("target_completion", WQ_MEM_RECLAIM, 0); if (!target_completion_wq) goto out_free_lba_map_mem_cache; return 0; out_free_lba_map_mem_cache: kmem_cache_destroy(t10_alua_lba_map_mem_cache); out_free_lba_map_cache: kmem_cache_destroy(t10_alua_lba_map_cache); out_free_tg_pt_gp_cache: kmem_cache_destroy(t10_alua_tg_pt_gp_cache); out_free_lu_gp_mem_cache: kmem_cache_destroy(t10_alua_lu_gp_mem_cache); out_free_lu_gp_cache: kmem_cache_destroy(t10_alua_lu_gp_cache); out_free_pr_reg_cache: kmem_cache_destroy(t10_pr_reg_cache); out_free_ua_cache: kmem_cache_destroy(se_ua_cache); out_free_sess_cache: kmem_cache_destroy(se_sess_cache); out: return -ENOMEM; } void release_se_kmem_caches(void) { destroy_workqueue(target_completion_wq); kmem_cache_destroy(se_sess_cache); kmem_cache_destroy(se_ua_cache); kmem_cache_destroy(t10_pr_reg_cache); kmem_cache_destroy(t10_alua_lu_gp_cache); kmem_cache_destroy(t10_alua_lu_gp_mem_cache); kmem_cache_destroy(t10_alua_tg_pt_gp_cache); kmem_cache_destroy(t10_alua_lba_map_cache); kmem_cache_destroy(t10_alua_lba_map_mem_cache); } /* This code ensures unique mib indexes are handed out. */ static DEFINE_SPINLOCK(scsi_mib_index_lock); static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; /* * Allocate a new row index for the entry type specified */ u32 scsi_get_new_index(scsi_index_t type) { u32 new_index; BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); spin_lock(&scsi_mib_index_lock); new_index = ++scsi_mib_index[type]; spin_unlock(&scsi_mib_index_lock); return new_index; } void transport_subsystem_check_init(void) { int ret; static int sub_api_initialized; if (sub_api_initialized) return; ret = request_module("target_core_iblock"); if (ret != 0) pr_err("Unable to load target_core_iblock\n"); ret = request_module("target_core_file"); if (ret != 0) pr_err("Unable to load target_core_file\n"); ret = request_module("target_core_pscsi"); if (ret != 0) pr_err("Unable to load target_core_pscsi\n"); ret = request_module("target_core_user"); if (ret != 0) pr_err("Unable to load target_core_user\n"); sub_api_initialized = 1; } struct se_session *transport_init_session(enum target_prot_op sup_prot_ops) { struct se_session *se_sess; se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); if (!se_sess) { pr_err("Unable to allocate struct se_session from" " se_sess_cache\n"); return ERR_PTR(-ENOMEM); } INIT_LIST_HEAD(&se_sess->sess_list); INIT_LIST_HEAD(&se_sess->sess_acl_list); INIT_LIST_HEAD(&se_sess->sess_cmd_list); INIT_LIST_HEAD(&se_sess->sess_wait_list); spin_lock_init(&se_sess->sess_cmd_lock); se_sess->sup_prot_ops = sup_prot_ops; return se_sess; } EXPORT_SYMBOL(transport_init_session); int transport_alloc_session_tags(struct se_session *se_sess, unsigned int tag_num, unsigned int tag_size) { int rc; se_sess->sess_cmd_map = kzalloc(tag_num * tag_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); if (!se_sess->sess_cmd_map) { se_sess->sess_cmd_map = vzalloc(tag_num * tag_size); if (!se_sess->sess_cmd_map) { pr_err("Unable to allocate se_sess->sess_cmd_map\n"); return -ENOMEM; } } rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num); if (rc < 0) { pr_err("Unable to init se_sess->sess_tag_pool," " tag_num: %u\n", tag_num); kvfree(se_sess->sess_cmd_map); se_sess->sess_cmd_map = NULL; return -ENOMEM; } return 0; } EXPORT_SYMBOL(transport_alloc_session_tags); struct se_session *transport_init_session_tags(unsigned int tag_num, unsigned int tag_size, enum target_prot_op sup_prot_ops) { struct se_session *se_sess; int rc; if (tag_num != 0 && !tag_size) { pr_err("init_session_tags called with percpu-ida tag_num:" " %u, but zero tag_size\n", tag_num); return ERR_PTR(-EINVAL); } if (!tag_num && tag_size) { pr_err("init_session_tags called with percpu-ida tag_size:" " %u, but zero tag_num\n", tag_size); return ERR_PTR(-EINVAL); } se_sess = transport_init_session(sup_prot_ops); if (IS_ERR(se_sess)) return se_sess; rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); if (rc < 0) { transport_free_session(se_sess); return ERR_PTR(-ENOMEM); } return se_sess; } EXPORT_SYMBOL(transport_init_session_tags); /* * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. */ void __transport_register_session( struct se_portal_group *se_tpg, struct se_node_acl *se_nacl, struct se_session *se_sess, void *fabric_sess_ptr) { const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo; unsigned char buf[PR_REG_ISID_LEN]; unsigned long flags; se_sess->se_tpg = se_tpg; se_sess->fabric_sess_ptr = fabric_sess_ptr; /* * Used by struct se_node_acl's under ConfigFS to locate active se_session-t * * Only set for struct se_session's that will actually be moving I/O. * eg: *NOT* discovery sessions. */ if (se_nacl) { /* * * Determine if fabric allows for T10-PI feature bits exposed to * initiators for device backends with !dev->dev_attrib.pi_prot_type. * * If so, then always save prot_type on a per se_node_acl node * basis and re-instate the previous sess_prot_type to avoid * disabling PI from below any previously initiator side * registered LUNs. */ if (se_nacl->saved_prot_type) se_sess->sess_prot_type = se_nacl->saved_prot_type; else if (tfo->tpg_check_prot_fabric_only) se_sess->sess_prot_type = se_nacl->saved_prot_type = tfo->tpg_check_prot_fabric_only(se_tpg); /* * If the fabric module supports an ISID based TransportID, * save this value in binary from the fabric I_T Nexus now. */ if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { memset(&buf[0], 0, PR_REG_ISID_LEN); se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, &buf[0], PR_REG_ISID_LEN); se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); } spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); /* * The se_nacl->nacl_sess pointer will be set to the * last active I_T Nexus for each struct se_node_acl. */ se_nacl->nacl_sess = se_sess; list_add_tail(&se_sess->sess_acl_list, &se_nacl->acl_sess_list); spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); } list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); } EXPORT_SYMBOL(__transport_register_session); void transport_register_session( struct se_portal_group *se_tpg, struct se_node_acl *se_nacl, struct se_session *se_sess, void *fabric_sess_ptr) { unsigned long flags; spin_lock_irqsave(&se_tpg->session_lock, flags); __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); spin_unlock_irqrestore(&se_tpg->session_lock, flags); } EXPORT_SYMBOL(transport_register_session); struct se_session * target_alloc_session(struct se_portal_group *tpg, unsigned int tag_num, unsigned int tag_size, enum target_prot_op prot_op, const char *initiatorname, void *private, int (*callback)(struct se_portal_group *, struct se_session *, void *)) { struct se_session *sess; /* * If the fabric driver is using percpu-ida based pre allocation * of I/O descriptor tags, go ahead and perform that setup now.. */ if (tag_num != 0) sess = transport_init_session_tags(tag_num, tag_size, prot_op); else sess = transport_init_session(prot_op); if (IS_ERR(sess)) return sess; sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg, (unsigned char *)initiatorname); if (!sess->se_node_acl) { transport_free_session(sess); return ERR_PTR(-EACCES); } /* * Go ahead and perform any remaining fabric setup that is * required before transport_register_session(). */ if (callback != NULL) { int rc = callback(tpg, sess, private); if (rc) { transport_free_session(sess); return ERR_PTR(rc); } } transport_register_session(tpg, sess->se_node_acl, sess, private); return sess; } EXPORT_SYMBOL(target_alloc_session); ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page) { struct se_session *se_sess; ssize_t len = 0; spin_lock_bh(&se_tpg->session_lock); list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) { if (!se_sess->se_node_acl) continue; if (!se_sess->se_node_acl->dynamic_node_acl) continue; if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE) break; len += snprintf(page + len, PAGE_SIZE - len, "%s\n", se_sess->se_node_acl->initiatorname); len += 1; /* Include NULL terminator */ } spin_unlock_bh(&se_tpg->session_lock); return len; } EXPORT_SYMBOL(target_show_dynamic_sessions); static void target_complete_nacl(struct kref *kref) { struct se_node_acl *nacl = container_of(kref, struct se_node_acl, acl_kref); struct se_portal_group *se_tpg = nacl->se_tpg; if (!nacl->dynamic_stop) { complete(&nacl->acl_free_comp); return; } mutex_lock(&se_tpg->acl_node_mutex); list_del_init(&nacl->acl_list); mutex_unlock(&se_tpg->acl_node_mutex); core_tpg_wait_for_nacl_pr_ref(nacl); core_free_device_list_for_node(nacl, se_tpg); kfree(nacl); } void target_put_nacl(struct se_node_acl *nacl) { kref_put(&nacl->acl_kref, target_complete_nacl); } EXPORT_SYMBOL(target_put_nacl); void transport_deregister_session_configfs(struct se_session *se_sess) { struct se_node_acl *se_nacl; unsigned long flags; /* * Used by struct se_node_acl's under ConfigFS to locate active struct se_session */ se_nacl = se_sess->se_node_acl; if (se_nacl) { spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); if (!list_empty(&se_sess->sess_acl_list)) list_del_init(&se_sess->sess_acl_list); /* * If the session list is empty, then clear the pointer. * Otherwise, set the struct se_session pointer from the tail * element of the per struct se_node_acl active session list. */ if (list_empty(&se_nacl->acl_sess_list)) se_nacl->nacl_sess = NULL; else { se_nacl->nacl_sess = container_of( se_nacl->acl_sess_list.prev, struct se_session, sess_acl_list); } spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); } } EXPORT_SYMBOL(transport_deregister_session_configfs); void transport_free_session(struct se_session *se_sess) { struct se_node_acl *se_nacl = se_sess->se_node_acl; /* * Drop the se_node_acl->nacl_kref obtained from within * core_tpg_get_initiator_node_acl(). */ if (se_nacl) { struct se_portal_group *se_tpg = se_nacl->se_tpg; const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo; unsigned long flags; se_sess->se_node_acl = NULL; /* * Also determine if we need to drop the extra ->cmd_kref if * it had been previously dynamically generated, and * the endpoint is not caching dynamic ACLs. */ mutex_lock(&se_tpg->acl_node_mutex); if (se_nacl->dynamic_node_acl && !se_tfo->tpg_check_demo_mode_cache(se_tpg)) { spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); if (list_empty(&se_nacl->acl_sess_list)) se_nacl->dynamic_stop = true; spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); if (se_nacl->dynamic_stop) list_del_init(&se_nacl->acl_list); } mutex_unlock(&se_tpg->acl_node_mutex); if (se_nacl->dynamic_stop) target_put_nacl(se_nacl); target_put_nacl(se_nacl); } if (se_sess->sess_cmd_map) { percpu_ida_destroy(&se_sess->sess_tag_pool); kvfree(se_sess->sess_cmd_map); } kmem_cache_free(se_sess_cache, se_sess); } EXPORT_SYMBOL(transport_free_session); void transport_deregister_session(struct se_session *se_sess) { struct se_portal_group *se_tpg = se_sess->se_tpg; unsigned long flags; if (!se_tpg) { transport_free_session(se_sess); return; } spin_lock_irqsave(&se_tpg->session_lock, flags); list_del(&se_sess->sess_list); se_sess->se_tpg = NULL; se_sess->fabric_sess_ptr = NULL; spin_unlock_irqrestore(&se_tpg->session_lock, flags); pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", se_tpg->se_tpg_tfo->get_fabric_name()); /* * If last kref is dropping now for an explicit NodeACL, awake sleeping * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group * removal context from within transport_free_session() code. * * For dynamic ACL, target_put_nacl() uses target_complete_nacl() * to release all remaining generate_node_acl=1 created ACL resources. */ transport_free_session(se_sess); } EXPORT_SYMBOL(transport_deregister_session); static void target_remove_from_state_list(struct se_cmd *cmd) { struct se_device *dev = cmd->se_dev; unsigned long flags; if (!dev) return; if (cmd->transport_state & CMD_T_BUSY) return; spin_lock_irqsave(&dev->execute_task_lock, flags); if (cmd->state_active) { list_del(&cmd->state_list); cmd->state_active = false; } spin_unlock_irqrestore(&dev->execute_task_lock, flags); } static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists, bool write_pending) { unsigned long flags; if (remove_from_lists) { target_remove_from_state_list(cmd); /* * Clear struct se_cmd->se_lun before the handoff to FE. */ cmd->se_lun = NULL; } spin_lock_irqsave(&cmd->t_state_lock, flags); if (write_pending) cmd->t_state = TRANSPORT_WRITE_PENDING; /* * Determine if frontend context caller is requesting the stopping of * this command for frontend exceptions. */ if (cmd->transport_state & CMD_T_STOP) { pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", __func__, __LINE__, cmd->tag); spin_unlock_irqrestore(&cmd->t_state_lock, flags); complete_all(&cmd->t_transport_stop_comp); return 1; } cmd->transport_state &= ~CMD_T_ACTIVE; if (remove_from_lists) { /* * Some fabric modules like tcm_loop can release * their internally allocated I/O reference now and * struct se_cmd now. * * Fabric modules are expected to return '1' here if the * se_cmd being passed is released at this point, * or zero if not being released. */ if (cmd->se_tfo->check_stop_free != NULL) { spin_unlock_irqrestore(&cmd->t_state_lock, flags); return cmd->se_tfo->check_stop_free(cmd); } } spin_unlock_irqrestore(&cmd->t_state_lock, flags); return 0; } static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) { return transport_cmd_check_stop(cmd, true, false); } static void transport_lun_remove_cmd(struct se_cmd *cmd) { struct se_lun *lun = cmd->se_lun; if (!lun) return; if (cmpxchg(&cmd->lun_ref_active, true, false)) percpu_ref_put(&lun->lun_ref); } int transport_cmd_finish_abort(struct se_cmd *cmd, int remove) { bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF); int ret = 0; if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) transport_lun_remove_cmd(cmd); /* * Allow the fabric driver to unmap any resources before * releasing the descriptor via TFO->release_cmd() */ if (remove) cmd->se_tfo->aborted_task(cmd); if (transport_cmd_check_stop_to_fabric(cmd)) return 1; if (remove && ack_kref) ret = transport_put_cmd(cmd); return ret; } static void target_complete_failure_work(struct work_struct *work) { struct se_cmd *cmd = container_of(work, struct se_cmd, work); transport_generic_request_failure(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); } /* * Used when asking transport to copy Sense Data from the underlying * Linux/SCSI struct scsi_cmnd */ static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) { struct se_device *dev = cmd->se_dev; WARN_ON(!cmd->se_lun); if (!dev) return NULL; if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) return NULL; cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); return cmd->sense_buffer; } void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) { struct se_device *dev = cmd->se_dev; int success = scsi_status == GOOD; unsigned long flags; cmd->scsi_status = scsi_status; spin_lock_irqsave(&cmd->t_state_lock, flags); cmd->transport_state &= ~CMD_T_BUSY; if (dev && dev->transport->transport_complete) { dev->transport->transport_complete(cmd, cmd->t_data_sg, transport_get_sense_buffer(cmd)); if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) success = 1; } /* * Check for case where an explicit ABORT_TASK has been received * and transport_wait_for_tasks() will be waiting for completion.. */ if (cmd->transport_state & CMD_T_ABORTED || cmd->transport_state & CMD_T_STOP) { spin_unlock_irqrestore(&cmd->t_state_lock, flags); /* * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(), * release se_device->caw_sem obtained by sbc_compare_and_write() * since target_complete_ok_work() or target_complete_failure_work() * won't be called to invoke the normal CAW completion callbacks. */ if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) { up(&dev->caw_sem); } complete_all(&cmd->t_transport_stop_comp); return; } else if (!success) { INIT_WORK(&cmd->work, target_complete_failure_work); } else { INIT_WORK(&cmd->work, target_complete_ok_work); } cmd->t_state = TRANSPORT_COMPLETE; cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); spin_unlock_irqrestore(&cmd->t_state_lock, flags); if (cmd->se_cmd_flags & SCF_USE_CPUID) queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work); else queue_work(target_completion_wq, &cmd->work); } EXPORT_SYMBOL(target_complete_cmd); void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length) { if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) { if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { cmd->residual_count += cmd->data_length - length; } else { cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; cmd->residual_count = cmd->data_length - length; } cmd->data_length = length; } target_complete_cmd(cmd, scsi_status); } EXPORT_SYMBOL(target_complete_cmd_with_length); static void target_add_to_state_list(struct se_cmd *cmd) { struct se_device *dev = cmd->se_dev; unsigned long flags; spin_lock_irqsave(&dev->execute_task_lock, flags); if (!cmd->state_active) { list_add_tail(&cmd->state_list, &dev->state_list); cmd->state_active = true; } spin_unlock_irqrestore(&dev->execute_task_lock, flags); } /* * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status */ static void transport_write_pending_qf(struct se_cmd *cmd); static void transport_complete_qf(struct se_cmd *cmd); void target_qf_do_work(struct work_struct *work) { struct se_device *dev = container_of(work, struct se_device, qf_work_queue); LIST_HEAD(qf_cmd_list); struct se_cmd *cmd, *cmd_tmp; spin_lock_irq(&dev->qf_cmd_lock); list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); spin_unlock_irq(&dev->qf_cmd_lock); list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { list_del(&cmd->se_qf_node); atomic_dec_mb(&dev->dev_qf_count); pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" : "UNKNOWN"); if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) transport_write_pending_qf(cmd); else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) transport_complete_qf(cmd); } } unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) { switch (cmd->data_direction) { case DMA_NONE: return "NONE"; case DMA_FROM_DEVICE: return "READ"; case DMA_TO_DEVICE: return "WRITE"; case DMA_BIDIRECTIONAL: return "BIDI"; default: break; } return "UNKNOWN"; } void transport_dump_dev_state( struct se_device *dev, char *b, int *bl) { *bl += sprintf(b + *bl, "Status: "); if (dev->export_count) *bl += sprintf(b + *bl, "ACTIVATED"); else *bl += sprintf(b + *bl, "DEACTIVATED"); *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", dev->dev_attrib.block_size, dev->dev_attrib.hw_max_sectors); *bl += sprintf(b + *bl, " "); } void transport_dump_vpd_proto_id( struct t10_vpd *vpd, unsigned char *p_buf, int p_buf_len) { unsigned char buf[VPD_TMP_BUF_SIZE]; int len; memset(buf, 0, VPD_TMP_BUF_SIZE); len = sprintf(buf, "T10 VPD Protocol Identifier: "); switch (vpd->protocol_identifier) { case 0x00: sprintf(buf+len, "Fibre Channel\n"); break; case 0x10: sprintf(buf+len, "Parallel SCSI\n"); break; case 0x20: sprintf(buf+len, "SSA\n"); break; case 0x30: sprintf(buf+len, "IEEE 1394\n"); break; case 0x40: sprintf(buf+len, "SCSI Remote Direct Memory Access" " Protocol\n"); break; case 0x50: sprintf(buf+len, "Internet SCSI (iSCSI)\n"); break; case 0x60: sprintf(buf+len, "SAS Serial SCSI Protocol\n"); break; case 0x70: sprintf(buf+len, "Automation/Drive Interface Transport" " Protocol\n"); break; case 0x80: sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); break; default: sprintf(buf+len, "Unknown 0x%02x\n", vpd->protocol_identifier); break; } if (p_buf) strncpy(p_buf, buf, p_buf_len); else pr_debug("%s", buf); } void transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) { /* * Check if the Protocol Identifier Valid (PIV) bit is set.. * * from spc3r23.pdf section 7.5.1 */ if (page_83[1] & 0x80) { vpd->protocol_identifier = (page_83[0] & 0xf0); vpd->protocol_identifier_set = 1; transport_dump_vpd_proto_id(vpd, NULL, 0); } } EXPORT_SYMBOL(transport_set_vpd_proto_id); int transport_dump_vpd_assoc( struct t10_vpd *vpd, unsigned char *p_buf, int p_buf_len) { unsigned char buf[VPD_TMP_BUF_SIZE]; int ret = 0; int len; memset(buf, 0, VPD_TMP_BUF_SIZE); len = sprintf(buf, "T10 VPD Identifier Association: "); switch (vpd->association) { case 0x00: sprintf(buf+len, "addressed logical unit\n"); break; case 0x10: sprintf(buf+len, "target port\n"); break; case 0x20: sprintf(buf+len, "SCSI target device\n"); break; default: sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); ret = -EINVAL; break; } if (p_buf) strncpy(p_buf, buf, p_buf_len); else pr_debug("%s", buf); return ret; } int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) { /* * The VPD identification association.. * * from spc3r23.pdf Section 7.6.3.1 Table 297 */ vpd->association = (page_83[1] & 0x30); return transport_dump_vpd_assoc(vpd, NULL, 0); } EXPORT_SYMBOL(transport_set_vpd_assoc); int transport_dump_vpd_ident_type( struct t10_vpd *vpd, unsigned char *p_buf, int p_buf_len) { unsigned char buf[VPD_TMP_BUF_SIZE]; int ret = 0; int len; memset(buf, 0, VPD_TMP_BUF_SIZE); len = sprintf(buf, "T10 VPD Identifier Type: "); switch (vpd->device_identifier_type) { case 0x00: sprintf(buf+len, "Vendor specific\n"); break; case 0x01: sprintf(buf+len, "T10 Vendor ID based\n"); break; case 0x02: sprintf(buf+len, "EUI-64 based\n"); break; case 0x03: sprintf(buf+len, "NAA\n"); break; case 0x04: sprintf(buf+len, "Relative target port identifier\n"); break; case 0x08: sprintf(buf+len, "SCSI name string\n"); break; default: sprintf(buf+len, "Unsupported: 0x%02x\n", vpd->device_identifier_type); ret = -EINVAL; break; } if (p_buf) { if (p_buf_len < strlen(buf)+1) return -EINVAL; strncpy(p_buf, buf, p_buf_len); } else { pr_debug("%s", buf); } return ret; } int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) { /* * The VPD identifier type.. * * from spc3r23.pdf Section 7.6.3.1 Table 298 */ vpd->device_identifier_type = (page_83[1] & 0x0f); return transport_dump_vpd_ident_type(vpd, NULL, 0); } EXPORT_SYMBOL(transport_set_vpd_ident_type); int transport_dump_vpd_ident( struct t10_vpd *vpd, unsigned char *p_buf, int p_buf_len) { unsigned char buf[VPD_TMP_BUF_SIZE]; int ret = 0; memset(buf, 0, VPD_TMP_BUF_SIZE); switch (vpd->device_identifier_code_set) { case 0x01: /* Binary */ snprintf(buf, sizeof(buf), "T10 VPD Binary Device Identifier: %s\n", &vpd->device_identifier[0]); break; case 0x02: /* ASCII */ snprintf(buf, sizeof(buf), "T10 VPD ASCII Device Identifier: %s\n", &vpd->device_identifier[0]); break; case 0x03: /* UTF-8 */ snprintf(buf, sizeof(buf), "T10 VPD UTF-8 Device Identifier: %s\n", &vpd->device_identifier[0]); break; default: sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" " 0x%02x", vpd->device_identifier_code_set); ret = -EINVAL; break; } if (p_buf) strncpy(p_buf, buf, p_buf_len); else pr_debug("%s", buf); return ret; } int transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) { static const char hex_str[] = "0123456789abcdef"; int j = 0, i = 4; /* offset to start of the identifier */ /* * The VPD Code Set (encoding) * * from spc3r23.pdf Section 7.6.3.1 Table 296 */ vpd->device_identifier_code_set = (page_83[0] & 0x0f); switch (vpd->device_identifier_code_set) { case 0x01: /* Binary */ vpd->device_identifier[j++] = hex_str[vpd->device_identifier_type]; while (i < (4 + page_83[3])) { vpd->device_identifier[j++] = hex_str[(page_83[i] & 0xf0) >> 4]; vpd->device_identifier[j++] = hex_str[page_83[i] & 0x0f]; i++; } break; case 0x02: /* ASCII */ case 0x03: /* UTF-8 */ while (i < (4 + page_83[3])) vpd->device_identifier[j++] = page_83[i++]; break; default: break; } return transport_dump_vpd_ident(vpd, NULL, 0); } EXPORT_SYMBOL(transport_set_vpd_ident); static sense_reason_t target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev, unsigned int size) { u32 mtl; if (!cmd->se_tfo->max_data_sg_nents) return TCM_NO_SENSE; /* * Check if fabric enforced maximum SGL entries per I/O descriptor * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT + * residual_count and reduce original cmd->data_length to maximum * length based on single PAGE_SIZE entry scatter-lists. */ mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE); if (cmd->data_length > mtl) { /* * If an existing CDB overflow is present, calculate new residual * based on CDB size minus fabric maximum transfer length. * * If an existing CDB underflow is present, calculate new residual * based on original cmd->data_length minus fabric maximum transfer * length. * * Otherwise, set the underflow residual based on cmd->data_length * minus fabric maximum transfer length. */ if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { cmd->residual_count = (size - mtl); } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { u32 orig_dl = size + cmd->residual_count; cmd->residual_count = (orig_dl - mtl); } else { cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; cmd->residual_count = (cmd->data_length - mtl); } cmd->data_length = mtl; /* * Reset sbc_check_prot() calculated protection payload * length based upon the new smaller MTL. */ if (cmd->prot_length) { u32 sectors = (mtl / dev->dev_attrib.block_size); cmd->prot_length = dev->prot_length * sectors; } } return TCM_NO_SENSE; } sense_reason_t target_cmd_size_check(struct se_cmd *cmd, unsigned int size) { struct se_device *dev = cmd->se_dev; if (cmd->unknown_data_length) { cmd->data_length = size; } else if (size != cmd->data_length) { pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:" " %u does not match SCSI CDB Length: %u for SAM Opcode:" " 0x%02x\n", cmd->se_tfo->get_fabric_name(), cmd->data_length, size, cmd->t_task_cdb[0]); if (cmd->data_direction == DMA_TO_DEVICE) { if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) { pr_err_ratelimited("Rejecting underflow/overflow" " for WRITE data CDB\n"); return TCM_INVALID_CDB_FIELD; } /* * Some fabric drivers like iscsi-target still expect to * always reject overflow writes. Reject this case until * full fabric driver level support for overflow writes * is introduced tree-wide. */ if (size > cmd->data_length) { pr_err_ratelimited("Rejecting overflow for" " WRITE control CDB\n"); return TCM_INVALID_CDB_FIELD; } } /* * Reject READ_* or WRITE_* with overflow/underflow for * type SCF_SCSI_DATA_CDB. */ if (dev->dev_attrib.block_size != 512) { pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" " CDB on non 512-byte sector setup subsystem" " plugin: %s\n", dev->transport->name); /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ return TCM_INVALID_CDB_FIELD; } /* * For the overflow case keep the existing fabric provided * ->data_length. Otherwise for the underflow case, reset * ->data_length to the smaller SCSI expected data transfer * length. */ if (size > cmd->data_length) { cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; cmd->residual_count = (size - cmd->data_length); } else { cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; cmd->residual_count = (cmd->data_length - size); cmd->data_length = size; } } return target_check_max_data_sg_nents(cmd, dev, size); } /* * Used by fabric modules containing a local struct se_cmd within their * fabric dependent per I/O descriptor. * * Preserves the value of @cmd->tag. */ void transport_init_se_cmd( struct se_cmd *cmd, const struct target_core_fabric_ops *tfo, struct se_session *se_sess, u32 data_length, int data_direction, int task_attr, unsigned char *sense_buffer) { INIT_LIST_HEAD(&cmd->se_delayed_node); INIT_LIST_HEAD(&cmd->se_qf_node); INIT_LIST_HEAD(&cmd->se_cmd_list); INIT_LIST_HEAD(&cmd->state_list); init_completion(&cmd->t_transport_stop_comp); init_completion(&cmd->cmd_wait_comp); spin_lock_init(&cmd->t_state_lock); kref_init(&cmd->cmd_kref); cmd->transport_state = CMD_T_DEV_ACTIVE; cmd->se_tfo = tfo; cmd->se_sess = se_sess; cmd->data_length = data_length; cmd->data_direction = data_direction; cmd->sam_task_attr = task_attr; cmd->sense_buffer = sense_buffer; cmd->state_active = false; } EXPORT_SYMBOL(transport_init_se_cmd); static sense_reason_t transport_check_alloc_task_attr(struct se_cmd *cmd) { struct se_device *dev = cmd->se_dev; /* * Check if SAM Task Attribute emulation is enabled for this * struct se_device storage object */ if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) return 0; if (cmd->sam_task_attr == TCM_ACA_TAG) { pr_debug("SAM Task Attribute ACA" " emulation is not supported\n"); return TCM_INVALID_CDB_FIELD; } return 0; } sense_reason_t target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) { struct se_device *dev = cmd->se_dev; sense_reason_t ret; /* * Ensure that the received CDB is less than the max (252 + 8) bytes * for VARIABLE_LENGTH_CMD */ if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { pr_err("Received SCSI CDB with command_size: %d that" " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); return TCM_INVALID_CDB_FIELD; } /* * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, * allocate the additional extended CDB buffer now.. Otherwise * setup the pointer from __t_task_cdb to t_task_cdb. */ if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), GFP_KERNEL); if (!cmd->t_task_cdb) { pr_err("Unable to allocate cmd->t_task_cdb" " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", scsi_command_size(cdb), (unsigned long)sizeof(cmd->__t_task_cdb)); return TCM_OUT_OF_RESOURCES; } } else cmd->t_task_cdb = &cmd->__t_task_cdb[0]; /* * Copy the original CDB into cmd-> */ memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); trace_target_sequencer_start(cmd); ret = dev->transport->parse_cdb(cmd); if (ret == TCM_UNSUPPORTED_SCSI_OPCODE) pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n", cmd->se_tfo->get_fabric_name(), cmd->se_sess->se_node_acl->initiatorname, cmd->t_task_cdb[0]); if (ret) return ret; ret = transport_check_alloc_task_attr(cmd); if (ret) return ret; cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus); return 0; } EXPORT_SYMBOL(target_setup_cmd_from_cdb); /* * Used by fabric module frontends to queue tasks directly. * May only be used from process context. */ int transport_handle_cdb_direct( struct se_cmd *cmd) { sense_reason_t ret; if (!cmd->se_lun) { dump_stack(); pr_err("cmd->se_lun is NULL\n"); return -EINVAL; } if (in_interrupt()) { dump_stack(); pr_err("transport_generic_handle_cdb cannot be called" " from interrupt context\n"); return -EINVAL; } /* * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that * outstanding descriptors are handled correctly during shutdown via * transport_wait_for_tasks() * * Also, we don't take cmd->t_state_lock here as we only expect * this to be called for initial descriptor submission. */ cmd->t_state = TRANSPORT_NEW_CMD; cmd->transport_state |= CMD_T_ACTIVE; /* * transport_generic_new_cmd() is already handling QUEUE_FULL, * so follow TRANSPORT_NEW_CMD processing thread context usage * and call transport_generic_request_failure() if necessary.. */ ret = transport_generic_new_cmd(cmd); if (ret) transport_generic_request_failure(cmd, ret); return 0; } EXPORT_SYMBOL(transport_handle_cdb_direct); sense_reason_t transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) { if (!sgl || !sgl_count) return 0; /* * Reject SCSI data overflow with map_mem_to_cmd() as incoming * scatterlists already have been set to follow what the fabric * passes for the original expected data transfer length. */ if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { pr_warn("Rejecting SCSI DATA overflow for fabric using" " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); return TCM_INVALID_CDB_FIELD; } cmd->t_data_sg = sgl; cmd->t_data_nents = sgl_count; cmd->t_bidi_data_sg = sgl_bidi; cmd->t_bidi_data_nents = sgl_bidi_count; cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; return 0; } /* * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized * se_cmd + use pre-allocated SGL memory. * * @se_cmd: command descriptor to submit * @se_sess: associated se_sess for endpoint * @cdb: pointer to SCSI CDB * @sense: pointer to SCSI sense buffer * @unpacked_lun: unpacked LUN to reference for struct se_lun * @data_length: fabric expected data transfer length * @task_addr: SAM task attribute * @data_dir: DMA data direction * @flags: flags for command submission from target_sc_flags_tables * @sgl: struct scatterlist memory for unidirectional mapping * @sgl_count: scatterlist count for unidirectional mapping * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping * @sgl_bidi_count: scatterlist count for bidirectional READ mapping * @sgl_prot: struct scatterlist memory protection information * @sgl_prot_count: scatterlist count for protection information * * Task tags are supported if the caller has set @se_cmd->tag. * * Returns non zero to signal active I/O shutdown failure. All other * setup exceptions will be returned as a SCSI CHECK_CONDITION response, * but still return zero here. * * This may only be called from process context, and also currently * assumes internal allocation of fabric payload buffer by target-core. */ int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, u32 data_length, int task_attr, int data_dir, int flags, struct scatterlist *sgl, u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count, struct scatterlist *sgl_prot, u32 sgl_prot_count) { struct se_portal_group *se_tpg; sense_reason_t rc; int ret; se_tpg = se_sess->se_tpg; BUG_ON(!se_tpg); BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); BUG_ON(in_interrupt()); /* * Initialize se_cmd for target operation. From this point * exceptions are handled by sending exception status via * target_core_fabric_ops->queue_status() callback */ transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, data_length, data_dir, task_attr, sense); if (flags & TARGET_SCF_USE_CPUID) se_cmd->se_cmd_flags |= SCF_USE_CPUID; else se_cmd->cpuid = WORK_CPU_UNBOUND; if (flags & TARGET_SCF_UNKNOWN_SIZE) se_cmd->unknown_data_length = 1; /* * Obtain struct se_cmd->cmd_kref reference and add new cmd to * se_sess->sess_cmd_list. A second kref_get here is necessary * for fabrics using TARGET_SCF_ACK_KREF that expect a second * kref_put() to happen during fabric packet acknowledgement. */ ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); if (ret) return ret; /* * Signal bidirectional data payloads to target-core */ if (flags & TARGET_SCF_BIDI_OP) se_cmd->se_cmd_flags |= SCF_BIDI; /* * Locate se_lun pointer and attach it to struct se_cmd */ rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); if (rc) { transport_send_check_condition_and_sense(se_cmd, rc, 0); target_put_sess_cmd(se_cmd); return 0; } rc = target_setup_cmd_from_cdb(se_cmd, cdb); if (rc != 0) { transport_generic_request_failure(se_cmd, rc); return 0; } /* * Save pointers for SGLs containing protection information, * if present. */ if (sgl_prot_count) { se_cmd->t_prot_sg = sgl_prot; se_cmd->t_prot_nents = sgl_prot_count; se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC; } /* * When a non zero sgl_count has been passed perform SGL passthrough * mapping for pre-allocated fabric memory instead of having target * core perform an internal SGL allocation.. */ if (sgl_count != 0) { BUG_ON(!sgl); /* * A work-around for tcm_loop as some userspace code via * scsi-generic do not memset their associated read buffers, * so go ahead and do that here for type non-data CDBs. Also * note that this is currently guaranteed to be a single SGL * for this case by target core in target_setup_cmd_from_cdb() * -> transport_generic_cmd_sequencer(). */ if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && se_cmd->data_direction == DMA_FROM_DEVICE) { unsigned char *buf = NULL; if (sgl) buf = kmap(sg_page(sgl)) + sgl->offset; if (buf) { memset(buf, 0, sgl->length); kunmap(sg_page(sgl)); } } rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, sgl_bidi, sgl_bidi_count); if (rc != 0) { transport_generic_request_failure(se_cmd, rc); return 0; } } /* * Check if we need to delay processing because of ALUA * Active/NonOptimized primary access state.. */ core_alua_check_nonop_delay(se_cmd); transport_handle_cdb_direct(se_cmd); return 0; } EXPORT_SYMBOL(target_submit_cmd_map_sgls); /* * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd * * @se_cmd: command descriptor to submit * @se_sess: associated se_sess for endpoint * @cdb: pointer to SCSI CDB * @sense: pointer to SCSI sense buffer * @unpacked_lun: unpacked LUN to reference for struct se_lun * @data_length: fabric expected data transfer length * @task_addr: SAM task attribute * @data_dir: DMA data direction * @flags: flags for command submission from target_sc_flags_tables * * Task tags are supported if the caller has set @se_cmd->tag. * * Returns non zero to signal active I/O shutdown failure. All other * setup exceptions will be returned as a SCSI CHECK_CONDITION response, * but still return zero here. * * This may only be called from process context, and also currently * assumes internal allocation of fabric payload buffer by target-core. * * It also assumes interal target core SGL memory allocation. */ int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, u32 data_length, int task_attr, int data_dir, int flags) { return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, unpacked_lun, data_length, task_attr, data_dir, flags, NULL, 0, NULL, 0, NULL, 0); } EXPORT_SYMBOL(target_submit_cmd); static void target_complete_tmr_failure(struct work_struct *work) { struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; se_cmd->se_tfo->queue_tm_rsp(se_cmd); transport_cmd_check_stop_to_fabric(se_cmd); } /** * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd * for TMR CDBs * * @se_cmd: command descriptor to submit * @se_sess: associated se_sess for endpoint * @sense: pointer to SCSI sense buffer * @unpacked_lun: unpacked LUN to reference for struct se_lun * @fabric_context: fabric context for TMR req * @tm_type: Type of TM request * @gfp: gfp type for caller * @tag: referenced task tag for TMR_ABORT_TASK * @flags: submit cmd flags * * Callable from all contexts. **/ int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, unsigned char *sense, u64 unpacked_lun, void *fabric_tmr_ptr, unsigned char tm_type, gfp_t gfp, u64 tag, int flags) { struct se_portal_group *se_tpg; int ret; se_tpg = se_sess->se_tpg; BUG_ON(!se_tpg); transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 0, DMA_NONE, TCM_SIMPLE_TAG, sense); /* * FIXME: Currently expect caller to handle se_cmd->se_tmr_req * allocation failure. */ ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); if (ret < 0) return -ENOMEM; if (tm_type == TMR_ABORT_TASK) se_cmd->se_tmr_req->ref_task_tag = tag; /* See target_submit_cmd for commentary */ ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); if (ret) { core_tmr_release_req(se_cmd->se_tmr_req); return ret; } ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); if (ret) { /* * For callback during failure handling, push this work off * to process context with TMR_LUN_DOES_NOT_EXIST status. */ INIT_WORK(&se_cmd->work, target_complete_tmr_failure); schedule_work(&se_cmd->work); return 0; } transport_generic_handle_tmr(se_cmd); return 0; } EXPORT_SYMBOL(target_submit_tmr); /* * Handle SAM-esque emulation for generic transport request failures. */ void transport_generic_request_failure(struct se_cmd *cmd, sense_reason_t sense_reason) { int ret = 0, post_ret = 0; pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx" " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]); pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n", cmd->se_tfo->get_cmd_state(cmd), cmd->t_state, sense_reason); pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n", (cmd->transport_state & CMD_T_ACTIVE) != 0, (cmd->transport_state & CMD_T_STOP) != 0, (cmd->transport_state & CMD_T_SENT) != 0); /* * For SAM Task Attribute emulation for failed struct se_cmd */ transport_complete_task_attr(cmd); /* * Handle special case for COMPARE_AND_WRITE failure, where the * callback is expected to drop the per device ->caw_sem. */ if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && cmd->transport_complete_callback) cmd->transport_complete_callback(cmd, false, &post_ret); switch (sense_reason) { case TCM_NON_EXISTENT_LUN: case TCM_UNSUPPORTED_SCSI_OPCODE: case TCM_INVALID_CDB_FIELD: case TCM_INVALID_PARAMETER_LIST: case TCM_PARAMETER_LIST_LENGTH_ERROR: case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: case TCM_UNKNOWN_MODE_PAGE: case TCM_WRITE_PROTECTED: case TCM_ADDRESS_OUT_OF_RANGE: case TCM_CHECK_CONDITION_ABORT_CMD: case TCM_CHECK_CONDITION_UNIT_ATTENTION: case TCM_CHECK_CONDITION_NOT_READY: case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE: break; case TCM_OUT_OF_RESOURCES: sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; break; case TCM_RESERVATION_CONFLICT: /* * No SENSE Data payload for this case, set SCSI Status * and queue the response to $FABRIC_MOD. * * Uses linux/include/scsi/scsi.h SAM status codes defs */ cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; /* * For UA Interlock Code 11b, a RESERVATION CONFLICT will * establish a UNIT ATTENTION with PREVIOUS RESERVATION * CONFLICT STATUS. * * See spc4r17, section 7.4.6 Control Mode Page, Table 349 */ if (cmd->se_sess && cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) { target_ua_allocate_lun(cmd->se_sess->se_node_acl, cmd->orig_fe_lun, 0x2C, ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); } trace_target_cmd_complete(cmd); ret = cmd->se_tfo->queue_status(cmd); if (ret == -EAGAIN || ret == -ENOMEM) goto queue_full; goto check_stop; default: pr_err("Unknown transport error for CDB 0x%02x: %d\n", cmd->t_task_cdb[0], sense_reason); sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; break; } ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); if (ret == -EAGAIN || ret == -ENOMEM) goto queue_full; check_stop: transport_lun_remove_cmd(cmd); transport_cmd_check_stop_to_fabric(cmd); return; queue_full: cmd->t_state = TRANSPORT_COMPLETE_QF_OK; transport_handle_queue_full(cmd, cmd->se_dev); } EXPORT_SYMBOL(transport_generic_request_failure); void __target_execute_cmd(struct se_cmd *cmd, bool do_checks) { sense_reason_t ret; if (!cmd->execute_cmd) { ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; goto err; } if (do_checks) { /* * Check for an existing UNIT ATTENTION condition after * target_handle_task_attr() has done SAM task attr * checking, and possibly have already defered execution * out to target_restart_delayed_cmds() context. */ ret = target_scsi3_ua_check(cmd); if (ret) goto err; ret = target_alua_state_check(cmd); if (ret) goto err; ret = target_check_reservation(cmd); if (ret) { cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; goto err; } } ret = cmd->execute_cmd(cmd); if (!ret) return; err: spin_lock_irq(&cmd->t_state_lock); cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); spin_unlock_irq(&cmd->t_state_lock); transport_generic_request_failure(cmd, ret); } static int target_write_prot_action(struct se_cmd *cmd) { u32 sectors; /* * Perform WRITE_INSERT of PI using software emulation when backend * device has PI enabled, if the transport has not already generated * PI using hardware WRITE_INSERT offload. */ switch (cmd->prot_op) { case TARGET_PROT_DOUT_INSERT: if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT)) sbc_dif_generate(cmd); break; case TARGET_PROT_DOUT_STRIP: if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP) break; sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size); cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, sectors, 0, cmd->t_prot_sg, 0); if (unlikely(cmd->pi_err)) { spin_lock_irq(&cmd->t_state_lock); cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); spin_unlock_irq(&cmd->t_state_lock); transport_generic_request_failure(cmd, cmd->pi_err); return -1; } break; default: break; } return 0; } static bool target_handle_task_attr(struct se_cmd *cmd) { struct se_device *dev = cmd->se_dev; if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) return false; cmd->se_cmd_flags |= SCF_TASK_ATTR_SET; /* * Check for the existence of HEAD_OF_QUEUE, and if true return 1 * to allow the passed struct se_cmd list of tasks to the front of the list. */ switch (cmd->sam_task_attr) { case TCM_HEAD_TAG: pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n", cmd->t_task_cdb[0]); return false; case TCM_ORDERED_TAG: atomic_inc_mb(&dev->dev_ordered_sync); pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n", cmd->t_task_cdb[0]); /* * Execute an ORDERED command if no other older commands * exist that need to be completed first. */ if (!atomic_read(&dev->simple_cmds)) return false; break; default: /* * For SIMPLE and UNTAGGED Task Attribute commands */ atomic_inc_mb(&dev->simple_cmds); break; } if (atomic_read(&dev->dev_ordered_sync) == 0) return false; spin_lock(&dev->delayed_cmd_lock); list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); spin_unlock(&dev->delayed_cmd_lock); pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn", cmd->t_task_cdb[0], cmd->sam_task_attr); return true; } static int __transport_check_aborted_status(struct se_cmd *, int); void target_execute_cmd(struct se_cmd *cmd) { /* * Determine if frontend context caller is requesting the stopping of * this command for frontend exceptions. * * If the received CDB has aleady been aborted stop processing it here. */ spin_lock_irq(&cmd->t_state_lock); if (__transport_check_aborted_status(cmd, 1)) { spin_unlock_irq(&cmd->t_state_lock); return; } if (cmd->transport_state & CMD_T_STOP) { pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", __func__, __LINE__, cmd->tag); spin_unlock_irq(&cmd->t_state_lock); complete_all(&cmd->t_transport_stop_comp); return; } cmd->t_state = TRANSPORT_PROCESSING; cmd->transport_state &= ~CMD_T_PRE_EXECUTE; cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT; spin_unlock_irq(&cmd->t_state_lock); if (target_write_prot_action(cmd)) return; if (target_handle_task_attr(cmd)) { spin_lock_irq(&cmd->t_state_lock); cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT); spin_unlock_irq(&cmd->t_state_lock); return; } __target_execute_cmd(cmd, true); } EXPORT_SYMBOL(target_execute_cmd); /* * Process all commands up to the last received ORDERED task attribute which * requires another blocking boundary */ static void target_restart_delayed_cmds(struct se_device *dev) { for (;;) { struct se_cmd *cmd; spin_lock(&dev->delayed_cmd_lock); if (list_empty(&dev->delayed_cmd_list)) { spin_unlock(&dev->delayed_cmd_lock); break; } cmd = list_entry(dev->delayed_cmd_list.next, struct se_cmd, se_delayed_node); list_del(&cmd->se_delayed_node); spin_unlock(&dev->delayed_cmd_lock); cmd->transport_state |= CMD_T_SENT; __target_execute_cmd(cmd, true); if (cmd->sam_task_attr == TCM_ORDERED_TAG) break; } } /* * Called from I/O completion to determine which dormant/delayed * and ordered cmds need to have their tasks added to the execution queue. */ static void transport_complete_task_attr(struct se_cmd *cmd) { struct se_device *dev = cmd->se_dev; if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) return; if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET)) goto restart; if (cmd->sam_task_attr == TCM_SIMPLE_TAG) { atomic_dec_mb(&dev->simple_cmds); dev->dev_cur_ordered_id++; pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n", dev->dev_cur_ordered_id); } else if (cmd->sam_task_attr == TCM_HEAD_TAG) { dev->dev_cur_ordered_id++; pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n", dev->dev_cur_ordered_id); } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) { atomic_dec_mb(&dev->dev_ordered_sync); dev->dev_cur_ordered_id++; pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n", dev->dev_cur_ordered_id); } cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET; restart: target_restart_delayed_cmds(dev); } static void transport_complete_qf(struct se_cmd *cmd) { int ret = 0; transport_complete_task_attr(cmd); if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { trace_target_cmd_complete(cmd); ret = cmd->se_tfo->queue_status(cmd); goto out; } switch (cmd->data_direction) { case DMA_FROM_DEVICE: if (cmd->scsi_status) goto queue_status; trace_target_cmd_complete(cmd); ret = cmd->se_tfo->queue_data_in(cmd); break; case DMA_TO_DEVICE: if (cmd->se_cmd_flags & SCF_BIDI) { ret = cmd->se_tfo->queue_data_in(cmd); break; } /* Fall through for DMA_TO_DEVICE */ case DMA_NONE: queue_status: trace_target_cmd_complete(cmd); ret = cmd->se_tfo->queue_status(cmd); break; default: break; } out: if (ret < 0) { transport_handle_queue_full(cmd, cmd->se_dev); return; } transport_lun_remove_cmd(cmd); transport_cmd_check_stop_to_fabric(cmd); } static void transport_handle_queue_full( struct se_cmd *cmd, struct se_device *dev) { spin_lock_irq(&dev->qf_cmd_lock); list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); atomic_inc_mb(&dev->dev_qf_count); spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); schedule_work(&cmd->se_dev->qf_work_queue); } static bool target_read_prot_action(struct se_cmd *cmd) { switch (cmd->prot_op) { case TARGET_PROT_DIN_STRIP: if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) { u32 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size); cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, sectors, 0, cmd->t_prot_sg, 0); if (cmd->pi_err) return true; } break; case TARGET_PROT_DIN_INSERT: if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT) break; sbc_dif_generate(cmd); break; default: break; } return false; } static void target_complete_ok_work(struct work_struct *work) { struct se_cmd *cmd = container_of(work, struct se_cmd, work); int ret; /* * Check if we need to move delayed/dormant tasks from cmds on the * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task * Attribute. */ transport_complete_task_attr(cmd); /* * Check to schedule QUEUE_FULL work, or execute an existing * cmd->transport_qf_callback() */ if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) schedule_work(&cmd->se_dev->qf_work_queue); /* * Check if we need to send a sense buffer from * the struct se_cmd in question. */ if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { WARN_ON(!cmd->scsi_status); ret = transport_send_check_condition_and_sense( cmd, 0, 1); if (ret == -EAGAIN || ret == -ENOMEM) goto queue_full; transport_lun_remove_cmd(cmd); transport_cmd_check_stop_to_fabric(cmd); return; } /* * Check for a callback, used by amongst other things * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. */ if (cmd->transport_complete_callback) { sense_reason_t rc; bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE); bool zero_dl = !(cmd->data_length); int post_ret = 0; rc = cmd->transport_complete_callback(cmd, true, &post_ret); if (!rc && !post_ret) { if (caw && zero_dl) goto queue_rsp; return; } else if (rc) { ret = transport_send_check_condition_and_sense(cmd, rc, 0); if (ret == -EAGAIN || ret == -ENOMEM) goto queue_full; transport_lun_remove_cmd(cmd); transport_cmd_check_stop_to_fabric(cmd); return; } } queue_rsp: switch (cmd->data_direction) { case DMA_FROM_DEVICE: if (cmd->scsi_status) goto queue_status; atomic_long_add(cmd->data_length, &cmd->se_lun->lun_stats.tx_data_octets); /* * Perform READ_STRIP of PI using software emulation when * backend had PI enabled, if the transport will not be * performing hardware READ_STRIP offload. */ if (target_read_prot_action(cmd)) { ret = transport_send_check_condition_and_sense(cmd, cmd->pi_err, 0); if (ret == -EAGAIN || ret == -ENOMEM) goto queue_full; transport_lun_remove_cmd(cmd); transport_cmd_check_stop_to_fabric(cmd); return; } trace_target_cmd_complete(cmd); ret = cmd->se_tfo->queue_data_in(cmd); if (ret == -EAGAIN || ret == -ENOMEM) goto queue_full; break; case DMA_TO_DEVICE: atomic_long_add(cmd->data_length, &cmd->se_lun->lun_stats.rx_data_octets); /* * Check if we need to send READ payload for BIDI-COMMAND */ if (cmd->se_cmd_flags & SCF_BIDI) { atomic_long_add(cmd->data_length, &cmd->se_lun->lun_stats.tx_data_octets); ret = cmd->se_tfo->queue_data_in(cmd); if (ret == -EAGAIN || ret == -ENOMEM) goto queue_full; break; } /* Fall through for DMA_TO_DEVICE */ case DMA_NONE: queue_status: trace_target_cmd_complete(cmd); ret = cmd->se_tfo->queue_status(cmd); if (ret == -EAGAIN || ret == -ENOMEM) goto queue_full; break; default: break; } transport_lun_remove_cmd(cmd); transport_cmd_check_stop_to_fabric(cmd); return; queue_full: pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," " data_direction: %d\n", cmd, cmd->data_direction); cmd->t_state = TRANSPORT_COMPLETE_QF_OK; transport_handle_queue_full(cmd, cmd->se_dev); } void target_free_sgl(struct scatterlist *sgl, int nents) { struct scatterlist *sg; int count; for_each_sg(sgl, sg, nents, count) __free_page(sg_page(sg)); kfree(sgl); } EXPORT_SYMBOL(target_free_sgl); static inline void transport_reset_sgl_orig(struct se_cmd *cmd) { /* * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE * emulation, and free + reset pointers if necessary.. */ if (!cmd->t_data_sg_orig) return; kfree(cmd->t_data_sg); cmd->t_data_sg = cmd->t_data_sg_orig; cmd->t_data_sg_orig = NULL; cmd->t_data_nents = cmd->t_data_nents_orig; cmd->t_data_nents_orig = 0; } static inline void transport_free_pages(struct se_cmd *cmd) { if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents); cmd->t_prot_sg = NULL; cmd->t_prot_nents = 0; } if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { /* * Release special case READ buffer payload required for * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE */ if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) { target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); cmd->t_bidi_data_sg = NULL; cmd->t_bidi_data_nents = 0; } transport_reset_sgl_orig(cmd); return; } transport_reset_sgl_orig(cmd); target_free_sgl(cmd->t_data_sg, cmd->t_data_nents); cmd->t_data_sg = NULL; cmd->t_data_nents = 0; target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); cmd->t_bidi_data_sg = NULL; cmd->t_bidi_data_nents = 0; } /** * transport_put_cmd - release a reference to a command * @cmd: command to release * * This routine releases our reference to the command and frees it if possible. */ static int transport_put_cmd(struct se_cmd *cmd) { BUG_ON(!cmd->se_tfo); /* * If this cmd has been setup with target_get_sess_cmd(), drop * the kref and call ->release_cmd() in kref callback. */ return target_put_sess_cmd(cmd); } void *transport_kmap_data_sg(struct se_cmd *cmd) { struct scatterlist *sg = cmd->t_data_sg; struct page **pages; int i; /* * We need to take into account a possible offset here for fabrics like * tcm_loop who may be using a contig buffer from the SCSI midlayer for * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() */ if (!cmd->t_data_nents) return NULL; BUG_ON(!sg); if (cmd->t_data_nents == 1) return kmap(sg_page(sg)) + sg->offset; /* >1 page. use vmap */ pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL); if (!pages) return NULL; /* convert sg[] to pages[] */ for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { pages[i] = sg_page(sg); } cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); kfree(pages); if (!cmd->t_data_vmap) return NULL; return cmd->t_data_vmap + cmd->t_data_sg[0].offset; } EXPORT_SYMBOL(transport_kmap_data_sg); void transport_kunmap_data_sg(struct se_cmd *cmd) { if (!cmd->t_data_nents) { return; } else if (cmd->t_data_nents == 1) { kunmap(sg_page(cmd->t_data_sg)); return; } vunmap(cmd->t_data_vmap); cmd->t_data_vmap = NULL; } EXPORT_SYMBOL(transport_kunmap_data_sg); int target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, bool zero_page, bool chainable) { struct scatterlist *sg; struct page *page; gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0; unsigned int nalloc, nent; int i = 0; nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE); if (chainable) nalloc++; sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL); if (!sg) return -ENOMEM; sg_init_table(sg, nalloc); while (length) { u32 page_len = min_t(u32, length, PAGE_SIZE); page = alloc_page(GFP_KERNEL | zero_flag); if (!page) goto out; sg_set_page(&sg[i], page, page_len, 0); length -= page_len; i++; } *sgl = sg; *nents = nent; return 0; out: while (i > 0) { i--; __free_page(sg_page(&sg[i])); } kfree(sg); return -ENOMEM; } EXPORT_SYMBOL(target_alloc_sgl); /* * Allocate any required resources to execute the command. For writes we * might not have the payload yet, so notify the fabric via a call to * ->write_pending instead. Otherwise place it on the execution queue. */ sense_reason_t transport_generic_new_cmd(struct se_cmd *cmd) { int ret = 0; bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); if (cmd->prot_op != TARGET_PROT_NORMAL && !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents, cmd->prot_length, true, false); if (ret < 0) return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; } /* * Determine is the TCM fabric module has already allocated physical * memory, and is directly calling transport_generic_map_mem_to_cmd() * beforehand. */ if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && cmd->data_length) { if ((cmd->se_cmd_flags & SCF_BIDI) || (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { u32 bidi_length; if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) bidi_length = cmd->t_task_nolb * cmd->se_dev->dev_attrib.block_size; else bidi_length = cmd->data_length; ret = target_alloc_sgl(&cmd->t_bidi_data_sg, &cmd->t_bidi_data_nents, bidi_length, zero_flag, false); if (ret < 0) return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; } ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, cmd->data_length, zero_flag, false); if (ret < 0) return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && cmd->data_length) { /* * Special case for COMPARE_AND_WRITE with fabrics * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC. */ u32 caw_length = cmd->t_task_nolb * cmd->se_dev->dev_attrib.block_size; ret = target_alloc_sgl(&cmd->t_bidi_data_sg, &cmd->t_bidi_data_nents, caw_length, zero_flag, false); if (ret < 0) return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; } /* * If this command is not a write we can execute it right here, * for write buffers we need to notify the fabric driver first * and let it call back once the write buffers are ready. */ target_add_to_state_list(cmd); if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) { target_execute_cmd(cmd); return 0; } transport_cmd_check_stop(cmd, false, true); ret = cmd->se_tfo->write_pending(cmd); if (ret == -EAGAIN || ret == -ENOMEM) goto queue_full; /* fabric drivers should only return -EAGAIN or -ENOMEM as error */ WARN_ON(ret); return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; queue_full: pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); cmd->t_state = TRANSPORT_COMPLETE_QF_WP; transport_handle_queue_full(cmd, cmd->se_dev); return 0; } EXPORT_SYMBOL(transport_generic_new_cmd); static void transport_write_pending_qf(struct se_cmd *cmd) { int ret; ret = cmd->se_tfo->write_pending(cmd); if (ret == -EAGAIN || ret == -ENOMEM) { pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); transport_handle_queue_full(cmd, cmd->se_dev); } } static bool __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *, unsigned long *flags); static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas) { unsigned long flags; spin_lock_irqsave(&cmd->t_state_lock, flags); __transport_wait_for_tasks(cmd, true, aborted, tas, &flags); spin_unlock_irqrestore(&cmd->t_state_lock, flags); } int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) { int ret = 0; bool aborted = false, tas = false; if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) target_wait_free_cmd(cmd, &aborted, &tas); if (!aborted || tas) ret = transport_put_cmd(cmd); } else { if (wait_for_tasks) target_wait_free_cmd(cmd, &aborted, &tas); /* * Handle WRITE failure case where transport_generic_new_cmd() * has already added se_cmd to state_list, but fabric has * failed command before I/O submission. */ if (cmd->state_active) target_remove_from_state_list(cmd); if (cmd->se_lun) transport_lun_remove_cmd(cmd); if (!aborted || tas) ret = transport_put_cmd(cmd); } /* * If the task has been internally aborted due to TMR ABORT_TASK * or LUN_RESET, target_core_tmr.c is responsible for performing * the remaining calls to target_put_sess_cmd(), and not the * callers of this function. */ if (aborted) { pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag); wait_for_completion(&cmd->cmd_wait_comp); cmd->se_tfo->release_cmd(cmd); ret = 1; } return ret; } EXPORT_SYMBOL(transport_generic_free_cmd); /* target_get_sess_cmd - Add command to active ->sess_cmd_list * @se_cmd: command descriptor to add * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() */ int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref) { struct se_session *se_sess = se_cmd->se_sess; unsigned long flags; int ret = 0; /* * Add a second kref if the fabric caller is expecting to handle * fabric acknowledgement that requires two target_put_sess_cmd() * invocations before se_cmd descriptor release. */ if (ack_kref) { if (!kref_get_unless_zero(&se_cmd->cmd_kref)) return -EINVAL; se_cmd->se_cmd_flags |= SCF_ACK_KREF; } spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); if (se_sess->sess_tearing_down) { ret = -ESHUTDOWN; goto out; } se_cmd->transport_state |= CMD_T_PRE_EXECUTE; list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); out: spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); if (ret && ack_kref) target_put_sess_cmd(se_cmd); return ret; } EXPORT_SYMBOL(target_get_sess_cmd); static void target_free_cmd_mem(struct se_cmd *cmd) { transport_free_pages(cmd); if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) core_tmr_release_req(cmd->se_tmr_req); if (cmd->t_task_cdb != cmd->__t_task_cdb) kfree(cmd->t_task_cdb); } static void target_release_cmd_kref(struct kref *kref) { struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); struct se_session *se_sess = se_cmd->se_sess; unsigned long flags; bool fabric_stop; spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); spin_lock(&se_cmd->t_state_lock); fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) && (se_cmd->transport_state & CMD_T_ABORTED); spin_unlock(&se_cmd->t_state_lock); if (se_cmd->cmd_wait_set || fabric_stop) { list_del_init(&se_cmd->se_cmd_list); spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); target_free_cmd_mem(se_cmd); complete(&se_cmd->cmd_wait_comp); return; } list_del_init(&se_cmd->se_cmd_list); spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); target_free_cmd_mem(se_cmd); se_cmd->se_tfo->release_cmd(se_cmd); } /* target_put_sess_cmd - Check for active I/O shutdown via kref_put * @se_cmd: command descriptor to drop */ int target_put_sess_cmd(struct se_cmd *se_cmd) { struct se_session *se_sess = se_cmd->se_sess; if (!se_sess) { target_free_cmd_mem(se_cmd); se_cmd->se_tfo->release_cmd(se_cmd); return 1; } return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref); } EXPORT_SYMBOL(target_put_sess_cmd); /* target_sess_cmd_list_set_waiting - Flag all commands in * sess_cmd_list to complete cmd_wait_comp. Set * sess_tearing_down so no more commands are queued. * @se_sess: session to flag */ void target_sess_cmd_list_set_waiting(struct se_session *se_sess) { struct se_cmd *se_cmd, *tmp_cmd; unsigned long flags; int rc; spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); if (se_sess->sess_tearing_down) { spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); return; } se_sess->sess_tearing_down = 1; list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list); list_for_each_entry_safe(se_cmd, tmp_cmd, &se_sess->sess_wait_list, se_cmd_list) { rc = kref_get_unless_zero(&se_cmd->cmd_kref); if (rc) { se_cmd->cmd_wait_set = 1; spin_lock(&se_cmd->t_state_lock); se_cmd->transport_state |= CMD_T_FABRIC_STOP; spin_unlock(&se_cmd->t_state_lock); } else list_del_init(&se_cmd->se_cmd_list); } spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); } EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); /* target_wait_for_sess_cmds - Wait for outstanding descriptors * @se_sess: session to wait for active I/O */ void target_wait_for_sess_cmds(struct se_session *se_sess) { struct se_cmd *se_cmd, *tmp_cmd; unsigned long flags; bool tas; list_for_each_entry_safe(se_cmd, tmp_cmd, &se_sess->sess_wait_list, se_cmd_list) { pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" " %d\n", se_cmd, se_cmd->t_state, se_cmd->se_tfo->get_cmd_state(se_cmd)); spin_lock_irqsave(&se_cmd->t_state_lock, flags); tas = (se_cmd->transport_state & CMD_T_TAS); spin_unlock_irqrestore(&se_cmd->t_state_lock, flags); if (!target_put_sess_cmd(se_cmd)) { if (tas) target_put_sess_cmd(se_cmd); } wait_for_completion(&se_cmd->cmd_wait_comp); pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" " fabric state: %d\n", se_cmd, se_cmd->t_state, se_cmd->se_tfo->get_cmd_state(se_cmd)); se_cmd->se_tfo->release_cmd(se_cmd); } spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); WARN_ON(!list_empty(&se_sess->sess_cmd_list)); spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); } EXPORT_SYMBOL(target_wait_for_sess_cmds); static void target_lun_confirm(struct percpu_ref *ref) { struct se_lun *lun = container_of(ref, struct se_lun, lun_ref); complete(&lun->lun_ref_comp); } void transport_clear_lun_ref(struct se_lun *lun) { /* * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop * the initial reference and schedule confirm kill to be * executed after one full RCU grace period has completed. */ percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm); /* * The first completion waits for percpu_ref_switch_to_atomic_rcu() * to call target_lun_confirm after lun->lun_ref has been marked * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref * fails for all new incoming I/O. */ wait_for_completion(&lun->lun_ref_comp); /* * The second completion waits for percpu_ref_put_many() to * invoke ->release() after lun->lun_ref has switched to * atomic_t mode, and lun->lun_ref.count has reached zero. * * At this point all target-core lun->lun_ref references have * been dropped via transport_lun_remove_cmd(), and it's safe * to proceed with the remaining LUN shutdown. */ wait_for_completion(&lun->lun_shutdown_comp); } static bool __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop, bool *aborted, bool *tas, unsigned long *flags) __releases(&cmd->t_state_lock) __acquires(&cmd->t_state_lock) { assert_spin_locked(&cmd->t_state_lock); WARN_ON_ONCE(!irqs_disabled()); if (fabric_stop) cmd->transport_state |= CMD_T_FABRIC_STOP; if (cmd->transport_state & CMD_T_ABORTED) *aborted = true; if (cmd->transport_state & CMD_T_TAS) *tas = true; if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) return false; if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) return false; if (!(cmd->transport_state & CMD_T_ACTIVE)) return false; if (fabric_stop && *aborted) return false; cmd->transport_state |= CMD_T_STOP; pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d," " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag, cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); spin_unlock_irqrestore(&cmd->t_state_lock, *flags); wait_for_completion(&cmd->t_transport_stop_comp); spin_lock_irqsave(&cmd->t_state_lock, *flags); cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->" "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag); return true; } /** * transport_wait_for_tasks - wait for completion to occur * @cmd: command to wait * * Called from frontend fabric context to wait for storage engine * to pause and/or release frontend generated struct se_cmd. */ bool transport_wait_for_tasks(struct se_cmd *cmd) { unsigned long flags; bool ret, aborted = false, tas = false; spin_lock_irqsave(&cmd->t_state_lock, flags); ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags); spin_unlock_irqrestore(&cmd->t_state_lock, flags); return ret; } EXPORT_SYMBOL(transport_wait_for_tasks); struct sense_info { u8 key; u8 asc; u8 ascq; bool add_sector_info; }; static const struct sense_info sense_info_table[] = { [TCM_NO_SENSE] = { .key = NOT_READY }, [TCM_NON_EXISTENT_LUN] = { .key = ILLEGAL_REQUEST, .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */ }, [TCM_UNSUPPORTED_SCSI_OPCODE] = { .key = ILLEGAL_REQUEST, .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ }, [TCM_SECTOR_COUNT_TOO_MANY] = { .key = ILLEGAL_REQUEST, .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ }, [TCM_UNKNOWN_MODE_PAGE] = { .key = ILLEGAL_REQUEST, .asc = 0x24, /* INVALID FIELD IN CDB */ }, [TCM_CHECK_CONDITION_ABORT_CMD] = { .key = ABORTED_COMMAND, .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */ .ascq = 0x03, }, [TCM_INCORRECT_AMOUNT_OF_DATA] = { .key = ABORTED_COMMAND, .asc = 0x0c, /* WRITE ERROR */ .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */ }, [TCM_INVALID_CDB_FIELD] = { .key = ILLEGAL_REQUEST, .asc = 0x24, /* INVALID FIELD IN CDB */ }, [TCM_INVALID_PARAMETER_LIST] = { .key = ILLEGAL_REQUEST, .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */ }, [TCM_PARAMETER_LIST_LENGTH_ERROR] = { .key = ILLEGAL_REQUEST, .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */ }, [TCM_UNEXPECTED_UNSOLICITED_DATA] = { .key = ILLEGAL_REQUEST, .asc = 0x0c, /* WRITE ERROR */ .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */ }, [TCM_SERVICE_CRC_ERROR] = { .key = ABORTED_COMMAND, .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */ .ascq = 0x05, /* N/A */ }, [TCM_SNACK_REJECTED] = { .key = ABORTED_COMMAND, .asc = 0x11, /* READ ERROR */ .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */ }, [TCM_WRITE_PROTECTED] = { .key = DATA_PROTECT, .asc = 0x27, /* WRITE PROTECTED */ }, [TCM_ADDRESS_OUT_OF_RANGE] = { .key = ILLEGAL_REQUEST, .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ }, [TCM_CHECK_CONDITION_UNIT_ATTENTION] = { .key = UNIT_ATTENTION, }, [TCM_CHECK_CONDITION_NOT_READY] = { .key = NOT_READY, }, [TCM_MISCOMPARE_VERIFY] = { .key = MISCOMPARE, .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */ .ascq = 0x00, }, [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = { .key = ABORTED_COMMAND, .asc = 0x10, .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */ .add_sector_info = true, }, [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = { .key = ABORTED_COMMAND, .asc = 0x10, .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */ .add_sector_info = true, }, [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = { .key = ABORTED_COMMAND, .asc = 0x10, .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */ .add_sector_info = true, }, [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = { .key = COPY_ABORTED, .asc = 0x0d, .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */ }, [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = { /* * Returning ILLEGAL REQUEST would cause immediate IO errors on * Solaris initiators. Returning NOT READY instead means the * operations will be retried a finite number of times and we * can survive intermittent errors. */ .key = NOT_READY, .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */ }, }; static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason) { const struct sense_info *si; u8 *buffer = cmd->sense_buffer; int r = (__force int)reason; u8 asc, ascq; bool desc_format = target_sense_desc_format(cmd->se_dev); if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key) si = &sense_info_table[r]; else si = &sense_info_table[(__force int) TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE]; if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) { core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); WARN_ON_ONCE(asc == 0); } else if (si->asc == 0) { WARN_ON_ONCE(cmd->scsi_asc == 0); asc = cmd->scsi_asc; ascq = cmd->scsi_ascq; } else { asc = si->asc; ascq = si->ascq; } scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq); if (si->add_sector_info) return scsi_set_sense_information(buffer, cmd->scsi_sense_length, cmd->bad_sector); return 0; } int transport_send_check_condition_and_sense(struct se_cmd *cmd, sense_reason_t reason, int from_transport) { unsigned long flags; spin_lock_irqsave(&cmd->t_state_lock, flags); if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { spin_unlock_irqrestore(&cmd->t_state_lock, flags); return 0; } cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; spin_unlock_irqrestore(&cmd->t_state_lock, flags); if (!from_transport) { int rc; cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; cmd->scsi_status = SAM_STAT_CHECK_CONDITION; cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; rc = translate_sense_reason(cmd, reason); if (rc) return rc; } trace_target_cmd_complete(cmd); return cmd->se_tfo->queue_status(cmd); } EXPORT_SYMBOL(transport_send_check_condition_and_sense); static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status) __releases(&cmd->t_state_lock) __acquires(&cmd->t_state_lock) { assert_spin_locked(&cmd->t_state_lock); WARN_ON_ONCE(!irqs_disabled()); if (!(cmd->transport_state & CMD_T_ABORTED)) return 0; /* * If cmd has been aborted but either no status is to be sent or it has * already been sent, just return */ if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) { if (send_status) cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; return 1; } pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:" " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag); cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS; cmd->scsi_status = SAM_STAT_TASK_ABORTED; trace_target_cmd_complete(cmd); spin_unlock_irq(&cmd->t_state_lock); cmd->se_tfo->queue_status(cmd); spin_lock_irq(&cmd->t_state_lock); return 1; } int transport_check_aborted_status(struct se_cmd *cmd, int send_status) { int ret; spin_lock_irq(&cmd->t_state_lock); ret = __transport_check_aborted_status(cmd, send_status); spin_unlock_irq(&cmd->t_state_lock); return ret; } EXPORT_SYMBOL(transport_check_aborted_status); void transport_send_task_abort(struct se_cmd *cmd) { unsigned long flags; spin_lock_irqsave(&cmd->t_state_lock, flags); if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) { spin_unlock_irqrestore(&cmd->t_state_lock, flags); return; } spin_unlock_irqrestore(&cmd->t_state_lock, flags); /* * If there are still expected incoming fabric WRITEs, we wait * until until they have completed before sending a TASK_ABORTED * response. This response with TASK_ABORTED status will be * queued back to fabric module by transport_check_aborted_status(). */ if (cmd->data_direction == DMA_TO_DEVICE) { if (cmd->se_tfo->write_pending_status(cmd) != 0) { spin_lock_irqsave(&cmd->t_state_lock, flags); if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) { spin_unlock_irqrestore(&cmd->t_state_lock, flags); goto send_abort; } cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; spin_unlock_irqrestore(&cmd->t_state_lock, flags); return; } } send_abort: cmd->scsi_status = SAM_STAT_TASK_ABORTED; transport_lun_remove_cmd(cmd); pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag); trace_target_cmd_complete(cmd); cmd->se_tfo->queue_status(cmd); } static void target_tmr_work(struct work_struct *work) { struct se_cmd *cmd = container_of(work, struct se_cmd, work); struct se_device *dev = cmd->se_dev; struct se_tmr_req *tmr = cmd->se_tmr_req; unsigned long flags; int ret; spin_lock_irqsave(&cmd->t_state_lock, flags); if (cmd->transport_state & CMD_T_ABORTED) { tmr->response = TMR_FUNCTION_REJECTED; spin_unlock_irqrestore(&cmd->t_state_lock, flags); goto check_stop; } spin_unlock_irqrestore(&cmd->t_state_lock, flags); switch (tmr->function) { case TMR_ABORT_TASK: core_tmr_abort_task(dev, tmr, cmd->se_sess); break; case TMR_ABORT_TASK_SET: case TMR_CLEAR_ACA: case TMR_CLEAR_TASK_SET: tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; break; case TMR_LUN_RESET: ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : TMR_FUNCTION_REJECTED; if (tmr->response == TMR_FUNCTION_COMPLETE) { target_ua_allocate_lun(cmd->se_sess->se_node_acl, cmd->orig_fe_lun, 0x29, ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED); } break; case TMR_TARGET_WARM_RESET: tmr->response = TMR_FUNCTION_REJECTED; break; case TMR_TARGET_COLD_RESET: tmr->response = TMR_FUNCTION_REJECTED; break; default: pr_err("Uknown TMR function: 0x%02x.\n", tmr->function); tmr->response = TMR_FUNCTION_REJECTED; break; } spin_lock_irqsave(&cmd->t_state_lock, flags); if (cmd->transport_state & CMD_T_ABORTED) { spin_unlock_irqrestore(&cmd->t_state_lock, flags); goto check_stop; } spin_unlock_irqrestore(&cmd->t_state_lock, flags); cmd->se_tfo->queue_tm_rsp(cmd); check_stop: transport_cmd_check_stop_to_fabric(cmd); } int transport_generic_handle_tmr( struct se_cmd *cmd) { unsigned long flags; bool aborted = false; spin_lock_irqsave(&cmd->t_state_lock, flags); if (cmd->transport_state & CMD_T_ABORTED) { aborted = true; } else { cmd->t_state = TRANSPORT_ISTATE_PROCESSING; cmd->transport_state |= CMD_T_ACTIVE; } spin_unlock_irqrestore(&cmd->t_state_lock, flags); if (aborted) { pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d" "ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function, cmd->se_tmr_req->ref_task_tag, cmd->tag); transport_cmd_check_stop_to_fabric(cmd); return 0; } INIT_WORK(&cmd->work, target_tmr_work); queue_work(cmd->se_dev->tmr_wq, &cmd->work); return 0; } EXPORT_SYMBOL(transport_generic_handle_tmr); bool target_check_wce(struct se_device *dev) { bool wce = false; if (dev->transport->get_write_cache) wce = dev->transport->get_write_cache(dev); else if (dev->dev_attrib.emulate_write_cache > 0) wce = true; return wce; } bool target_check_fua(struct se_device *dev) { return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0; }