/* * PCF8563 RTC * * From Phillips' datasheet: * * The PCF8563 is a CMOS real-time clock/calendar optimized for low power * consumption. A programmable clock output, interrupt output and voltage * low detector are also provided. All address and data are transferred * serially via two-line bidirectional I2C-bus. Maximum bus speed is * 400 kbits/s. The built-in word address register is incremented * automatically after each written or read byte. * * Copyright (c) 2002-2007, Axis Communications AB * All rights reserved. * * Author: Tobias Anderberg <tobiasa@axis.com>. * */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/sched.h> #include <linux/init.h> #include <linux/fs.h> #include <linux/ioctl.h> #include <linux/delay.h> #include <linux/bcd.h> #include <linux/mutex.h> #include <asm/uaccess.h> #include <asm/system.h> #include <asm/io.h> #include <asm/rtc.h> #include "i2c.h" #define PCF8563_MAJOR 121 /* Local major number. */ #define DEVICE_NAME "rtc" /* Name which is registered in /proc/devices. */ #define PCF8563_NAME "PCF8563" #define DRIVER_VERSION "$Revision: 1.24 $" /* I2C bus slave registers. */ #define RTC_I2C_READ 0xa3 #define RTC_I2C_WRITE 0xa2 /* Two simple wrapper macros, saves a few keystrokes. */ #define rtc_read(x) i2c_readreg(RTC_I2C_READ, x) #define rtc_write(x,y) i2c_writereg(RTC_I2C_WRITE, x, y) static DEFINE_MUTEX(rtc_lock); /* Protect state etc */ static const unsigned char days_in_month[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; int pcf8563_ioctl(struct inode *, struct file *, unsigned int, unsigned long); /* Cache VL bit value read at driver init since writing the RTC_SECOND * register clears the VL status. */ static int voltage_low; static const struct file_operations pcf8563_fops = { .owner = THIS_MODULE, .ioctl = pcf8563_ioctl, }; unsigned char pcf8563_readreg(int reg) { unsigned char res = rtc_read(reg); /* The PCF8563 does not return 0 for unimplemented bits. */ switch (reg) { case RTC_SECONDS: case RTC_MINUTES: res &= 0x7F; break; case RTC_HOURS: case RTC_DAY_OF_MONTH: res &= 0x3F; break; case RTC_WEEKDAY: res &= 0x07; break; case RTC_MONTH: res &= 0x1F; break; case RTC_CONTROL1: res &= 0xA8; break; case RTC_CONTROL2: res &= 0x1F; break; case RTC_CLOCKOUT_FREQ: case RTC_TIMER_CONTROL: res &= 0x83; break; } return res; } void pcf8563_writereg(int reg, unsigned char val) { rtc_write(reg, val); } void get_rtc_time(struct rtc_time *tm) { tm->tm_sec = rtc_read(RTC_SECONDS); tm->tm_min = rtc_read(RTC_MINUTES); tm->tm_hour = rtc_read(RTC_HOURS); tm->tm_mday = rtc_read(RTC_DAY_OF_MONTH); tm->tm_wday = rtc_read(RTC_WEEKDAY); tm->tm_mon = rtc_read(RTC_MONTH); tm->tm_year = rtc_read(RTC_YEAR); if (tm->tm_sec & 0x80) { printk(KERN_ERR "%s: RTC Voltage Low - reliable date/time " "information is no longer guaranteed!\n", PCF8563_NAME); } tm->tm_year = bcd2bin(tm->tm_year) + ((tm->tm_mon & 0x80) ? 100 : 0); tm->tm_sec &= 0x7F; tm->tm_min &= 0x7F; tm->tm_hour &= 0x3F; tm->tm_mday &= 0x3F; tm->tm_wday &= 0x07; /* Not coded in BCD. */ tm->tm_mon &= 0x1F; tm->tm_sec = bcd2bin(tm->tm_sec); tm->tm_min = bcd2bin(tm->tm_min); tm->tm_hour = bcd2bin(tm->tm_hour); tm->tm_mday = bcd2bin(tm->tm_mday); tm->tm_mon = bcd2bin(tm->tm_mon); tm->tm_mon--; /* Month is 1..12 in RTC but 0..11 in linux */ } int __init pcf8563_init(void) { static int res; static int first = 1; if (!first) return res; first = 0; /* Initiate the i2c protocol. */ res = i2c_init(); if (res < 0) { printk(KERN_CRIT "pcf8563_init: Failed to init i2c.\n"); return res; } /* * First of all we need to reset the chip. This is done by * clearing control1, control2 and clk freq and resetting * all alarms. */ if (rtc_write(RTC_CONTROL1, 0x00) < 0) goto err; if (rtc_write(RTC_CONTROL2, 0x00) < 0) goto err; if (rtc_write(RTC_CLOCKOUT_FREQ, 0x00) < 0) goto err; if (rtc_write(RTC_TIMER_CONTROL, 0x03) < 0) goto err; /* Reset the alarms. */ if (rtc_write(RTC_MINUTE_ALARM, 0x80) < 0) goto err; if (rtc_write(RTC_HOUR_ALARM, 0x80) < 0) goto err; if (rtc_write(RTC_DAY_ALARM, 0x80) < 0) goto err; if (rtc_write(RTC_WEEKDAY_ALARM, 0x80) < 0) goto err; /* Check for low voltage, and warn about it. */ if (rtc_read(RTC_SECONDS) & 0x80) { voltage_low = 1; printk(KERN_WARNING "%s: RTC Voltage Low - reliable " "date/time information is no longer guaranteed!\n", PCF8563_NAME); } return res; err: printk(KERN_INFO "%s: Error initializing chip.\n", PCF8563_NAME); res = -1; return res; } void __exit pcf8563_exit(void) { unregister_chrdev(PCF8563_MAJOR, DEVICE_NAME); } /* * ioctl calls for this driver. Why return -ENOTTY upon error? Because * POSIX says so! */ int pcf8563_ioctl(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg) { /* Some sanity checks. */ if (_IOC_TYPE(cmd) != RTC_MAGIC) return -ENOTTY; if (_IOC_NR(cmd) > RTC_MAX_IOCTL) return -ENOTTY; switch (cmd) { case RTC_RD_TIME: { struct rtc_time tm; mutex_lock(&rtc_lock); memset(&tm, 0, sizeof tm); get_rtc_time(&tm); if (copy_to_user((struct rtc_time *) arg, &tm, sizeof tm)) { mutex_unlock(&rtc_lock); return -EFAULT; } mutex_unlock(&rtc_lock); return 0; } case RTC_SET_TIME: { int leap; int year; int century; struct rtc_time tm; memset(&tm, 0, sizeof tm); if (!capable(CAP_SYS_TIME)) return -EPERM; if (copy_from_user(&tm, (struct rtc_time *) arg, sizeof tm)) return -EFAULT; /* Convert from struct tm to struct rtc_time. */ tm.tm_year += 1900; tm.tm_mon += 1; /* * Check if tm.tm_year is a leap year. A year is a leap * year if it is divisible by 4 but not 100, except * that years divisible by 400 _are_ leap years. */ year = tm.tm_year; leap = (tm.tm_mon == 2) && ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0); /* Perform some sanity checks. */ if ((tm.tm_year < 1970) || (tm.tm_mon > 12) || (tm.tm_mday == 0) || (tm.tm_mday > days_in_month[tm.tm_mon] + leap) || (tm.tm_wday >= 7) || (tm.tm_hour >= 24) || (tm.tm_min >= 60) || (tm.tm_sec >= 60)) return -EINVAL; century = (tm.tm_year >= 2000) ? 0x80 : 0; tm.tm_year = tm.tm_year % 100; tm.tm_year = bin2bcd(tm.tm_year); tm.tm_mon = bin2bcd(tm.tm_mon); tm.tm_mday = bin2bcd(tm.tm_mday); tm.tm_hour = bin2bcd(tm.tm_hour); tm.tm_min = bin2bcd(tm.tm_min); tm.tm_sec = bin2bcd(tm.tm_sec); tm.tm_mon |= century; mutex_lock(&rtc_lock); rtc_write(RTC_YEAR, tm.tm_year); rtc_write(RTC_MONTH, tm.tm_mon); rtc_write(RTC_WEEKDAY, tm.tm_wday); /* Not coded in BCD. */ rtc_write(RTC_DAY_OF_MONTH, tm.tm_mday); rtc_write(RTC_HOURS, tm.tm_hour); rtc_write(RTC_MINUTES, tm.tm_min); rtc_write(RTC_SECONDS, tm.tm_sec); mutex_unlock(&rtc_lock); return 0; } case RTC_VL_READ: if (voltage_low) { printk(KERN_ERR "%s: RTC Voltage Low - " "reliable date/time information is no " "longer guaranteed!\n", PCF8563_NAME); } if (copy_to_user((int *) arg, &voltage_low, sizeof(int))) return -EFAULT; return 0; case RTC_VL_CLR: { /* Clear the VL bit in the seconds register in case * the time has not been set already (which would * have cleared it). This does not really matter * because of the cached voltage_low value but do it * anyway for consistency. */ int ret = rtc_read(RTC_SECONDS); rtc_write(RTC_SECONDS, (ret & 0x7F)); /* Clear the cached value. */ voltage_low = 0; return 0; } default: return -ENOTTY; } return 0; } static int __init pcf8563_register(void) { if (pcf8563_init() < 0) { printk(KERN_INFO "%s: Unable to initialize Real-Time Clock " "Driver, %s\n", PCF8563_NAME, DRIVER_VERSION); return -1; } if (register_chrdev(PCF8563_MAJOR, DEVICE_NAME, &pcf8563_fops) < 0) { printk(KERN_INFO "%s: Unable to get major number %d for RTC device.\n", PCF8563_NAME, PCF8563_MAJOR); return -1; } printk(KERN_INFO "%s Real-Time Clock Driver, %s\n", PCF8563_NAME, DRIVER_VERSION); /* Check for low voltage, and warn about it. */ if (voltage_low) { printk(KERN_WARNING "%s: RTC Voltage Low - reliable date/time " "information is no longer guaranteed!\n", PCF8563_NAME); } return 0; } module_init(pcf8563_register); module_exit(pcf8563_exit);