#include "os_common.h" void hal_get_ethernet_address( phw_data_t pHwData, u8 *current_address ) { if( pHwData->SurpriseRemove ) return; memcpy( current_address, pHwData->CurrentMacAddress, ETH_LENGTH_OF_ADDRESS ); } void hal_set_ethernet_address( phw_data_t pHwData, u8 *current_address ) { u32 ltmp[2]; if( pHwData->SurpriseRemove ) return; memcpy( pHwData->CurrentMacAddress, current_address, ETH_LENGTH_OF_ADDRESS ); ltmp[0]= cpu_to_le32( *(u32 *)pHwData->CurrentMacAddress ); ltmp[1]= cpu_to_le32( *(u32 *)(pHwData->CurrentMacAddress + 4) ) & 0xffff; Wb35Reg_BurstWrite( pHwData, 0x03e8, ltmp, 2, AUTO_INCREMENT ); } void hal_get_permanent_address( phw_data_t pHwData, u8 *pethernet_address ) { if( pHwData->SurpriseRemove ) return; memcpy( pethernet_address, pHwData->PermanentMacAddress, 6 ); } u8 hal_init_hardware(phw_data_t pHwData, PWB32_ADAPTER Adapter) { u16 SoftwareSet; pHwData->Adapter = Adapter; // Initial the variable pHwData->MaxReceiveLifeTime = DEFAULT_MSDU_LIFE_TIME; // Setting Rx maximum MSDU life time pHwData->FragmentThreshold = DEFAULT_FRAGMENT_THRESHOLD; // Setting default fragment threshold if (WbUsb_initial(pHwData)) { pHwData->InitialResource = 1; if( Wb35Reg_initial(pHwData)) { pHwData->InitialResource = 2; if (Wb35Tx_initial(pHwData)) { pHwData->InitialResource = 3; if (Wb35Rx_initial(pHwData)) { pHwData->InitialResource = 4; OS_TIMER_INITIAL( &pHwData->LEDTimer, hal_led_control, pHwData ); OS_TIMER_SET( &pHwData->LEDTimer, 1000 ); // 20060623 // // For restrict to vendor's hardware // SoftwareSet = hal_software_set( pHwData ); #ifdef Vendor2 // Try to make sure the EEPROM contain SoftwareSet >>= 8; if( SoftwareSet != 0x82 ) return FALSE; #endif Wb35Rx_start( pHwData ); Wb35Tx_EP2VM_start( pHwData ); return TRUE; } } } } pHwData->SurpriseRemove = 1; return FALSE; } void hal_halt(phw_data_t pHwData, void *ppa_data) { switch( pHwData->InitialResource ) { case 4: case 3: OS_TIMER_CANCEL( &pHwData->LEDTimer, &cancel ); OS_SLEEP(100000); // Wait for Timer DPC exit 940623.2 Wb35Rx_destroy( pHwData ); // Release the Rx case 2: Wb35Tx_destroy( pHwData ); // Release the Tx case 1: Wb35Reg_destroy( pHwData ); // Release the Wb35 Regisster resources WbUsb_destroy( pHwData );// Release the WbUsb } } //--------------------------------------------------------------------------------------------------- void hal_set_rates(phw_data_t pHwData, u8 *pbss_rates, u8 length, unsigned char basic_rate_set) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; u32 tmp, tmp1; u8 Rate[12]={ 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 }; u8 SupportedRate[16]; u8 i, j, k, Count1, Count2, Byte; if( pHwData->SurpriseRemove ) return; if (basic_rate_set) { pWb35Reg->M28_MacControl &= ~0x000fff00; tmp1 = 0x00000100; } else { pWb35Reg->M28_MacControl &= ~0xfff00000; tmp1 = 0x00100000; } tmp = 0; for (i=0; iM28_MacControl |= tmp; Wb35Reg_Write( pHwData, 0x0828, pWb35Reg->M28_MacControl ); // 930206.2.c M78 setting j = k = Count1 = Count2 = 0; memset( SupportedRate, 0, 16 ); tmp = 0x00100000; tmp1 = 0x00000100; for (i=0; i<12; i++) { // Get the supported rate if (tmp & pWb35Reg->M28_MacControl) { SupportedRate[j] = Rate[i]; if (tmp1 & pWb35Reg->M28_MacControl) SupportedRate[j] |= 0x80; if (k) Count2++; else Count1++; j++; } if (i==4 && k==0) { if( !(pWb35Reg->M28_MacControl & 0x000ff000) ) // if basic rate in 11g domain) { k = 1; j = 8; } } tmp <<= 1; tmp1 <<= 1; } // Fill data into support rate until buffer full //---20060926 add by anson's endian for (i=0; i<4; i++) *(u32 *)(SupportedRate+(i<<2)) = cpu_to_le32( *(u32 *)(SupportedRate+(i<<2)) ); //--- end 20060926 add by anson's endian Wb35Reg_BurstWrite( pHwData,0x087c, (u32 *)SupportedRate, 4, AUTO_INCREMENT ); pWb35Reg->M7C_MacControl = ((u32 *)SupportedRate)[0]; pWb35Reg->M80_MacControl = ((u32 *)SupportedRate)[1]; pWb35Reg->M84_MacControl = ((u32 *)SupportedRate)[2]; pWb35Reg->M88_MacControl = ((u32 *)SupportedRate)[3]; // Fill length tmp = Count1<<28 | Count2<<24; pWb35Reg->M78_ERPInformation &= ~0xff000000; pWb35Reg->M78_ERPInformation |= tmp; Wb35Reg_Write( pHwData, 0x0878, pWb35Reg->M78_ERPInformation ); } //--------------------------------------------------------------------------------------------------- void hal_set_beacon_period( phw_data_t pHwData, u16 beacon_period ) { u32 tmp; if( pHwData->SurpriseRemove ) return; pHwData->BeaconPeriod = beacon_period; tmp = pHwData->BeaconPeriod << 16; tmp |= pHwData->ProbeDelay; Wb35Reg_Write( pHwData, 0x0848, tmp ); } void hal_set_current_channel_ex( phw_data_t pHwData, ChanInfo channel ) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; if( pHwData->SurpriseRemove ) return; printk("Going to channel: %d/%d\n", channel.band, channel.ChanNo); RFSynthesizer_SwitchingChannel( pHwData, channel );// Switch channel pHwData->Channel = channel.ChanNo; pHwData->band = channel.band; #ifdef _PE_STATE_DUMP_ WBDEBUG(("Set channel is %d, band =%d\n", pHwData->Channel, pHwData->band)); #endif pWb35Reg->M28_MacControl &= ~0xff; // Clean channel information field pWb35Reg->M28_MacControl |= channel.ChanNo; Wb35Reg_WriteWithCallbackValue( pHwData, 0x0828, pWb35Reg->M28_MacControl, (s8 *)&channel, sizeof(ChanInfo)); } //--------------------------------------------------------------------------------------------------- void hal_set_current_channel( phw_data_t pHwData, ChanInfo channel ) { hal_set_current_channel_ex( pHwData, channel ); } //--------------------------------------------------------------------------------------------------- void hal_get_current_channel( phw_data_t pHwData, ChanInfo *channel ) { channel->ChanNo = pHwData->Channel; channel->band = pHwData->band; } //--------------------------------------------------------------------------------------------------- void hal_set_accept_broadcast( phw_data_t pHwData, u8 enable ) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; if( pHwData->SurpriseRemove ) return; pWb35Reg->M00_MacControl &= ~0x02000000;//The HW value if (enable) pWb35Reg->M00_MacControl |= 0x02000000;//The HW value Wb35Reg_Write( pHwData, 0x0800, pWb35Reg->M00_MacControl ); } //for wep key error detection, we need to accept broadcast packets to be received temporary. void hal_set_accept_promiscuous( phw_data_t pHwData, u8 enable) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; if (pHwData->SurpriseRemove) return; if (enable) { pWb35Reg->M00_MacControl |= 0x00400000; Wb35Reg_Write( pHwData, 0x0800, pWb35Reg->M00_MacControl ); } else { pWb35Reg->M00_MacControl&=~0x00400000; Wb35Reg_Write( pHwData, 0x0800, pWb35Reg->M00_MacControl ); } } void hal_set_accept_multicast( phw_data_t pHwData, u8 enable ) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; if( pHwData->SurpriseRemove ) return; pWb35Reg->M00_MacControl &= ~0x01000000;//The HW value if (enable) pWb35Reg->M00_MacControl |= 0x01000000;//The HW value Wb35Reg_Write( pHwData, 0x0800, pWb35Reg->M00_MacControl ); } void hal_set_accept_beacon( phw_data_t pHwData, u8 enable ) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; if( pHwData->SurpriseRemove ) return; // 20040108 debug if( !enable )//Due to SME and MLME are not suitable for 35 return; pWb35Reg->M00_MacControl &= ~0x04000000;//The HW value if( enable ) pWb35Reg->M00_MacControl |= 0x04000000;//The HW value Wb35Reg_Write( pHwData, 0x0800, pWb35Reg->M00_MacControl ); } //--------------------------------------------------------------------------------------------------- void hal_set_multicast_address( phw_data_t pHwData, u8 *address, u8 number ) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; u8 Byte, Bit; if( pHwData->SurpriseRemove ) return; //Erases and refills the card multicast registers. Used when an address // has been deleted and all bits must be recomputed. pWb35Reg->M04_MulticastAddress1 = 0; pWb35Reg->M08_MulticastAddress2 = 0; while( number ) { number--; CardGetMulticastBit( (address+(number*ETH_LENGTH_OF_ADDRESS)), &Byte, &Bit); pWb35Reg->Multicast[Byte] |= Bit; } // Updating register Wb35Reg_BurstWrite( pHwData, 0x0804, (u32 *)pWb35Reg->Multicast, 2, AUTO_INCREMENT ); } //--------------------------------------------------------------------------------------------------- u8 hal_get_accept_beacon( phw_data_t pHwData ) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; if( pHwData->SurpriseRemove ) return 0; if( pWb35Reg->M00_MacControl & 0x04000000 ) return 1; else return 0; } unsigned char hal_reset_hardware( phw_data_t pHwData, void* ppa ) { // Not implement yet return TRUE; } void hal_stop( phw_data_t pHwData ) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; pHwData->Wb35Rx.rx_halt = 1; Wb35Rx_stop( pHwData ); pHwData->Wb35Tx.tx_halt = 1; Wb35Tx_stop( pHwData ); pWb35Reg->D00_DmaControl &= ~0xc0000000;//Tx Off, Rx Off Wb35Reg_Write( pHwData, 0x0400, pWb35Reg->D00_DmaControl ); WbUsb_Stop( pHwData ); // 20051230 Add.4 } unsigned char hal_idle(phw_data_t pHwData) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; PWBUSB pWbUsb = &pHwData->WbUsb; if( !pHwData->SurpriseRemove && ( pWbUsb->DetectCount || pWb35Reg->EP0vm_state!=VM_STOP ) ) return FALSE; return TRUE; } //--------------------------------------------------------------------------------------------------- void hal_set_cwmin( phw_data_t pHwData, u8 cwin_min ) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; if( pHwData->SurpriseRemove ) return; pHwData->cwmin = cwin_min; pWb35Reg->M2C_MacControl &= ~0x7c00; //bit 10 ~ 14 pWb35Reg->M2C_MacControl |= (pHwData->cwmin<<10); Wb35Reg_Write( pHwData, 0x082c, pWb35Reg->M2C_MacControl ); } s32 hal_get_rssi( phw_data_t pHwData, u32 *HalRssiArry, u8 Count ) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; R01_DESCRIPTOR r01; s32 ltmp = 0, tmp; u8 i; if( pHwData->SurpriseRemove ) return -200; if( Count > MAX_ACC_RSSI_COUNT ) // Because the TS may use this funtion Count = MAX_ACC_RSSI_COUNT; // RSSI = C1 + C2 * (agc_state[7:0] + offset_map(lna_state[1:0])) // C1 = -195, C2 = 0.66 = 85/128 for (i=0; iLNAValue[r01.R01_LNA_state]) * 85 ) >>7 ) - 195; ltmp += tmp; } ltmp /= Count; if( pHwData->phy_type == RF_AIROHA_2230 ) ltmp -= 5; // 10; if( pHwData->phy_type == RF_AIROHA_2230S ) ltmp -= 5; // 10; 20060420 Add this //if( ltmp < -200 ) ltmp = -200; if( ltmp < -110 ) ltmp = -110;// 1.0.24.0 For NJRC return ltmp; } //---------------------------------------------------------------------------------------------------- s32 hal_get_rssi_bss( phw_data_t pHwData, u16 idx, u8 Count ) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; R01_DESCRIPTOR r01; s32 ltmp = 0, tmp; u8 i, j; PADAPTER Adapter = pHwData->Adapter; // u32 *HalRssiArry = psBSS(idx)->HalRssi; if( pHwData->SurpriseRemove ) return -200; if( Count > MAX_ACC_RSSI_COUNT ) // Because the TS may use this funtion Count = MAX_ACC_RSSI_COUNT; // RSSI = C1 + C2 * (agc_state[7:0] + offset_map(lna_state[1:0])) // C1 = -195, C2 = 0.66 = 85/128 #if 0 for (i=0; iLNAValue[r01.R01_LNA_state]) * 85 ) >>7 ) - 195; ltmp += tmp; } #else if (psBSS(idx)->HalRssiIndex == 0) psBSS(idx)->HalRssiIndex = MAX_ACC_RSSI_COUNT; j = (u8)psBSS(idx)->HalRssiIndex-1; for (i=0; iHalRssi[j]; tmp = ((( r01.R01_AGC_state + pWb35Reg->LNAValue[r01.R01_LNA_state]) * 85 ) >>7 ) - 195; ltmp += tmp; if (j == 0) { j = MAX_ACC_RSSI_COUNT; } j--; } #endif ltmp /= Count; if( pHwData->phy_type == RF_AIROHA_2230 ) ltmp -= 5; // 10; if( pHwData->phy_type == RF_AIROHA_2230S ) ltmp -= 5; // 10; 20060420 Add this //if( ltmp < -200 ) ltmp = -200; if( ltmp < -110 ) ltmp = -110;// 1.0.24.0 For NJRC return ltmp; } //--------------------------------------------------------------------------- void hal_led_control_1a( phw_data_t pHwData ) { hal_led_control( NULL, pHwData, NULL, NULL ); } void hal_led_control( void* S1, phw_data_t pHwData, void* S3, void* S4 ) { PADAPTER Adapter = pHwData->Adapter; PWB35REG pWb35Reg = &pHwData->Wb35Reg; u32 LEDSet = (pHwData->SoftwareSet & HAL_LED_SET_MASK) >> HAL_LED_SET_SHIFT; u8 LEDgray[20] = { 0,3,4,6,8,10,11,12,13,14,15,14,13,12,11,10,8,6,4,2 }; u8 LEDgray2[30] = { 7,8,9,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0,0,0,0,0,15,14,13,12,11,10,9,8 }; u32 TimeInterval = 500, ltmp, ltmp2; ltmp=0; if( pHwData->SurpriseRemove ) return; if( pHwData->LED_control ) { ltmp2 = pHwData->LED_control & 0xff; if( ltmp2 == 5 ) // 5 is WPS mode { TimeInterval = 100; ltmp2 = (pHwData->LED_control>>8) & 0xff; switch( ltmp2 ) { case 1: // [0.2 On][0.1 Off]... pHwData->LED_Blinking %= 3; ltmp = 0x1010; // Led 1 & 0 Green and Red if( pHwData->LED_Blinking == 2 ) // Turn off ltmp = 0; break; case 2: // [0.1 On][0.1 Off]... pHwData->LED_Blinking %= 2; ltmp = 0x0010; // Led 0 red color if( pHwData->LED_Blinking ) // Turn off ltmp = 0; break; case 3: // [0.1 On][0.1 Off][0.1 On][0.1 Off][0.1 On][0.1 Off][0.1 On][0.1 Off][0.1 On][0.1 Off][0.5 Off]... pHwData->LED_Blinking %= 15; ltmp = 0x0010; // Led 0 red color if( (pHwData->LED_Blinking >= 9) || (pHwData->LED_Blinking%2) ) // Turn off 0.6 sec ltmp = 0; break; case 4: // [300 On][ off ] ltmp = 0x1000; // Led 1 Green color if( pHwData->LED_Blinking >= 3000 ) ltmp = 0; // led maybe on after 300sec * 32bit counter overlap. break; } pHwData->LED_Blinking++; pWb35Reg->U1BC_LEDConfigure = ltmp; if( LEDSet != 7 ) // Only 111 mode has 2 LEDs on PCB. { pWb35Reg->U1BC_LEDConfigure |= (ltmp &0xff)<<8; // Copy LED result to each LED control register pWb35Reg->U1BC_LEDConfigure |= (ltmp &0xff00)>>8; } Wb35Reg_Write( pHwData, 0x03bc, pWb35Reg->U1BC_LEDConfigure ); } } else if( pHwData->CurrentRadioSw || pHwData->CurrentRadioHw ) // If radio off { if( pWb35Reg->U1BC_LEDConfigure & 0x1010 ) { pWb35Reg->U1BC_LEDConfigure &= ~0x1010; Wb35Reg_Write( pHwData, 0x03bc, pWb35Reg->U1BC_LEDConfigure ); } } else { switch( LEDSet ) { case 4: // [100] Only 1 Led be placed on PCB and use pin 21 of IC. Use LED_0 for showing if( !pHwData->LED_LinkOn ) // Blink only if not Link On { // Blinking if scanning is on progress if( pHwData->LED_Scanning ) { if( pHwData->LED_Blinking == 0 ) { pWb35Reg->U1BC_LEDConfigure |= 0x10; Wb35Reg_Write( pHwData, 0x03bc, pWb35Reg->U1BC_LEDConfigure ); // LED_0 On pHwData->LED_Blinking = 1; TimeInterval = 300; } else { pWb35Reg->U1BC_LEDConfigure &= ~0x10; Wb35Reg_Write( pHwData, 0x03bc, pWb35Reg->U1BC_LEDConfigure ); // LED_0 Off pHwData->LED_Blinking = 0; TimeInterval = 300; } } else { //Turn Off LED_0 if( pWb35Reg->U1BC_LEDConfigure & 0x10 ) { pWb35Reg->U1BC_LEDConfigure &= ~0x10; Wb35Reg_Write( pHwData, 0x03bc, pWb35Reg->U1BC_LEDConfigure ); // LED_0 Off } } } else { // Turn On LED_0 if( (pWb35Reg->U1BC_LEDConfigure & 0x10) == 0 ) { pWb35Reg->U1BC_LEDConfigure |= 0x10; Wb35Reg_Write( pHwData, 0x03bc, pWb35Reg->U1BC_LEDConfigure ); // LED_0 Off } } break; case 6: // [110] Only 1 Led be placed on PCB and use pin 21 of IC. Use LED_0 for showing if( !pHwData->LED_LinkOn ) // Blink only if not Link On { // Blinking if scanning is on progress if( pHwData->LED_Scanning ) { if( pHwData->LED_Blinking == 0 ) { pWb35Reg->U1BC_LEDConfigure &= ~0xf; pWb35Reg->U1BC_LEDConfigure |= 0x10; Wb35Reg_Write( pHwData, 0x03bc, pWb35Reg->U1BC_LEDConfigure ); // LED_0 On pHwData->LED_Blinking = 1; TimeInterval = 300; } else { pWb35Reg->U1BC_LEDConfigure &= ~0x1f; Wb35Reg_Write( pHwData, 0x03bc, pWb35Reg->U1BC_LEDConfigure ); // LED_0 Off pHwData->LED_Blinking = 0; TimeInterval = 300; } } else { // 20060901 Gray blinking if in disconnect state and not scanning ltmp = pWb35Reg->U1BC_LEDConfigure; pWb35Reg->U1BC_LEDConfigure &= ~0x1f; if( LEDgray2[(pHwData->LED_Blinking%30)] ) { pWb35Reg->U1BC_LEDConfigure |= 0x10; pWb35Reg->U1BC_LEDConfigure |= LEDgray2[ (pHwData->LED_Blinking%30) ]; } pHwData->LED_Blinking++; if( pWb35Reg->U1BC_LEDConfigure != ltmp ) Wb35Reg_Write( pHwData, 0x03bc, pWb35Reg->U1BC_LEDConfigure ); // LED_0 Off TimeInterval = 100; } } else { // Turn On LED_0 if( (pWb35Reg->U1BC_LEDConfigure & 0x10) == 0 ) { pWb35Reg->U1BC_LEDConfigure |= 0x10; Wb35Reg_Write( pHwData, 0x03bc, pWb35Reg->U1BC_LEDConfigure ); // LED_0 Off } } break; case 5: // [101] Only 1 Led be placed on PCB and use LED_1 for showing if( !pHwData->LED_LinkOn ) // Blink only if not Link On { // Blinking if scanning is on progress if( pHwData->LED_Scanning ) { if( pHwData->LED_Blinking == 0 ) { pWb35Reg->U1BC_LEDConfigure |= 0x1000; Wb35Reg_Write( pHwData, 0x03bc, pWb35Reg->U1BC_LEDConfigure ); // LED_1 On pHwData->LED_Blinking = 1; TimeInterval = 300; } else { pWb35Reg->U1BC_LEDConfigure &= ~0x1000; Wb35Reg_Write( pHwData, 0x03bc, pWb35Reg->U1BC_LEDConfigure ); // LED_1 Off pHwData->LED_Blinking = 0; TimeInterval = 300; } } else { //Turn Off LED_1 if( pWb35Reg->U1BC_LEDConfigure & 0x1000 ) { pWb35Reg->U1BC_LEDConfigure &= ~0x1000; Wb35Reg_Write( pHwData, 0x03bc, pWb35Reg->U1BC_LEDConfigure ); // LED_1 Off } } } else { // Is transmitting/receiving ?? if( (OS_CURRENT_RX_BYTE( Adapter ) != pHwData->RxByteCountLast ) || (OS_CURRENT_TX_BYTE( Adapter ) != pHwData->TxByteCountLast ) ) { if( (pWb35Reg->U1BC_LEDConfigure & 0x3000) != 0x3000 ) { pWb35Reg->U1BC_LEDConfigure |= 0x3000; Wb35Reg_Write( pHwData, 0x03bc, pWb35Reg->U1BC_LEDConfigure ); // LED_1 On } // Update variable pHwData->RxByteCountLast = OS_CURRENT_RX_BYTE( Adapter ); pHwData->TxByteCountLast = OS_CURRENT_TX_BYTE( Adapter ); TimeInterval = 200; } else { // Turn On LED_1 and blinking if transmitting/receiving if( (pWb35Reg->U1BC_LEDConfigure & 0x3000) != 0x1000 ) { pWb35Reg->U1BC_LEDConfigure &= ~0x3000; pWb35Reg->U1BC_LEDConfigure |= 0x1000; Wb35Reg_Write( pHwData, 0x03bc, pWb35Reg->U1BC_LEDConfigure ); // LED_1 On } } } break; default: // Default setting. 2 LED be placed on PCB. LED_0: Link On LED_1 Active if( (pWb35Reg->U1BC_LEDConfigure & 0x3000) != 0x3000 ) { pWb35Reg->U1BC_LEDConfigure |= 0x3000;// LED_1 is always on and event enable Wb35Reg_Write( pHwData, 0x03bc, pWb35Reg->U1BC_LEDConfigure ); } if( pHwData->LED_Blinking ) { // Gray blinking pWb35Reg->U1BC_LEDConfigure &= ~0x0f; pWb35Reg->U1BC_LEDConfigure |= 0x10; pWb35Reg->U1BC_LEDConfigure |= LEDgray[ (pHwData->LED_Blinking-1)%20 ]; Wb35Reg_Write( pHwData, 0x03bc, pWb35Reg->U1BC_LEDConfigure ); pHwData->LED_Blinking += 2; if( pHwData->LED_Blinking < 40 ) TimeInterval = 100; else { pHwData->LED_Blinking = 0; // Stop blinking pWb35Reg->U1BC_LEDConfigure &= ~0x0f; Wb35Reg_Write( pHwData, 0x03bc, pWb35Reg->U1BC_LEDConfigure ); } break; } if( pHwData->LED_LinkOn ) { if( !(pWb35Reg->U1BC_LEDConfigure & 0x10) ) // Check the LED_0 { //Try to turn ON LED_0 after gray blinking pWb35Reg->U1BC_LEDConfigure |= 0x10; pHwData->LED_Blinking = 1; //Start blinking TimeInterval = 50; } } else { if( pWb35Reg->U1BC_LEDConfigure & 0x10 ) // Check the LED_0 { pWb35Reg->U1BC_LEDConfigure &= ~0x10; Wb35Reg_Write( pHwData, 0x03bc, pWb35Reg->U1BC_LEDConfigure ); } } break; } //20060828.1 Active send null packet to avoid AP disconnect if( pHwData->LED_LinkOn ) { pHwData->NullPacketCount += TimeInterval; if( pHwData->NullPacketCount >= DEFAULT_NULL_PACKET_COUNT ) { pHwData->NullPacketCount = 0; } } } pHwData->time_count += TimeInterval; Wb35Tx_CurrentTime( pHwData, pHwData->time_count ); // 20060928 add OS_TIMER_SET( &pHwData->LEDTimer, TimeInterval ); // 20060623.1 } void hal_set_phy_type( phw_data_t pHwData, u8 PhyType ) { pHwData->phy_type = PhyType; } void hal_get_phy_type( phw_data_t pHwData, u8 *PhyType ) { *PhyType = pHwData->phy_type; } void hal_reset_counter( phw_data_t pHwData ) { pHwData->dto_tx_retry_count = 0; pHwData->dto_tx_frag_count = 0; memset( pHwData->tx_retry_count, 0, 8); } void hal_set_radio_mode( phw_data_t pHwData, unsigned char radio_off) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; if( pHwData->SurpriseRemove ) return; if (radio_off) //disable Baseband receive off { pHwData->CurrentRadioSw = 1; // off pWb35Reg->M24_MacControl &= 0xffffffbf; } else { pHwData->CurrentRadioSw = 0; // on pWb35Reg->M24_MacControl |= 0x00000040; } Wb35Reg_Write( pHwData, 0x0824, pWb35Reg->M24_MacControl ); } u8 hal_get_antenna_number( phw_data_t pHwData ) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; if ((pWb35Reg->BB2C & BIT(11)) == 0) return 0; else return 1; } void hal_set_antenna_number( phw_data_t pHwData, u8 number ) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; if (number == 1) { pWb35Reg->BB2C |= BIT(11); } else { pWb35Reg->BB2C &= ~BIT(11); } Wb35Reg_Write( pHwData, 0x102c, pWb35Reg->BB2C ); #ifdef _PE_STATE_DUMP_ WBDEBUG(("Current antenna number : %d\n", number)); #endif } //---------------------------------------------------------------------------------------------------- //0 : radio on; 1: radio off u8 hal_get_hw_radio_off( phw_data_t pHwData ) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; if( pHwData->SurpriseRemove ) return 1; //read the bit16 of register U1B0 Wb35Reg_Read( pHwData, 0x3b0, &pWb35Reg->U1B0 ); if ((pWb35Reg->U1B0 & 0x00010000)) { pHwData->CurrentRadioHw = 1; return 1; } else { pHwData->CurrentRadioHw = 0; return 0; } } unsigned char hal_get_dxx_reg( phw_data_t pHwData, u16 number, u32 * pValue ) { if( number < 0x1000 ) number += 0x1000; return Wb35Reg_ReadSync( pHwData, number, pValue ); } unsigned char hal_set_dxx_reg( phw_data_t pHwData, u16 number, u32 value ) { unsigned char ret; if( number < 0x1000 ) number += 0x1000; ret = Wb35Reg_WriteSync( pHwData, number, value ); return ret; } void hal_scan_status_indicate(phw_data_t pHwData, unsigned char IsOnProgress) { if( pHwData->SurpriseRemove ) return; pHwData->LED_Scanning = IsOnProgress ? 1 : 0; } void hal_system_power_change(phw_data_t pHwData, u32 PowerState) { if( PowerState != 0 ) { pHwData->SurpriseRemove = 1; if( pHwData->WbUsb.IsUsb20 ) hal_stop( pHwData ); } else { if( !pHwData->WbUsb.IsUsb20 ) hal_stop( pHwData ); } } void hal_surprise_remove( phw_data_t pHwData ) { PADAPTER Adapter = pHwData->Adapter; if (OS_ATOMIC_INC( Adapter, &pHwData->SurpriseRemoveCount ) == 1) { #ifdef _PE_STATE_DUMP_ WBDEBUG(("Calling hal_surprise_remove\n")); #endif OS_STOP( Adapter ); } } void hal_rate_change( phw_data_t pHwData ) // Notify the HAL rate is changing 20060613.1 { PADAPTER Adapter = pHwData->Adapter; u8 rate = CURRENT_TX_RATE; BBProcessor_RateChanging( pHwData, rate ); } void hal_set_rf_power(phw_data_t pHwData, u8 PowerIndex) { RFSynthesizer_SetPowerIndex( pHwData, PowerIndex ); } unsigned char hal_set_LED(phw_data_t pHwData, u32 Mode) // 20061108 for WPS led control { pHwData->LED_Blinking = 0; pHwData->LED_control = Mode; OS_TIMER_SET( &pHwData->LEDTimer, 10 ); // 20060623 return TRUE; }