// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2018-2021, The Linux Foundation. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "mhi_internal.h" /* * Not all MHI states transitions are sync transitions. Linkdown, SSR, and * shutdown can happen anytime asynchronously. This function will transition to * new state only if we're allowed to transitions. * * Priority increase as we go down, example while in any states from L0, start * state from L1, L2, or L3 can be set. Notable exception to this rule is state * DISABLE. From DISABLE state we can transition to only POR or state. Also * for example while in L2 state, user cannot jump back to L1 or L0 states. * Valid transitions: * L0: DISABLE <--> POR * POR <--> POR * POR -> M0 -> M2 --> M0 * POR -> FW_DL_ERR * FW_DL_ERR <--> FW_DL_ERR * M0 -> FW_DL_ERR * M0 -> M3_ENTER -> M3 -> M3_EXIT --> M0 * L1: SYS_ERR_DETECT -> SYS_ERR_PROCESS --> POR * L2: SHUTDOWN_PROCESS -> DISABLE * L3: LD_ERR_FATAL_DETECT <--> LD_ERR_FATAL_DETECT * LD_ERR_FATAL_DETECT -> SHUTDOWN_PROCESS */ static struct mhi_pm_transitions const mhi_state_transitions[] = { /* L0 States */ { MHI_PM_DISABLE, MHI_PM_POR }, { MHI_PM_POR, MHI_PM_POR | MHI_PM_DISABLE | MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR }, { MHI_PM_M0, MHI_PM_M2 | MHI_PM_M3_ENTER | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR }, { MHI_PM_M2, MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT }, { MHI_PM_M3_ENTER, MHI_PM_M3 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT }, { MHI_PM_M3, MHI_PM_M3_EXIT | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT }, { MHI_PM_M3_EXIT, MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT }, { MHI_PM_FW_DL_ERR, MHI_PM_FW_DL_ERR | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT }, /* L1 States */ { MHI_PM_SYS_ERR_DETECT, MHI_PM_SYS_ERR_PROCESS | MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT }, { MHI_PM_SYS_ERR_PROCESS, MHI_PM_POR | MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT }, /* L2 States */ { MHI_PM_SHUTDOWN_PROCESS, MHI_PM_DISABLE | MHI_PM_LD_ERR_FATAL_DETECT }, /* L3 States */ { MHI_PM_LD_ERR_FATAL_DETECT, MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_SHUTDOWN_PROCESS }, }; enum MHI_PM_STATE __must_check mhi_tryset_pm_state( struct mhi_controller *mhi_cntrl, enum MHI_PM_STATE state) { unsigned long cur_state = mhi_cntrl->pm_state; int index = find_last_bit(&cur_state, 32); if (unlikely(index >= ARRAY_SIZE(mhi_state_transitions))) { MHI_CRITICAL("cur_state:%s is not a valid pm_state\n", to_mhi_pm_state_str(cur_state)); return cur_state; } if (unlikely(mhi_state_transitions[index].from_state != cur_state)) { MHI_ERR("index:%u cur_state:%s != actual_state: %s\n", index, to_mhi_pm_state_str(cur_state), to_mhi_pm_state_str (mhi_state_transitions[index].from_state)); return cur_state; } if (unlikely(!(mhi_state_transitions[index].to_states & state))) { MHI_LOG( "Not allowing pm state transition from:%s to:%s state\n", to_mhi_pm_state_str(cur_state), to_mhi_pm_state_str(state)); return cur_state; } MHI_VERB("Transition to pm state from:%s to:%s\n", to_mhi_pm_state_str(cur_state), to_mhi_pm_state_str(state)); mhi_cntrl->pm_state = state; return mhi_cntrl->pm_state; } void mhi_set_mhi_state(struct mhi_controller *mhi_cntrl, enum mhi_dev_state state) { if (state == MHI_STATE_RESET) { mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, MHICTRL_RESET_MASK, MHICTRL_RESET_SHIFT, 1); } else { mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, MHICTRL_MHISTATE_MASK, MHICTRL_MHISTATE_SHIFT, state); } } EXPORT_SYMBOL(mhi_set_mhi_state); /* set device wake */ void mhi_assert_dev_wake(struct mhi_controller *mhi_cntrl, bool force) { unsigned long flags; /* if set, regardless of count set the bit if not set */ if (unlikely(force)) { spin_lock_irqsave(&mhi_cntrl->wlock, flags); atomic_inc(&mhi_cntrl->dev_wake); if (MHI_WAKE_DB_FORCE_SET_VALID(mhi_cntrl->pm_state) && !mhi_cntrl->wake_set) { mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1); mhi_cntrl->wake_set = true; } spin_unlock_irqrestore(&mhi_cntrl->wlock, flags); } else { /* if resources requested already, then increment and exit */ if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, 1, 0))) return; spin_lock_irqsave(&mhi_cntrl->wlock, flags); if ((atomic_inc_return(&mhi_cntrl->dev_wake) == 1) && MHI_WAKE_DB_SET_VALID(mhi_cntrl->pm_state) && !mhi_cntrl->wake_set) { mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1); mhi_cntrl->wake_set = true; } spin_unlock_irqrestore(&mhi_cntrl->wlock, flags); } } /* clear device wake */ void mhi_deassert_dev_wake(struct mhi_controller *mhi_cntrl, bool override) { unsigned long flags; //MHI_ASSERT(atomic_read(&mhi_cntrl->dev_wake) == 0, "dev_wake == 0"); if (atomic_read(&mhi_cntrl->dev_wake) == 0) printk("%s dev_wake already 0, assert !!!\n", __func__); /* resources not dropping to 0, decrement and exit */ if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, -1, 1))) return; spin_lock_irqsave(&mhi_cntrl->wlock, flags); if ((atomic_dec_return(&mhi_cntrl->dev_wake) == 0) && MHI_WAKE_DB_CLEAR_VALID(mhi_cntrl->pm_state) && !override && mhi_cntrl->wake_set) { mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 0); mhi_cntrl->wake_set = false; } spin_unlock_irqrestore(&mhi_cntrl->wlock, flags); } int mhi_ready_state_transition(struct mhi_controller *mhi_cntrl) { struct mhi_event *mhi_event; enum MHI_PM_STATE cur_state; u32 interval_us = 25000; /* poll register field every 25 milliseconds */ int ret, i; MHI_LOG("Waiting to enter READY state\n"); /* device enter into error state */ if (MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) { MHI_ERR("Device link is not accessible\n"); return -EIO; } /* Wait for RESET to be cleared and READY bit to be set by the device */ ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, MHICTRL_RESET_MASK, MHICTRL_RESET_SHIFT, 0, interval_us); if (ret) { MHI_ERR("Device failed to clear MHI Reset\n"); return ret; } ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHISTATUS, MHISTATUS_READY_MASK, MHISTATUS_READY_SHIFT, 1, interval_us); if (ret) { MHI_ERR("Device failed to enter MHI Ready\n"); return ret; } MHI_LOG("Device in READY State\n"); write_lock_irq(&mhi_cntrl->pm_lock); cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR); mhi_cntrl->dev_state = MHI_STATE_READY; write_unlock_irq(&mhi_cntrl->pm_lock); if (cur_state != MHI_PM_POR) { MHI_ERR("Error moving to state %s from %s\n", to_mhi_pm_state_str(MHI_PM_POR), to_mhi_pm_state_str(cur_state)); return -EIO; } read_lock_bh(&mhi_cntrl->pm_lock); if (!MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) goto error_mmio; ret = mhi_init_mmio(mhi_cntrl); if (ret) { MHI_ERR("Error programming mmio registers\n"); goto error_mmio; } /* add elements to all sw event rings */ mhi_event = mhi_cntrl->mhi_event; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { struct mhi_ring *ring = &mhi_event->ring; if (mhi_event->offload_ev || mhi_event->hw_ring) continue; ring->wp = ring->base + ring->len - ring->el_size; *ring->ctxt_wp = cpu_to_le64(ring->iommu_base + ring->len - ring->el_size); /* needs to update to all cores */ smp_wmb(); /* ring the db for event rings */ spin_lock_irq(&mhi_event->lock); mhi_ring_er_db(mhi_event); spin_unlock_irq(&mhi_event->lock); } /* set device into M0 state */ mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0); read_unlock_bh(&mhi_cntrl->pm_lock); return 0; error_mmio: read_unlock_bh(&mhi_cntrl->pm_lock); return -EIO; } int mhi_pm_m0_transition(struct mhi_controller *mhi_cntrl) { enum MHI_PM_STATE cur_state; struct mhi_chan *mhi_chan; int i; MHI_LOG("Entered With State:%s PM_STATE:%s\n", TO_MHI_STATE_STR(mhi_cntrl->dev_state), to_mhi_pm_state_str(mhi_cntrl->pm_state)); write_lock_irq(&mhi_cntrl->pm_lock); mhi_cntrl->dev_state = MHI_STATE_M0; cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M0); write_unlock_irq(&mhi_cntrl->pm_lock); if (unlikely(cur_state != MHI_PM_M0)) { MHI_ERR("Failed to transition to state %s from %s\n", to_mhi_pm_state_str(MHI_PM_M0), to_mhi_pm_state_str(cur_state)); return -EIO; } mhi_cntrl->M0++; read_lock_bh(&mhi_cntrl->pm_lock); mhi_cntrl->wake_get(mhi_cntrl, false); /* ring all event rings and CMD ring only if we're in mission mode */ if (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) { struct mhi_event *mhi_event = mhi_cntrl->mhi_event; struct mhi_cmd *mhi_cmd = &mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING]; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { if (mhi_event->offload_ev) continue; spin_lock_irq(&mhi_event->lock); mhi_ring_er_db(mhi_event); spin_unlock_irq(&mhi_event->lock); } /* only ring primary cmd ring */ spin_lock_irq(&mhi_cmd->lock); if (mhi_cmd->ring.rp != mhi_cmd->ring.wp) mhi_ring_cmd_db(mhi_cntrl, mhi_cmd); spin_unlock_irq(&mhi_cmd->lock); } /* ring channel db registers */ mhi_chan = mhi_cntrl->mhi_chan; for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) { struct mhi_ring *tre_ring = &mhi_chan->tre_ring; write_lock_irq(&mhi_chan->lock); if (mhi_chan->db_cfg.reset_req) mhi_chan->db_cfg.db_mode = true; /* only ring DB if ring is not empty */ if (tre_ring->base && tre_ring->wp != tre_ring->rp) mhi_ring_chan_db(mhi_cntrl, mhi_chan); write_unlock_irq(&mhi_chan->lock); } mhi_cntrl->wake_put(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); wake_up_all(&mhi_cntrl->state_event); MHI_VERB("Exited\n"); return 0; } void mhi_pm_m1_transition(struct mhi_controller *mhi_cntrl) { enum MHI_PM_STATE state; write_lock_irq(&mhi_cntrl->pm_lock); /* if it fails, means we transition to M3 */ state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M2); if (state == MHI_PM_M2) { MHI_VERB("Entered M2 State\n"); mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M2); mhi_cntrl->dev_state = MHI_STATE_M2; mhi_cntrl->M2++; write_unlock_irq(&mhi_cntrl->pm_lock); wake_up_all(&mhi_cntrl->state_event); /* transfer pending, exit M2 immediately */ if (unlikely(atomic_read(&mhi_cntrl->dev_wake))) { MHI_VERB("Exiting M2 Immediately, count:%d\n", atomic_read(&mhi_cntrl->dev_wake)); read_lock_bh(&mhi_cntrl->pm_lock); mhi_cntrl->wake_get(mhi_cntrl, true); mhi_cntrl->wake_put(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); } else { mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_IDLE); } } else { write_unlock_irq(&mhi_cntrl->pm_lock); } } int mhi_pm_m3_transition(struct mhi_controller *mhi_cntrl) { enum MHI_PM_STATE state; write_lock_irq(&mhi_cntrl->pm_lock); mhi_cntrl->dev_state = MHI_STATE_M3; state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3); write_unlock_irq(&mhi_cntrl->pm_lock); if (state != MHI_PM_M3) { MHI_ERR("Failed to transition to state %s from %s\n", to_mhi_pm_state_str(MHI_PM_M3), to_mhi_pm_state_str(mhi_cntrl->pm_state)); return -EIO; } wake_up_all(&mhi_cntrl->state_event); mhi_cntrl->M3++; MHI_LOG("Entered mhi_state:%s pm_state:%s\n", TO_MHI_STATE_STR(mhi_cntrl->dev_state), to_mhi_pm_state_str(mhi_cntrl->pm_state)); return 0; } static int mhi_pm_mission_mode_transition(struct mhi_controller *mhi_cntrl) { int i, ret; struct mhi_event *mhi_event; MHI_LOG("Processing Mission Mode Transition\n"); /* force MHI to be in M0 state before continuing */ ret = __mhi_device_get_sync(mhi_cntrl); if (ret) return ret; ret = -EIO; write_lock_irq(&mhi_cntrl->pm_lock); if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) mhi_cntrl->ee = mhi_get_exec_env(mhi_cntrl); write_unlock_irq(&mhi_cntrl->pm_lock); read_lock_bh(&mhi_cntrl->pm_lock); if (!MHI_IN_MISSION_MODE(mhi_cntrl->ee)) goto error_mission_mode; wake_up_all(&mhi_cntrl->state_event); /* add elements to all HW event rings */ if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) goto error_mission_mode; mhi_event = mhi_cntrl->mhi_event; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { struct mhi_ring *ring = &mhi_event->ring; if (mhi_event->offload_ev || !mhi_event->hw_ring) continue; ring->wp = ring->base + ring->len - ring->el_size; *ring->ctxt_wp = cpu_to_le64(ring->iommu_base + ring->len - ring->el_size); /* all ring updates must get updated immediately */ smp_wmb(); spin_lock_irq(&mhi_event->lock); if (MHI_DB_ACCESS_VALID(mhi_cntrl->pm_state)) mhi_ring_er_db(mhi_event); spin_unlock_irq(&mhi_event->lock); } read_unlock_bh(&mhi_cntrl->pm_lock); /* setup support for time sync */ mhi_init_timesync(mhi_cntrl); MHI_LOG("Adding new devices\n"); /* add supported devices */ mhi_create_devices(mhi_cntrl); ret = 0; read_lock_bh(&mhi_cntrl->pm_lock); error_mission_mode: mhi_cntrl->wake_put(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); MHI_LOG("Exit with ret:%d\n", ret); return ret; } /* handles both sys_err and shutdown transitions */ static void mhi_pm_disable_transition(struct mhi_controller *mhi_cntrl, enum MHI_PM_STATE transition_state) { enum MHI_PM_STATE cur_state, prev_state; struct mhi_event *mhi_event; struct mhi_cmd_ctxt *cmd_ctxt; struct mhi_cmd *mhi_cmd; struct mhi_event_ctxt *er_ctxt; int ret, i; u32 interval_us = 25000; /* poll register field every 25 milliseconds */ MHI_LOG("Enter with from pm_state:%s MHI_STATE:%s to pm_state:%s\n", to_mhi_pm_state_str(mhi_cntrl->pm_state), TO_MHI_STATE_STR(mhi_cntrl->dev_state), to_mhi_pm_state_str(transition_state)); /* We must notify MHI control driver so it can clean up first */ if (transition_state == MHI_PM_SYS_ERR_PROCESS) mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_SYS_ERROR); mutex_lock(&mhi_cntrl->pm_mutex); write_lock_irq(&mhi_cntrl->pm_lock); prev_state = mhi_cntrl->pm_state; cur_state = mhi_tryset_pm_state(mhi_cntrl, transition_state); if (cur_state == transition_state) { mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION; mhi_cntrl->dev_state = MHI_STATE_RESET; } write_unlock_irq(&mhi_cntrl->pm_lock); /* wake up any threads waiting for state transitions */ wake_up_all(&mhi_cntrl->state_event); /* not handling sys_err, could be middle of shut down */ if (cur_state != transition_state) { MHI_LOG("Failed to transition to state:0x%x from:0x%x\n", transition_state, cur_state); mutex_unlock(&mhi_cntrl->pm_mutex); return; } /* trigger MHI RESET so device will not access host ddr */ if (MHI_REG_ACCESS_VALID(prev_state)) { MHI_LOG("Trigger device into MHI_RESET\n"); mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET); /* wait for reset to be cleared */ ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, MHICTRL_RESET_MASK, MHICTRL_RESET_SHIFT, 0, interval_us); if (ret && cur_state == MHI_PM_SYS_ERR_PROCESS) { MHI_CRITICAL("Device failed to exit RESET ret:%d\n", ret); mutex_unlock(&mhi_cntrl->pm_mutex); return; } /* * device cleares INTVEC as part of RESET processing, * re-program it */ mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 1); } MHI_LOG("Waiting for all pending event ring processing to complete\n"); mhi_event = mhi_cntrl->mhi_event; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { if (mhi_event->offload_ev) continue; tasklet_kill(&mhi_event->task); } mutex_unlock(&mhi_cntrl->pm_mutex); MHI_LOG("Reset all active channels and remove mhi devices\n"); device_for_each_child(mhi_cntrl->dev, NULL, mhi_destroy_device); MHI_LOG("Finish resetting channels\n"); MHI_LOG("Waiting for all pending threads to complete\n"); wake_up_all(&mhi_cntrl->state_event); flush_work(&mhi_cntrl->st_worker); flush_work(&mhi_cntrl->fw_worker); mutex_lock(&mhi_cntrl->pm_mutex); MHI_ASSERT(atomic_read(&mhi_cntrl->dev_wake), "dev_wake != 0"); /* reset the ev rings and cmd rings */ MHI_LOG("Resetting EV CTXT and CMD CTXT\n"); mhi_cmd = mhi_cntrl->mhi_cmd; cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt; for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) { struct mhi_ring *ring = &mhi_cmd->ring; ring->rp = ring->base; ring->wp = ring->base; cmd_ctxt->rp = cmd_ctxt->rbase; cmd_ctxt->wp = cmd_ctxt->rbase; } mhi_event = mhi_cntrl->mhi_event; er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++, mhi_event++) { struct mhi_ring *ring = &mhi_event->ring; /* do not touch offload er */ if (mhi_event->offload_ev) continue; ring->rp = ring->base; ring->wp = ring->base; er_ctxt->rp = er_ctxt->rbase; er_ctxt->wp = er_ctxt->rbase; } /* remove support for time sync */ mhi_destroy_timesync(mhi_cntrl); if (cur_state == MHI_PM_SYS_ERR_PROCESS) { mhi_ready_state_transition(mhi_cntrl); } else { /* move to disable state */ write_lock_irq(&mhi_cntrl->pm_lock); cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_DISABLE); write_unlock_irq(&mhi_cntrl->pm_lock); if (unlikely(cur_state != MHI_PM_DISABLE)) MHI_ERR("Error moving from pm state:%s to state:%s\n", to_mhi_pm_state_str(cur_state), to_mhi_pm_state_str(MHI_PM_DISABLE)); } MHI_LOG("Exit with pm_state:%s mhi_state:%s\n", to_mhi_pm_state_str(mhi_cntrl->pm_state), TO_MHI_STATE_STR(mhi_cntrl->dev_state)); mutex_unlock(&mhi_cntrl->pm_mutex); } int mhi_debugfs_trigger_reset(void *data, u64 val) { struct mhi_controller *mhi_cntrl = data; enum MHI_PM_STATE cur_state; int ret; MHI_LOG("Trigger MHI Reset\n"); /* exit lpm first */ mhi_cntrl->runtime_get(mhi_cntrl); mhi_cntrl->runtime_put(mhi_cntrl); ret = wait_event_timeout(mhi_cntrl->state_event, mhi_cntrl->dev_state == MHI_STATE_M0 || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), msecs_to_jiffies(mhi_cntrl->timeout_ms)); if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { MHI_ERR("Did not enter M0 state, cur_state:%s pm_state:%s\n", TO_MHI_STATE_STR(mhi_cntrl->dev_state), to_mhi_pm_state_str(mhi_cntrl->pm_state)); return -EIO; } write_lock_irq(&mhi_cntrl->pm_lock); cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_SYS_ERR_DETECT); write_unlock_irq(&mhi_cntrl->pm_lock); if (cur_state == MHI_PM_SYS_ERR_DETECT) schedule_work(&mhi_cntrl->syserr_worker); return 0; } /* queue a new work item and scheduler work */ int mhi_queue_state_transition(struct mhi_controller *mhi_cntrl, enum MHI_ST_TRANSITION state) { struct state_transition *item = kmalloc(sizeof(*item), GFP_ATOMIC); unsigned long flags; if (!item) return -ENOMEM; item->state = state; spin_lock_irqsave(&mhi_cntrl->transition_lock, flags); list_add_tail(&item->node, &mhi_cntrl->transition_list); spin_unlock_irqrestore(&mhi_cntrl->transition_lock, flags); schedule_work(&mhi_cntrl->st_worker); return 0; } void mhi_pm_sys_err_worker(struct work_struct *work) { struct mhi_controller *mhi_cntrl = container_of(work, struct mhi_controller, syserr_worker); MHI_LOG("Enter with pm_state:%s MHI_STATE:%s\n", to_mhi_pm_state_str(mhi_cntrl->pm_state), TO_MHI_STATE_STR(mhi_cntrl->dev_state)); mhi_pm_disable_transition(mhi_cntrl, MHI_PM_SYS_ERR_PROCESS); } void mhi_pm_st_worker(struct work_struct *work) { struct state_transition *itr, *tmp; LIST_HEAD(head); struct mhi_controller *mhi_cntrl = container_of(work, struct mhi_controller, st_worker); spin_lock_irq(&mhi_cntrl->transition_lock); list_splice_tail_init(&mhi_cntrl->transition_list, &head); spin_unlock_irq(&mhi_cntrl->transition_lock); list_for_each_entry_safe(itr, tmp, &head, node) { list_del(&itr->node); MHI_LOG("Transition to state:%s\n", TO_MHI_STATE_TRANS_STR(itr->state)); switch (itr->state) { case MHI_ST_TRANSITION_PBL: write_lock_irq(&mhi_cntrl->pm_lock); if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) mhi_cntrl->ee = mhi_get_exec_env(mhi_cntrl); write_unlock_irq(&mhi_cntrl->pm_lock); if (MHI_IN_PBL(mhi_cntrl->ee)) wake_up_all(&mhi_cntrl->state_event); break; case MHI_ST_TRANSITION_SBL: write_lock_irq(&mhi_cntrl->pm_lock); mhi_cntrl->ee = MHI_EE_SBL; write_unlock_irq(&mhi_cntrl->pm_lock); wake_up_all(&mhi_cntrl->state_event); mhi_create_devices(mhi_cntrl); break; case MHI_ST_TRANSITION_MISSION_MODE: mhi_pm_mission_mode_transition(mhi_cntrl); break; case MHI_ST_TRANSITION_READY: mhi_ready_state_transition(mhi_cntrl); break; default: break; } kfree(itr); } } int mhi_async_power_up(struct mhi_controller *mhi_cntrl) { int ret; u32 val; enum mhi_ee current_ee; enum MHI_ST_TRANSITION next_state; bool mhi_ssr_ramdump_negotiate; MHI_LOG("Requested to power on\n"); if (mhi_cntrl->msi_allocated < mhi_cntrl->total_ev_rings) return -EINVAL; /* set to default wake if not set */ if (!mhi_cntrl->wake_get || !mhi_cntrl->wake_put) { mhi_cntrl->wake_get = mhi_assert_dev_wake; mhi_cntrl->wake_put = mhi_deassert_dev_wake; } mutex_lock(&mhi_cntrl->pm_mutex); mhi_cntrl->pm_state = MHI_PM_DISABLE; if (!mhi_cntrl->pre_init) { /* setup device context */ ret = mhi_init_dev_ctxt(mhi_cntrl); if (ret) { MHI_ERR("Error setting dev_context\n"); goto error_dev_ctxt; } ret = mhi_init_irq_setup(mhi_cntrl); if (ret) { MHI_ERR("Error setting up irq\n"); goto error_setup_irq; } } /* setup bhi offset & intvec */ write_lock_irq(&mhi_cntrl->pm_lock); ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->regs, BHIOFF, &val); if (ret) { write_unlock_irq(&mhi_cntrl->pm_lock); MHI_ERR("Error getting bhi offset\n"); goto error_bhi_offset; } mhi_cntrl->bhi = mhi_cntrl->regs + val; /* setup bhie offset */ if (mhi_cntrl->fbc_download) { ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->regs, BHIEOFF, &val); if (ret) { write_unlock_irq(&mhi_cntrl->pm_lock); MHI_ERR("Error getting bhie offset\n"); goto error_bhi_offset; } mhi_cntrl->bhie = mhi_cntrl->regs + val; } mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 1); mhi_cntrl->pm_state = MHI_PM_POR; mhi_cntrl->ee = MHI_EE_MAX; current_ee = mhi_get_exec_env(mhi_cntrl); write_unlock_irq(&mhi_cntrl->pm_lock); mhi_ssr_ramdump_negotiate = of_property_read_bool(mhi_cntrl->of_node, "mhi,ssr-negotiate"); if (mhi_ssr_ramdump_negotiate) { next_state = MHI_ST_TRANSITION_READY; } else { /* confirm device is in valid exec env */ if (!MHI_IN_PBL(current_ee) && current_ee != MHI_EE_AMSS) { MHI_ERR("Not a valid ee for power on %d\n", current_ee); ret = -EIO; goto error_bhi_offset; } else { /* transition to next state */ next_state = MHI_IN_PBL(current_ee) ? MHI_ST_TRANSITION_PBL : MHI_ST_TRANSITION_READY; } } if (next_state == MHI_ST_TRANSITION_PBL) schedule_work(&mhi_cntrl->fw_worker); mhi_queue_state_transition(mhi_cntrl, next_state); mhi_init_debugfs(mhi_cntrl); mutex_unlock(&mhi_cntrl->pm_mutex); MHI_LOG("Power on setup success\n"); return 0; error_bhi_offset: if (!mhi_cntrl->pre_init) mhi_deinit_free_irq(mhi_cntrl); error_setup_irq: if (!mhi_cntrl->pre_init) mhi_deinit_dev_ctxt(mhi_cntrl); error_dev_ctxt: mutex_unlock(&mhi_cntrl->pm_mutex); return ret; } EXPORT_SYMBOL(mhi_async_power_up); void mhi_power_down(struct mhi_controller *mhi_cntrl, bool graceful) { enum MHI_PM_STATE cur_state; /* if it's not graceful shutdown, force MHI to a linkdown state */ if (!graceful) { mutex_lock(&mhi_cntrl->pm_mutex); write_lock_irq(&mhi_cntrl->pm_lock); cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_LD_ERR_FATAL_DETECT); write_unlock_irq(&mhi_cntrl->pm_lock); mutex_unlock(&mhi_cntrl->pm_mutex); if (cur_state != MHI_PM_LD_ERR_FATAL_DETECT) MHI_ERR("Failed to move to state:%s from:%s\n", to_mhi_pm_state_str(MHI_PM_LD_ERR_FATAL_DETECT), to_mhi_pm_state_str(mhi_cntrl->pm_state)); } mhi_pm_disable_transition(mhi_cntrl, MHI_PM_SHUTDOWN_PROCESS); mhi_deinit_debugfs(mhi_cntrl); if (!mhi_cntrl->pre_init) { /* free all allocated resources */ if (mhi_cntrl->fbc_image) { mhi_free_bhie_table(mhi_cntrl, mhi_cntrl->fbc_image); mhi_cntrl->fbc_image = NULL; } mhi_deinit_free_irq(mhi_cntrl); mhi_deinit_dev_ctxt(mhi_cntrl); } } EXPORT_SYMBOL(mhi_power_down); int mhi_sync_power_up(struct mhi_controller *mhi_cntrl) { int ret = mhi_async_power_up(mhi_cntrl); if (ret) return ret; wait_event_timeout(mhi_cntrl->state_event, MHI_IN_MISSION_MODE(mhi_cntrl->ee) || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), msecs_to_jiffies(mhi_cntrl->timeout_ms)); return (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) ? 0 : -ETIMEDOUT; } EXPORT_SYMBOL(mhi_sync_power_up); int mhi_pm_suspend(struct mhi_controller *mhi_cntrl) { int ret; enum MHI_PM_STATE new_state; struct mhi_chan *itr, *tmp; if (mhi_cntrl->pm_state == MHI_PM_DISABLE) return -EINVAL; if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) return -EIO; /* do a quick check to see if any pending data, then exit */ if (atomic_read(&mhi_cntrl->dev_wake)) { MHI_VERB("Busy, aborting M3\n"); return -EBUSY; } /* exit MHI out of M2 state */ read_lock_bh(&mhi_cntrl->pm_lock); mhi_cntrl->wake_get(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); ret = wait_event_timeout(mhi_cntrl->state_event, mhi_cntrl->dev_state == MHI_STATE_M0 || mhi_cntrl->dev_state == MHI_STATE_M1 || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), msecs_to_jiffies(mhi_cntrl->timeout_ms)); if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { MHI_ERR( "Did not enter M0||M1 state, cur_state:%s pm_state:%s\n", TO_MHI_STATE_STR(mhi_cntrl->dev_state), to_mhi_pm_state_str(mhi_cntrl->pm_state)); ret = -EIO; goto error_m0_entry; } write_lock_irq(&mhi_cntrl->pm_lock); /* we're asserting wake so count would be @ least 1 */ if (atomic_read(&mhi_cntrl->dev_wake) > 1) { MHI_VERB("Busy, aborting M3\n"); write_unlock_irq(&mhi_cntrl->pm_lock); ret = -EBUSY; goto error_m0_entry; } /* anytime after this, we will resume thru runtime pm framework */ MHI_LOG("Allowing M3 transition\n"); new_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_ENTER); if (new_state != MHI_PM_M3_ENTER) { write_unlock_irq(&mhi_cntrl->pm_lock); MHI_ERR("Error setting to pm_state:%s from pm_state:%s\n", to_mhi_pm_state_str(MHI_PM_M3_ENTER), to_mhi_pm_state_str(mhi_cntrl->pm_state)); ret = -EIO; goto error_m0_entry; } /* set dev to M3 and wait for completion */ mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M3); mhi_cntrl->wake_put(mhi_cntrl, false); write_unlock_irq(&mhi_cntrl->pm_lock); MHI_LOG("Wait for M3 completion\n"); ret = wait_event_timeout(mhi_cntrl->state_event, mhi_cntrl->dev_state == MHI_STATE_M3 || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), msecs_to_jiffies(mhi_cntrl->timeout_ms)); if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { MHI_ERR("Did not enter M3 state, cur_state:%s pm_state:%s\n", TO_MHI_STATE_STR(mhi_cntrl->dev_state), to_mhi_pm_state_str(mhi_cntrl->pm_state)); return -EIO; } /* notify any clients we enter lpm */ list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) { mutex_lock(&itr->mutex); if (itr->mhi_dev) mhi_notify(itr->mhi_dev, MHI_CB_LPM_ENTER); mutex_unlock(&itr->mutex); } return 0; error_m0_entry: read_lock_bh(&mhi_cntrl->pm_lock); mhi_cntrl->wake_put(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); return ret; } EXPORT_SYMBOL(mhi_pm_suspend); int mhi_pm_resume(struct mhi_controller *mhi_cntrl) { enum MHI_PM_STATE cur_state; int ret; struct mhi_chan *itr, *tmp; MHI_LOG("Entered with pm_state:%s dev_state:%s\n", to_mhi_pm_state_str(mhi_cntrl->pm_state), TO_MHI_STATE_STR(mhi_cntrl->dev_state)); if (mhi_cntrl->pm_state == MHI_PM_DISABLE) return 0; if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) return -EIO; MHI_ASSERT(mhi_cntrl->pm_state != MHI_PM_M3, "mhi_pm_state != M3"); /* notify any clients we enter lpm */ list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) { mutex_lock(&itr->mutex); if (itr->mhi_dev) mhi_notify(itr->mhi_dev, MHI_CB_LPM_EXIT); mutex_unlock(&itr->mutex); } write_lock_irq(&mhi_cntrl->pm_lock); cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_EXIT); if (cur_state != MHI_PM_M3_EXIT) { write_unlock_irq(&mhi_cntrl->pm_lock); MHI_ERR("Error setting to pm_state:%s from pm_state:%s\n", to_mhi_pm_state_str(MHI_PM_M3_EXIT), to_mhi_pm_state_str(mhi_cntrl->pm_state)); return -EIO; } /* set dev to M0 and wait for completion */ mhi_cntrl->wake_get(mhi_cntrl, true); mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0); write_unlock_irq(&mhi_cntrl->pm_lock); ret = wait_event_timeout(mhi_cntrl->state_event, mhi_cntrl->dev_state == MHI_STATE_M0 || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), msecs_to_jiffies(mhi_cntrl->timeout_ms)); read_lock_bh(&mhi_cntrl->pm_lock); mhi_cntrl->wake_put(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { MHI_ERR("Did not enter M0 state, cur_state:%s pm_state:%s\n", TO_MHI_STATE_STR(mhi_cntrl->dev_state), to_mhi_pm_state_str(mhi_cntrl->pm_state)); /* * It's possible device already in error state and we didn't * process it due to low power mode, force a check */ mhi_intvec_threaded_handlr(0, mhi_cntrl); return -EIO; } return 0; } int __mhi_device_get_sync(struct mhi_controller *mhi_cntrl) { int ret; read_lock_bh(&mhi_cntrl->pm_lock); mhi_cntrl->wake_get(mhi_cntrl, true); if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state)) { mhi_cntrl->runtime_get(mhi_cntrl); mhi_cntrl->runtime_put(mhi_cntrl); } read_unlock_bh(&mhi_cntrl->pm_lock); ret = wait_event_timeout(mhi_cntrl->state_event, mhi_cntrl->pm_state == MHI_PM_M0 || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), msecs_to_jiffies(mhi_cntrl->timeout_ms)); if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { MHI_ERR("Did not enter M0 state, cur_state:%s pm_state:%s\n", TO_MHI_STATE_STR(mhi_cntrl->dev_state), to_mhi_pm_state_str(mhi_cntrl->pm_state)); read_lock_bh(&mhi_cntrl->pm_lock); mhi_cntrl->wake_put(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); return -EIO; } return 0; } void mhi_device_get(struct mhi_device *mhi_dev) { struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; atomic_inc(&mhi_dev->dev_wake); read_lock_bh(&mhi_cntrl->pm_lock); mhi_cntrl->wake_get(mhi_cntrl, true); read_unlock_bh(&mhi_cntrl->pm_lock); } EXPORT_SYMBOL(mhi_device_get); int mhi_device_get_sync(struct mhi_device *mhi_dev) { struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; int ret; ret = __mhi_device_get_sync(mhi_cntrl); if (!ret) atomic_inc(&mhi_dev->dev_wake); return ret; } EXPORT_SYMBOL(mhi_device_get_sync); void mhi_device_put(struct mhi_device *mhi_dev) { struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; atomic_dec(&mhi_dev->dev_wake); read_lock_bh(&mhi_cntrl->pm_lock); mhi_cntrl->wake_put(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); } EXPORT_SYMBOL(mhi_device_put); int mhi_force_rddm_mode(struct mhi_controller *mhi_cntrl) { int ret; MHI_LOG("Enter with pm_state:%s ee:%s\n", to_mhi_pm_state_str(mhi_cntrl->pm_state), TO_MHI_EXEC_STR(mhi_cntrl->ee)); MHI_LOG("Triggering SYS_ERR to force rddm state\n"); mhi_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR); /* wait for rddm event */ MHI_LOG("Waiting for device to enter RDDM state\n"); ret = wait_event_timeout(mhi_cntrl->state_event, mhi_cntrl->ee == MHI_EE_RDDM, msecs_to_jiffies(mhi_cntrl->timeout_ms)); ret = ret ? 0 : -EIO; MHI_LOG("Exiting with pm_state:%s ee:%s ret:%d\n", to_mhi_pm_state_str(mhi_cntrl->pm_state), TO_MHI_EXEC_STR(mhi_cntrl->ee), ret); return ret; } EXPORT_SYMBOL(mhi_force_rddm_mode);