#ifndef _ASM_DMA_MAPPING_H #define _ASM_DMA_MAPPING_H #include #include #include #include #include #include #include #include #include #ifndef CONFIG_SGI_IP27 /* Kludge to fix 2.6.39 build for IP27 */ #include #endif extern struct dma_map_ops *mips_dma_map_ops; void __dma_sync(struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction); void *mips_dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, struct dma_attrs *attrs); void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, struct dma_attrs *attrs); static inline struct dma_map_ops *get_dma_ops(struct device *dev) { #ifdef CONFIG_SYS_HAS_DMA_OPS if (dev && dev->archdata.dma_ops) return dev->archdata.dma_ops; else return mips_dma_map_ops; #else return NULL; #endif } /* * The affected CPUs below in 'cpu_needs_post_dma_flush()' can * speculatively fill random cachelines with stale data at any time, * requiring an extra flush post-DMA. * * Warning on the terminology - Linux calls an uncached area coherent; * MIPS terminology calls memory areas with hardware maintained coherency * coherent. * * Note that the R14000 and R16000 should also be checked for in this * condition. However this function is only called on non-I/O-coherent * systems and only the R10000 and R12000 are used in such systems, the * SGI IP28 Indigo² rsp. SGI IP32 aka O2. */ static inline int cpu_needs_post_dma_flush(struct device *dev) { #if defined(CONFIG_AVM_KERNEL) return !plat_device_is_coherent(dev); #else return !plat_device_is_coherent(dev) && (boot_cpu_type() == CPU_R10000 || boot_cpu_type() == CPU_R12000 || boot_cpu_type() == CPU_BMIPS5000); #endif } static inline struct page *dma_addr_to_page(struct device *dev, dma_addr_t dma_addr) { return pfn_to_page( plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT); } static inline bool dma_capable(struct device *dev, dma_addr_t addr, size_t size) { if (!dev->dma_mask) return false; return addr + size <= *dev->dma_mask; } static inline void dma_mark_clean(void *addr, size_t size) {} static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { struct dma_map_ops *ops = get_dma_ops(dev); unsigned long offset = (unsigned long)ptr & ~PAGE_MASK; struct page *page = virt_to_page(ptr); dma_addr_t addr; kmemcheck_mark_initialized(ptr, size); BUG_ON(!valid_dma_direction(dir)); if (ops) { addr = ops->map_page(dev, page, offset, size, dir, attrs); } else { if (!plat_device_is_coherent(dev)) __dma_sync(page, offset, size, dir); addr = plat_map_dma_mem_page(dev, page) + offset; } debug_dma_map_page(dev, page, offset, size, dir, addr, true); return addr; } static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { struct dma_map_ops *ops = get_dma_ops(dev); BUG_ON(!valid_dma_direction(dir)); if (ops) { ops->unmap_page(dev, addr, size, dir, attrs); } else { if (cpu_needs_post_dma_flush(dev)) __dma_sync(dma_addr_to_page(dev, addr), addr & ~PAGE_MASK, size, dir); plat_post_dma_flush(dev); plat_unmap_dma_mem(dev, addr, size, dir); } debug_dma_unmap_page(dev, addr, size, dir, true); } /* * dma_maps_sg_attrs returns 0 on error and > 0 on success. * It should never return a value < 0. */ static inline int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, struct dma_attrs *attrs) { struct dma_map_ops *ops = get_dma_ops(dev); int i, ents; struct scatterlist *s; for_each_sg(sg, s, nents, i) kmemcheck_mark_initialized(sg_virt(s), s->length); BUG_ON(!valid_dma_direction(dir)); if (ops) { ents = ops->map_sg(dev, sg, nents, dir, attrs); } else { for_each_sg(sg, s, nents, i) { struct page *page = sg_page(s); if (!plat_device_is_coherent(dev)) __dma_sync(page, s->offset, s->length, dir); #ifdef CONFIG_NEED_SG_DMA_LENGTH s->dma_length = s->length; #endif s->dma_address = plat_map_dma_mem_page(dev, page) + s->offset; } ents = nents; } BUG_ON(ents < 0); debug_dma_map_sg(dev, sg, nents, ents, dir); return ents; } static inline void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, struct dma_attrs *attrs) { struct dma_map_ops *ops = get_dma_ops(dev); struct scatterlist *s; int i; BUG_ON(!valid_dma_direction(dir)); debug_dma_unmap_sg(dev, sg, nents, dir); if (ops) { ops->unmap_sg(dev, sg, nents, dir, attrs); return; } for_each_sg(sg, s, nents, i) { if (!plat_device_is_coherent(dev) && dir != DMA_TO_DEVICE) __dma_sync(sg_page(s), s->offset, s->length, dir); plat_unmap_dma_mem(dev, s->dma_address, s->length, dir); } } static inline dma_addr_t dma_map_page(struct device *dev, struct page *page, size_t offset, size_t size, enum dma_data_direction dir) { struct dma_map_ops *ops = get_dma_ops(dev); dma_addr_t addr; kmemcheck_mark_initialized(page_address(page) + offset, size); BUG_ON(!valid_dma_direction(dir)); if (ops) { addr = ops->map_page(dev, page, offset, size, dir, NULL); } else { if (!plat_device_is_coherent(dev)) __dma_sync(page, offset, size, dir); addr = plat_map_dma_mem_page(dev, page) + offset; } debug_dma_map_page(dev, page, offset, size, dir, addr, false); return addr; } static inline void dma_unmap_page(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { struct dma_map_ops *ops = get_dma_ops(dev); BUG_ON(!valid_dma_direction(dir)); if (ops) { ops->unmap_page(dev, addr, size, dir, NULL); } else { if (cpu_needs_post_dma_flush(dev)) __dma_sync(dma_addr_to_page(dev, addr), addr & ~PAGE_MASK, size, dir); plat_post_dma_flush(dev); plat_unmap_dma_mem(dev, addr, size, dir); } debug_dma_unmap_page(dev, addr, size, dir, false); } static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { struct dma_map_ops *ops = get_dma_ops(dev); BUG_ON(!valid_dma_direction(dir)); if (ops) { ops->sync_single_for_cpu(dev, addr, size, dir); } else { if (cpu_needs_post_dma_flush(dev)) __dma_sync(dma_addr_to_page(dev, addr), addr & ~PAGE_MASK, size, dir); plat_post_dma_flush(dev); } debug_dma_sync_single_for_cpu(dev, addr, size, dir); } static inline void dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { struct dma_map_ops *ops = get_dma_ops(dev); BUG_ON(!valid_dma_direction(dir)); if (ops) ops->sync_single_for_device(dev, addr, size, dir); else if (!plat_device_is_coherent(dev)) __dma_sync(dma_addr_to_page(dev, addr), addr & ~PAGE_MASK, size, dir); debug_dma_sync_single_for_device(dev, addr, size, dir); } static inline void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t addr, unsigned long offset, size_t size, enum dma_data_direction dir) { const struct dma_map_ops *ops = get_dma_ops(dev); BUG_ON(!valid_dma_direction(dir)); if (ops) { ops->sync_single_for_cpu(dev, addr + offset, size, dir); } else { if (cpu_needs_post_dma_flush(dev)) __dma_sync(dma_addr_to_page(dev, addr + offset), (addr + offset) & ~PAGE_MASK, size, dir); plat_post_dma_flush(dev); } debug_dma_sync_single_range_for_cpu(dev, addr, offset, size, dir); } static inline void dma_sync_single_range_for_device(struct device *dev, dma_addr_t addr, unsigned long offset, size_t size, enum dma_data_direction dir) { const struct dma_map_ops *ops = get_dma_ops(dev); BUG_ON(!valid_dma_direction(dir)); if (ops) ops->sync_single_for_device(dev, addr + offset, size, dir); else if (!plat_device_is_coherent(dev)) __dma_sync(dma_addr_to_page(dev, addr + offset), (addr + offset) & ~PAGE_MASK, size, dir); debug_dma_sync_single_range_for_device(dev, addr, offset, size, dir); } static inline void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction dir) { struct dma_map_ops *ops = get_dma_ops(dev); struct scatterlist *s; int i; BUG_ON(!valid_dma_direction(dir)); if (ops) { ops->sync_sg_for_cpu(dev, sg, nelems, dir); } else if (cpu_needs_post_dma_flush(dev)) { for_each_sg(sg, s, nelems, i) __dma_sync(sg_page(s), s->offset, s->length, dir); } plat_post_dma_flush(dev); debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir); } static inline void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction dir) { struct dma_map_ops *ops = get_dma_ops(dev); struct scatterlist *s; int i; BUG_ON(!valid_dma_direction(dir)); if (ops) { ops->sync_sg_for_device(dev, sg, nelems, dir); } else if (!plat_device_is_coherent(dev)) { for_each_sg(sg, s, nelems, i) __dma_sync(sg_page(s), s->offset, s->length, dir); } debug_dma_sync_sg_for_device(dev, sg, nelems, dir); } #define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, NULL) #define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, NULL) #define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, NULL) #define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, NULL) extern int dma_common_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size); /** * dma_mmap_attrs - map a coherent DMA allocation into user space * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices * @vma: vm_area_struct describing requested user mapping * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs * @handle: device-view address returned from dma_alloc_attrs * @size: size of memory originally requested in dma_alloc_attrs * @attrs: attributes of mapping properties requested in dma_alloc_attrs * * Map a coherent DMA buffer previously allocated by dma_alloc_attrs * into user space. The coherent DMA buffer must not be freed by the * driver until the user space mapping has been released. */ static inline int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, struct dma_attrs *attrs) { struct dma_map_ops *ops = get_dma_ops(dev); BUG_ON(!ops); if (ops && ops->mmap) return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs); return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size); } #define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, NULL) int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size); static inline int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size, struct dma_attrs *attrs) { struct dma_map_ops *ops = get_dma_ops(dev); BUG_ON(!ops); if (ops && ops->get_sgtable) return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs); return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr, size); } #define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, NULL) static inline int dma_supported(struct device *dev, u64 mask) { struct dma_map_ops *ops = get_dma_ops(dev); if (ops) return ops->dma_supported(dev, mask); return plat_dma_supported(dev, mask); } static inline int dma_mapping_error(struct device *dev, u64 mask) { struct dma_map_ops *ops = get_dma_ops(dev); debug_dma_mapping_error(dev, mask); if (ops) return ops->mapping_error(dev, mask); return 0; } static inline int dma_set_mask(struct device *dev, u64 mask) { struct dma_map_ops *ops = get_dma_ops(dev); if(!dev->dma_mask || !dma_supported(dev, mask)) return -EIO; if (ops && ops->set_dma_mask) return ops->set_dma_mask(dev, mask); *dev->dma_mask = mask; return 0; } extern void dma_cache_sync(struct device *dev, void *vaddr, size_t size, enum dma_data_direction direction); #define dma_alloc_coherent(d,s,h,f) dma_alloc_attrs(d,s,h,f,NULL) static inline void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, struct dma_attrs *attrs) { void *ret; struct dma_map_ops *ops = get_dma_ops(dev); if (ops) ret = ops->alloc(dev, size, dma_handle, gfp, attrs); else ret = mips_dma_alloc_coherent(dev, size, dma_handle, gfp, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, ret); return ret; } #define dma_free_coherent(d,s,c,h) dma_free_attrs(d,s,c,h,NULL) static inline void dma_free_attrs(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, struct dma_attrs *attrs) { struct dma_map_ops *ops = get_dma_ops(dev); if (ops) ops->free(dev, size, vaddr, dma_handle, attrs); else mips_dma_free_coherent(dev, size, vaddr, dma_handle, attrs); debug_dma_free_coherent(dev, size, vaddr, dma_handle); } static inline void *dma_alloc_noncoherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp) { DEFINE_DMA_ATTRS(attrs); dma_set_attr(DMA_ATTR_NON_CONSISTENT, &attrs); return dma_alloc_attrs(dev, size, dma_handle, gfp, &attrs); } static inline void dma_free_noncoherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle) { DEFINE_DMA_ATTRS(attrs); dma_set_attr(DMA_ATTR_NON_CONSISTENT, &attrs); dma_free_attrs(dev, size, cpu_addr, dma_handle, &attrs); } #endif /* _ASM_DMA_MAPPING_H */