/*- * Linux port done by David McCullough * Copyright (C) 2006-2010 David McCullough * Copyright (C) 2004-2005 Intel Corporation. * The license and original author are listed below. * * Redistribution and use in source and binary forms, with or without * Copyright (c) 2002-2006 Sam Leffler. All rights reserved. * * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #if 0 #include __FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.27 2007/03/21 03:42:51 sam Exp $"); #endif /* * Cryptographic Subsystem. * * This code is derived from the Openbsd Cryptographic Framework (OCF) * that has the copyright shown below. Very little of the original * code remains. */ /*- * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) * * This code was written by Angelos D. Keromytis in Athens, Greece, in * February 2000. Network Security Technologies Inc. (NSTI) kindly * supported the development of this code. * * Copyright (c) 2000, 2001 Angelos D. Keromytis * * Permission to use, copy, and modify this software with or without fee * is hereby granted, provided that this entire notice is included in * all source code copies of any software which is or includes a copy or * modification of this software. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR * PURPOSE. * __FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.16 2005/01/07 02:29:16 imp Exp $"); */ #include #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,38) && !defined(AUTOCONF_INCLUDED) #include #endif #include #include #include #include #include #include #include #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,4) #include #endif #include /* * keep track of whether or not we have been initialised, a big * issue if we are linked into the kernel and a driver gets started before * us */ static int crypto_initted = 0; /* * Crypto drivers register themselves by allocating a slot in the * crypto_drivers table with crypto_get_driverid() and then registering * each algorithm they support with crypto_register() and crypto_kregister(). */ /* * lock on driver table * we track its state as spin_is_locked does not do anything on non-SMP boxes */ static spinlock_t crypto_drivers_lock; static int crypto_drivers_locked; /* for non-SMP boxes */ #define CRYPTO_DRIVER_LOCK() \ ({ \ spin_lock_irqsave(&crypto_drivers_lock, d_flags); \ crypto_drivers_locked = 1; \ dprintk("%s,%d: DRIVER_LOCK()\n", __FILE__, __LINE__); \ }) #define CRYPTO_DRIVER_UNLOCK() \ ({ \ dprintk("%s,%d: DRIVER_UNLOCK()\n", __FILE__, __LINE__); \ crypto_drivers_locked = 0; \ spin_unlock_irqrestore(&crypto_drivers_lock, d_flags); \ }) #define CRYPTO_DRIVER_ASSERT() \ ({ \ if (!crypto_drivers_locked) { \ dprintk("%s,%d: DRIVER_ASSERT!\n", __FILE__, __LINE__); \ } \ }) /* * Crypto device/driver capabilities structure. * * Synchronization: * (d) - protected by CRYPTO_DRIVER_LOCK() * (q) - protected by CRYPTO_Q_LOCK() * Not tagged fields are read-only. */ struct cryptocap { device_t cc_dev; /* (d) device/driver */ u_int32_t cc_sessions; /* (d) # of sessions */ u_int32_t cc_koperations; /* (d) # os asym operations */ /* * Largest possible operator length (in bits) for each type of * encryption algorithm. XXX not used */ u_int16_t cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1]; u_int8_t cc_alg[CRYPTO_ALGORITHM_MAX + 1]; u_int8_t cc_kalg[CRK_ALGORITHM_MAX + 1]; int cc_flags; /* (d) flags */ #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */ int cc_qblocked; /* (q) symmetric q blocked */ int cc_kqblocked; /* (q) asymmetric q blocked */ int cc_unqblocked; /* (q) symmetric q blocked */ int cc_unkqblocked; /* (q) asymmetric q blocked */ }; static struct cryptocap *crypto_drivers = NULL; static int crypto_drivers_num = 0; /* * There are two queues for crypto requests; one for symmetric (e.g. * cipher) operations and one for asymmetric (e.g. MOD)operations. * A single mutex is used to lock access to both queues. We could * have one per-queue but having one simplifies handling of block/unblock * operations. */ static LIST_HEAD(crp_q); /* crypto request queue */ static LIST_HEAD(crp_kq); /* asym request queue */ static spinlock_t crypto_q_lock; int crypto_all_qblocked = 0; /* protect with Q_LOCK */ module_param(crypto_all_qblocked, int, 0444); MODULE_PARM_DESC(crypto_all_qblocked, "Are all crypto queues blocked"); int crypto_all_kqblocked = 0; /* protect with Q_LOCK */ module_param(crypto_all_kqblocked, int, 0444); MODULE_PARM_DESC(crypto_all_kqblocked, "Are all asym crypto queues blocked"); #define CRYPTO_Q_LOCK() \ ({ \ spin_lock_irqsave(&crypto_q_lock, q_flags); \ dprintk("%s,%d: Q_LOCK()\n", __FILE__, __LINE__); \ }) #define CRYPTO_Q_UNLOCK() \ ({ \ dprintk("%s,%d: Q_UNLOCK()\n", __FILE__, __LINE__); \ spin_unlock_irqrestore(&crypto_q_lock, q_flags); \ }) /* * There are two queues for processing completed crypto requests; one * for the symmetric and one for the asymmetric ops. We only need one * but have two to avoid type futzing (cryptop vs. cryptkop). A single * mutex is used to lock access to both queues. Note that this lock * must be separate from the lock on request queues to insure driver * callbacks don't generate lock order reversals. */ static LIST_HEAD(crp_ret_q); /* callback queues */ static LIST_HEAD(crp_ret_kq); static spinlock_t crypto_ret_q_lock; #define CRYPTO_RETQ_LOCK() \ ({ \ spin_lock_irqsave(&crypto_ret_q_lock, r_flags); \ dprintk("%s,%d: RETQ_LOCK\n", __FILE__, __LINE__); \ }) #define CRYPTO_RETQ_UNLOCK() \ ({ \ dprintk("%s,%d: RETQ_UNLOCK\n", __FILE__, __LINE__); \ spin_unlock_irqrestore(&crypto_ret_q_lock, r_flags); \ }) #define CRYPTO_RETQ_EMPTY() (list_empty(&crp_ret_q) && list_empty(&crp_ret_kq)) #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) static kmem_cache_t *cryptop_zone; static kmem_cache_t *cryptodesc_zone; #else static struct kmem_cache *cryptop_zone; static struct kmem_cache *cryptodesc_zone; #endif #define debug crypto_debug int crypto_debug = 0; module_param(crypto_debug, int, 0644); MODULE_PARM_DESC(crypto_debug, "Enable debug"); EXPORT_SYMBOL(crypto_debug); /* * Maximum number of outstanding crypto requests before we start * failing requests. We need this to prevent DOS when too many * requests are arriving for us to keep up. Otherwise we will * run the system out of memory. Since crypto is slow, we are * usually the bottleneck that needs to say, enough is enough. * * We cannot print errors when this condition occurs, we are already too * slow, printing anything will just kill us */ static int crypto_q_cnt = 0; module_param(crypto_q_cnt, int, 0444); MODULE_PARM_DESC(crypto_q_cnt, "Current number of outstanding crypto requests"); static int crypto_q_max = 1000; module_param(crypto_q_max, int, 0644); MODULE_PARM_DESC(crypto_q_max, "Maximum number of outstanding crypto requests"); #define bootverbose crypto_verbose static int crypto_verbose = 0; module_param(crypto_verbose, int, 0644); MODULE_PARM_DESC(crypto_verbose, "Enable verbose crypto startup"); int crypto_usercrypto = 1; /* userland may do crypto reqs */ module_param(crypto_usercrypto, int, 0644); MODULE_PARM_DESC(crypto_usercrypto, "Enable/disable user-mode access to crypto support"); int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */ module_param(crypto_userasymcrypto, int, 0644); MODULE_PARM_DESC(crypto_userasymcrypto, "Enable/disable user-mode access to asymmetric crypto support"); int crypto_devallowsoft = 0; /* only use hardware crypto */ module_param(crypto_devallowsoft, int, 0644); MODULE_PARM_DESC(crypto_devallowsoft, "Enable/disable use of software crypto support"); /* * This parameter controls the maximum number of crypto operations to * do consecutively in the crypto kernel thread before scheduling to allow * other processes to run. Without it, it is possible to get into a * situation where the crypto thread never allows any other processes to run. * Default to 1000 which should be less than one second. */ static int crypto_max_loopcount = 1000; module_param(crypto_max_loopcount, int, 0644); MODULE_PARM_DESC(crypto_max_loopcount, "Maximum number of crypto ops to do before yielding to other processes"); #ifndef CONFIG_NR_CPUS #define CONFIG_NR_CPUS 1 #endif static struct task_struct *cryptoproc[CONFIG_NR_CPUS]; static struct task_struct *cryptoretproc[CONFIG_NR_CPUS]; static DECLARE_WAIT_QUEUE_HEAD(cryptoproc_wait); static DECLARE_WAIT_QUEUE_HEAD(cryptoretproc_wait); static int crypto_proc(void *arg); static int crypto_ret_proc(void *arg); static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint); static int crypto_kinvoke(struct cryptkop *krp, int flags); static void crypto_exit(void); static int crypto_init(void); static struct cryptostats cryptostats; static struct cryptocap * crypto_checkdriver(u_int32_t hid) { if (crypto_drivers == NULL) return NULL; return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]); } /* * Compare a driver's list of supported algorithms against another * list; return non-zero if all algorithms are supported. */ static int driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri) { const struct cryptoini *cr; /* See if all the algorithms are supported. */ for (cr = cri; cr; cr = cr->cri_next) if (cap->cc_alg[cr->cri_alg] == 0) return 0; return 1; } /* * Select a driver for a new session that supports the specified * algorithms and, optionally, is constrained according to the flags. * The algorithm we use here is pretty stupid; just use the * first driver that supports all the algorithms we need. If there * are multiple drivers we choose the driver with the fewest active * sessions. We prefer hardware-backed drivers to software ones. * * XXX We need more smarts here (in real life too, but that's * XXX another story altogether). */ static struct cryptocap * crypto_select_driver(const struct cryptoini *cri, int flags) { struct cryptocap *cap, *best; int match, hid; CRYPTO_DRIVER_ASSERT(); /* * Look first for hardware crypto devices if permitted. */ if (flags & CRYPTOCAP_F_HARDWARE) match = CRYPTOCAP_F_HARDWARE; else match = CRYPTOCAP_F_SOFTWARE; best = NULL; again: for (hid = 0; hid < crypto_drivers_num; hid++) { cap = &crypto_drivers[hid]; /* * If it's not initialized, is in the process of * going away, or is not appropriate (hardware * or software based on match), then skip. */ if (cap->cc_dev == NULL || (cap->cc_flags & CRYPTOCAP_F_CLEANUP) || (cap->cc_flags & match) == 0) continue; /* verify all the algorithms are supported. */ if (driver_suitable(cap, cri)) { if (best == NULL || cap->cc_sessions < best->cc_sessions) best = cap; } } if (best != NULL) return best; if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) { /* sort of an Algol 68-style for loop */ match = CRYPTOCAP_F_SOFTWARE; goto again; } return best; } /* * Create a new session. The crid argument specifies a crypto * driver to use or constraints on a driver to select (hardware * only, software only, either). Whatever driver is selected * must be capable of the requested crypto algorithms. */ int crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid) { struct cryptocap *cap; u_int32_t hid, lid; int err; unsigned long d_flags; CRYPTO_DRIVER_LOCK(); if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { /* * Use specified driver; verify it is capable. */ cap = crypto_checkdriver(crid); if (cap != NULL && !driver_suitable(cap, cri)) cap = NULL; } else { /* * No requested driver; select based on crid flags. */ cap = crypto_select_driver(cri, crid); /* * if NULL then can't do everything in one session. * XXX Fix this. We need to inject a "virtual" session * XXX layer right about here. */ } if (cap != NULL) { /* Call the driver initialization routine. */ hid = cap - crypto_drivers; lid = hid; /* Pass the driver ID. */ cap->cc_sessions++; CRYPTO_DRIVER_UNLOCK(); err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri); CRYPTO_DRIVER_LOCK(); if (err == 0) { (*sid) = (cap->cc_flags & 0xff000000) | (hid & 0x00ffffff); (*sid) <<= 32; (*sid) |= (lid & 0xffffffff); } else cap->cc_sessions--; } else err = EINVAL; CRYPTO_DRIVER_UNLOCK(); return err; } static void crypto_remove(struct cryptocap *cap) { CRYPTO_DRIVER_ASSERT(); if (cap->cc_sessions == 0 && cap->cc_koperations == 0) bzero(cap, sizeof(*cap)); } /* * Delete an existing session (or a reserved session on an unregistered * driver). */ int crypto_freesession(u_int64_t sid) { struct cryptocap *cap; u_int32_t hid; int err = 0; unsigned long d_flags; dprintk("%s()\n", __FUNCTION__); CRYPTO_DRIVER_LOCK(); if (crypto_drivers == NULL) { err = EINVAL; goto done; } /* Determine two IDs. */ hid = CRYPTO_SESID2HID(sid); if (hid >= crypto_drivers_num) { dprintk("%s - INVALID DRIVER NUM %d\n", __FUNCTION__, hid); err = ENOENT; goto done; } cap = &crypto_drivers[hid]; if (cap->cc_dev) { CRYPTO_DRIVER_UNLOCK(); /* Call the driver cleanup routine, if available, unlocked. */ err = CRYPTODEV_FREESESSION(cap->cc_dev, sid); CRYPTO_DRIVER_LOCK(); } if (cap->cc_sessions) cap->cc_sessions--; if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) crypto_remove(cap); done: CRYPTO_DRIVER_UNLOCK(); return err; } /* * Return an unused driver id. Used by drivers prior to registering * support for the algorithms they handle. */ int32_t crypto_get_driverid(device_t dev, int flags) { struct cryptocap *newdrv; int i; unsigned long d_flags; if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { printf("%s: no flags specified when registering driver\n", device_get_nameunit(dev)); return -1; } CRYPTO_DRIVER_LOCK(); for (i = 0; i < crypto_drivers_num; i++) { if (crypto_drivers[i].cc_dev == NULL && (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) { break; } } /* Out of entries, allocate some more. */ if (i == crypto_drivers_num) { /* Be careful about wrap-around. */ if (2 * crypto_drivers_num <= crypto_drivers_num) { CRYPTO_DRIVER_UNLOCK(); printk("crypto: driver count wraparound!\n"); return -1; } newdrv = kmalloc(2 * crypto_drivers_num * sizeof(struct cryptocap), GFP_KERNEL); if (newdrv == NULL) { CRYPTO_DRIVER_UNLOCK(); printk("crypto: no space to expand driver table!\n"); return -1; } memcpy(newdrv, crypto_drivers, crypto_drivers_num * sizeof(struct cryptocap)); memset(&newdrv[crypto_drivers_num], 0, crypto_drivers_num * sizeof(struct cryptocap)); crypto_drivers_num *= 2; kfree(crypto_drivers); crypto_drivers = newdrv; } /* NB: state is zero'd on free */ crypto_drivers[i].cc_sessions = 1; /* Mark */ crypto_drivers[i].cc_dev = dev; crypto_drivers[i].cc_flags = flags; if (bootverbose) printf("crypto: assign %s driver id %u, flags %u\n", device_get_nameunit(dev), i, flags); CRYPTO_DRIVER_UNLOCK(); return i; } /* * Lookup a driver by name. We match against the full device * name and unit, and against just the name. The latter gives * us a simple widlcarding by device name. On success return the * driver/hardware identifier; otherwise return -1. */ int crypto_find_driver(const char *match) { int i, len = strlen(match); unsigned long d_flags; CRYPTO_DRIVER_LOCK(); for (i = 0; i < crypto_drivers_num; i++) { device_t dev = crypto_drivers[i].cc_dev; if (dev == NULL || (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP)) continue; if (strncmp(match, device_get_nameunit(dev), len) == 0 || strncmp(match, device_get_name(dev), len) == 0) break; } CRYPTO_DRIVER_UNLOCK(); return i < crypto_drivers_num ? i : -1; } /* * Return the device_t for the specified driver or NULL * if the driver identifier is invalid. */ device_t crypto_find_device_byhid(int hid) { struct cryptocap *cap = crypto_checkdriver(hid); return cap != NULL ? cap->cc_dev : NULL; } /* * Return the device/driver capabilities. */ int crypto_getcaps(int hid) { struct cryptocap *cap = crypto_checkdriver(hid); return cap != NULL ? cap->cc_flags : 0; } /* * Register support for a key-related algorithm. This routine * is called once for each algorithm supported a driver. */ int crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags) { struct cryptocap *cap; int err; unsigned long d_flags; dprintk("%s()\n", __FUNCTION__); CRYPTO_DRIVER_LOCK(); cap = crypto_checkdriver(driverid); if (cap != NULL && (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { /* * XXX Do some performance testing to determine placing. * XXX We probably need an auxiliary data structure that * XXX describes relative performances. */ cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; if (bootverbose) printf("crypto: %s registers key alg %u flags %u\n" , device_get_nameunit(cap->cc_dev) , kalg , flags ); err = 0; } else err = EINVAL; CRYPTO_DRIVER_UNLOCK(); return err; } /* * Register support for a non-key-related algorithm. This routine * is called once for each such algorithm supported by a driver. */ int crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen, u_int32_t flags) { struct cryptocap *cap; int err; unsigned long d_flags; dprintk("%s(id=0x%x, alg=%d, maxoplen=%d, flags=0x%x)\n", __FUNCTION__, driverid, alg, maxoplen, flags); CRYPTO_DRIVER_LOCK(); cap = crypto_checkdriver(driverid); /* NB: algorithms are in the range [1..max] */ if (cap != NULL && (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) { /* * XXX Do some performance testing to determine placing. * XXX We probably need an auxiliary data structure that * XXX describes relative performances. */ cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; cap->cc_max_op_len[alg] = maxoplen; if (bootverbose) printf("crypto: %s registers alg %u flags %u maxoplen %u\n" , device_get_nameunit(cap->cc_dev) , alg , flags , maxoplen ); cap->cc_sessions = 0; /* Unmark */ err = 0; } else err = EINVAL; CRYPTO_DRIVER_UNLOCK(); return err; } static void driver_finis(struct cryptocap *cap) { u_int32_t ses, kops; CRYPTO_DRIVER_ASSERT(); ses = cap->cc_sessions; kops = cap->cc_koperations; bzero(cap, sizeof(*cap)); if (ses != 0 || kops != 0) { /* * If there are pending sessions, * just mark as invalid. */ cap->cc_flags |= CRYPTOCAP_F_CLEANUP; cap->cc_sessions = ses; cap->cc_koperations = kops; } } /* * Unregister a crypto driver. If there are pending sessions using it, * leave enough information around so that subsequent calls using those * sessions will correctly detect the driver has been unregistered and * reroute requests. */ int crypto_unregister(u_int32_t driverid, int alg) { struct cryptocap *cap; int i, err; unsigned long d_flags; dprintk("%s()\n", __FUNCTION__); CRYPTO_DRIVER_LOCK(); cap = crypto_checkdriver(driverid); if (cap != NULL && (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) && cap->cc_alg[alg] != 0) { cap->cc_alg[alg] = 0; cap->cc_max_op_len[alg] = 0; /* Was this the last algorithm ? */ for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++) if (cap->cc_alg[i] != 0) break; if (i == CRYPTO_ALGORITHM_MAX + 1) driver_finis(cap); err = 0; } else err = EINVAL; CRYPTO_DRIVER_UNLOCK(); return err; } /* * Unregister all algorithms associated with a crypto driver. * If there are pending sessions using it, leave enough information * around so that subsequent calls using those sessions will * correctly detect the driver has been unregistered and reroute * requests. */ int crypto_unregister_all(u_int32_t driverid) { struct cryptocap *cap; int err; unsigned long d_flags; dprintk("%s()\n", __FUNCTION__); CRYPTO_DRIVER_LOCK(); cap = crypto_checkdriver(driverid); if (cap != NULL) { driver_finis(cap); err = 0; } else err = EINVAL; CRYPTO_DRIVER_UNLOCK(); return err; } /* * Clear blockage on a driver. The what parameter indicates whether * the driver is now ready for cryptop's and/or cryptokop's. */ int crypto_unblock(u_int32_t driverid, int what) { struct cryptocap *cap; int err; unsigned long q_flags; CRYPTO_Q_LOCK(); cap = crypto_checkdriver(driverid); if (cap != NULL) { if (what & CRYPTO_SYMQ) { cap->cc_qblocked = 0; cap->cc_unqblocked = 0; crypto_all_qblocked = 0; } if (what & CRYPTO_ASYMQ) { cap->cc_kqblocked = 0; cap->cc_unkqblocked = 0; crypto_all_kqblocked = 0; } wake_up_interruptible(&cryptoproc_wait); err = 0; } else err = EINVAL; CRYPTO_Q_UNLOCK(); //DAVIDM should this be a driver lock return err; } /* * Add a crypto request to a queue, to be processed by the kernel thread. */ int crypto_dispatch(struct cryptop *crp) { struct cryptocap *cap; int result = -1; unsigned long q_flags; dprintk("%s()\n", __FUNCTION__); cryptostats.cs_ops++; CRYPTO_Q_LOCK(); if (crypto_q_cnt >= crypto_q_max) { cryptostats.cs_drops++; CRYPTO_Q_UNLOCK(); return ENOMEM; } crypto_q_cnt++; /* make sure we are starting a fresh run on this crp. */ crp->crp_flags &= ~CRYPTO_F_DONE; crp->crp_etype = 0; /* * Caller marked the request to be processed immediately; dispatch * it directly to the driver unless the driver is currently blocked. */ if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) { int hid = CRYPTO_SESID2HID(crp->crp_sid); cap = crypto_checkdriver(hid); /* Driver cannot disappear when there is an active session. */ KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__)); if (!cap->cc_qblocked) { crypto_all_qblocked = 0; crypto_drivers[hid].cc_unqblocked = 1; CRYPTO_Q_UNLOCK(); result = crypto_invoke(cap, crp, 0); CRYPTO_Q_LOCK(); if (result == ERESTART) if (crypto_drivers[hid].cc_unqblocked) crypto_drivers[hid].cc_qblocked = 1; crypto_drivers[hid].cc_unqblocked = 0; } } if (result == ERESTART) { /* * The driver ran out of resources, mark the * driver ``blocked'' for cryptop's and put * the request back in the queue. It would * best to put the request back where we got * it but that's hard so for now we put it * at the front. This should be ok; putting * it at the end does not work. */ list_add(&crp->crp_next, &crp_q); cryptostats.cs_blocks++; result = 0; } else if (result == -1) { TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); result = 0; } wake_up_interruptible(&cryptoproc_wait); CRYPTO_Q_UNLOCK(); return result; } /* * Add an asymetric crypto request to a queue, * to be processed by the kernel thread. */ int crypto_kdispatch(struct cryptkop *krp) { int error; unsigned long q_flags; cryptostats.cs_kops++; error = crypto_kinvoke(krp, krp->krp_crid); if (error == ERESTART) { CRYPTO_Q_LOCK(); TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); wake_up_interruptible(&cryptoproc_wait); CRYPTO_Q_UNLOCK(); error = 0; } return error; } /* * Verify a driver is suitable for the specified operation. */ static __inline int kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp) { return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0; } /* * Select a driver for an asym operation. The driver must * support the necessary algorithm. The caller can constrain * which device is selected with the flags parameter. The * algorithm we use here is pretty stupid; just use the first * driver that supports the algorithms we need. If there are * multiple suitable drivers we choose the driver with the * fewest active operations. We prefer hardware-backed * drivers to software ones when either may be used. */ static struct cryptocap * crypto_select_kdriver(const struct cryptkop *krp, int flags) { struct cryptocap *cap, *best, *blocked; int match, hid; CRYPTO_DRIVER_ASSERT(); /* * Look first for hardware crypto devices if permitted. */ if (flags & CRYPTOCAP_F_HARDWARE) match = CRYPTOCAP_F_HARDWARE; else match = CRYPTOCAP_F_SOFTWARE; best = NULL; blocked = NULL; again: for (hid = 0; hid < crypto_drivers_num; hid++) { cap = &crypto_drivers[hid]; /* * If it's not initialized, is in the process of * going away, or is not appropriate (hardware * or software based on match), then skip. */ if (cap->cc_dev == NULL || (cap->cc_flags & CRYPTOCAP_F_CLEANUP) || (cap->cc_flags & match) == 0) continue; /* verify all the algorithms are supported. */ if (kdriver_suitable(cap, krp)) { if (best == NULL || cap->cc_koperations < best->cc_koperations) best = cap; } } if (best != NULL) return best; if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) { /* sort of an Algol 68-style for loop */ match = CRYPTOCAP_F_SOFTWARE; goto again; } return best; } /* * Dispatch an assymetric crypto request. */ static int crypto_kinvoke(struct cryptkop *krp, int crid) { struct cryptocap *cap = NULL; int error; unsigned long d_flags; KASSERT(krp != NULL, ("%s: krp == NULL", __func__)); KASSERT(krp->krp_callback != NULL, ("%s: krp->crp_callback == NULL", __func__)); CRYPTO_DRIVER_LOCK(); if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { cap = crypto_checkdriver(crid); if (cap != NULL) { /* * Driver present, it must support the necessary * algorithm and, if s/w drivers are excluded, * it must be registered as hardware-backed. */ if (!kdriver_suitable(cap, krp) || (!crypto_devallowsoft && (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0)) cap = NULL; } } else { /* * No requested driver; select based on crid flags. */ if (!crypto_devallowsoft) /* NB: disallow s/w drivers */ crid &= ~CRYPTOCAP_F_SOFTWARE; cap = crypto_select_kdriver(krp, crid); } if (cap != NULL && !cap->cc_kqblocked) { krp->krp_hid = cap - crypto_drivers; cap->cc_koperations++; CRYPTO_DRIVER_UNLOCK(); error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0); CRYPTO_DRIVER_LOCK(); if (error == ERESTART) { cap->cc_koperations--; CRYPTO_DRIVER_UNLOCK(); return (error); } /* return the actual device used */ krp->krp_crid = krp->krp_hid; } else { /* * NB: cap is !NULL if device is blocked; in * that case return ERESTART so the operation * is resubmitted if possible. */ error = (cap == NULL) ? ENODEV : ERESTART; } CRYPTO_DRIVER_UNLOCK(); if (error) { krp->krp_status = error; crypto_kdone(krp); } return 0; } /* * Dispatch a crypto request to the appropriate crypto devices. */ static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint) { KASSERT(crp != NULL, ("%s: crp == NULL", __func__)); KASSERT(crp->crp_callback != NULL, ("%s: crp->crp_callback == NULL", __func__)); KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__)); dprintk("%s()\n", __FUNCTION__); #ifdef CRYPTO_TIMING if (crypto_timing) crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp); #endif if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { struct cryptodesc *crd; u_int64_t nid; /* * Driver has unregistered; migrate the session and return * an error to the caller so they'll resubmit the op. * * XXX: What if there are more already queued requests for this * session? */ crypto_freesession(crp->crp_sid); for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next) crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI); /* XXX propagate flags from initial session? */ if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0) crp->crp_sid = nid; crp->crp_etype = EAGAIN; crypto_done(crp); return 0; } else { /* * Invoke the driver to process the request. */ return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint); } } /* * Release a set of crypto descriptors. */ void crypto_freereq(struct cryptop *crp) { struct cryptodesc *crd; if (crp == NULL) return; #ifdef DIAGNOSTIC { struct cryptop *crp2; unsigned long q_flags; CRYPTO_Q_LOCK(); TAILQ_FOREACH(crp2, &crp_q, crp_next) { KASSERT(crp2 != crp, ("Freeing cryptop from the crypto queue (%p).", crp)); } CRYPTO_Q_UNLOCK(); CRYPTO_RETQ_LOCK(); TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) { KASSERT(crp2 != crp, ("Freeing cryptop from the return queue (%p).", crp)); } CRYPTO_RETQ_UNLOCK(); } #endif while ((crd = crp->crp_desc) != NULL) { crp->crp_desc = crd->crd_next; kmem_cache_free(cryptodesc_zone, crd); } kmem_cache_free(cryptop_zone, crp); } /* * Acquire a set of crypto descriptors. */ struct cryptop * crypto_getreq(int num) { struct cryptodesc *crd; struct cryptop *crp; crp = kmem_cache_alloc(cryptop_zone, SLAB_ATOMIC); if (crp != NULL) { memset(crp, 0, sizeof(*crp)); INIT_LIST_HEAD(&crp->crp_next); init_waitqueue_head(&crp->crp_waitq); while (num--) { crd = kmem_cache_alloc(cryptodesc_zone, SLAB_ATOMIC); if (crd == NULL) { crypto_freereq(crp); return NULL; } memset(crd, 0, sizeof(*crd)); crd->crd_next = crp->crp_desc; crp->crp_desc = crd; } } return crp; } /* * Invoke the callback on behalf of the driver. */ void crypto_done(struct cryptop *crp) { unsigned long q_flags; dprintk("%s()\n", __FUNCTION__); if ((crp->crp_flags & CRYPTO_F_DONE) == 0) { crp->crp_flags |= CRYPTO_F_DONE; CRYPTO_Q_LOCK(); crypto_q_cnt--; CRYPTO_Q_UNLOCK(); } else printk("crypto: crypto_done op already done, flags 0x%x", crp->crp_flags); if (crp->crp_etype != 0) cryptostats.cs_errs++; /* * CBIMM means unconditionally do the callback immediately; * CBIFSYNC means do the callback immediately only if the * operation was done synchronously. Both are used to avoid * doing extraneous context switches; the latter is mostly * used with the software crypto driver. */ if ((crp->crp_flags & CRYPTO_F_CBIMM) || ((crp->crp_flags & CRYPTO_F_CBIFSYNC) && (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) { /* * Do the callback directly. This is ok when the * callback routine does very little (e.g. the * /dev/crypto callback method just does a wakeup). */ crp->crp_callback(crp); } else { unsigned long r_flags; /* * Normal case; queue the callback for the thread. */ CRYPTO_RETQ_LOCK(); wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */ TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next); CRYPTO_RETQ_UNLOCK(); } } /* * Invoke the callback on behalf of the driver. */ void crypto_kdone(struct cryptkop *krp) { struct cryptocap *cap; unsigned long d_flags; if ((krp->krp_flags & CRYPTO_KF_DONE) != 0) printk("crypto: crypto_kdone op already done, flags 0x%x", krp->krp_flags); krp->krp_flags |= CRYPTO_KF_DONE; if (krp->krp_status != 0) cryptostats.cs_kerrs++; CRYPTO_DRIVER_LOCK(); /* XXX: What if driver is loaded in the meantime? */ if (krp->krp_hid < crypto_drivers_num) { cap = &crypto_drivers[krp->krp_hid]; cap->cc_koperations--; KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0")); if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) crypto_remove(cap); } CRYPTO_DRIVER_UNLOCK(); /* * CBIMM means unconditionally do the callback immediately; * This is used to avoid doing extraneous context switches */ if ((krp->krp_flags & CRYPTO_KF_CBIMM)) { /* * Do the callback directly. This is ok when the * callback routine does very little (e.g. the * /dev/crypto callback method just does a wakeup). */ krp->krp_callback(krp); } else { unsigned long r_flags; /* * Normal case; queue the callback for the thread. */ CRYPTO_RETQ_LOCK(); wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */ TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next); CRYPTO_RETQ_UNLOCK(); } } int crypto_getfeat(int *featp) { int hid, kalg, feat = 0; unsigned long d_flags; CRYPTO_DRIVER_LOCK(); for (hid = 0; hid < crypto_drivers_num; hid++) { const struct cryptocap *cap = &crypto_drivers[hid]; if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) && !crypto_devallowsoft) { continue; } for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED) feat |= 1 << kalg; } CRYPTO_DRIVER_UNLOCK(); *featp = feat; return (0); } /* * Crypto thread, dispatches crypto requests. */ static int crypto_proc(void *arg) { struct cryptop *crp, *submit; struct cryptkop *krp, *krpp; struct cryptocap *cap; u_int32_t hid; int result, hint; unsigned long q_flags; int loopcount = 0; set_current_state(TASK_INTERRUPTIBLE); CRYPTO_Q_LOCK(); for (;;) { /* * we need to make sure we don't get into a busy loop with nothing * to do, the two crypto_all_*blocked vars help us find out when * we are all full and can do nothing on any driver or Q. If so we * wait for an unblock. */ crypto_all_qblocked = !list_empty(&crp_q); /* * Find the first element in the queue that can be * processed and look-ahead to see if multiple ops * are ready for the same driver. */ submit = NULL; hint = 0; list_for_each_entry(crp, &crp_q, crp_next) { hid = CRYPTO_SESID2HID(crp->crp_sid); cap = crypto_checkdriver(hid); /* * Driver cannot disappear when there is an active * session. */ KASSERT(cap != NULL, ("%s:%u Driver disappeared.", __func__, __LINE__)); if (cap == NULL || cap->cc_dev == NULL) { /* Op needs to be migrated, process it. */ if (submit == NULL) submit = crp; break; } if (!cap->cc_qblocked) { if (submit != NULL) { /* * We stop on finding another op, * regardless whether its for the same * driver or not. We could keep * searching the queue but it might be * better to just use a per-driver * queue instead. */ if (CRYPTO_SESID2HID(submit->crp_sid) == hid) hint = CRYPTO_HINT_MORE; break; } else { submit = crp; if ((submit->crp_flags & CRYPTO_F_BATCH) == 0) break; /* keep scanning for more are q'd */ } } } if (submit != NULL) { hid = CRYPTO_SESID2HID(submit->crp_sid); crypto_all_qblocked = 0; list_del(&submit->crp_next); crypto_drivers[hid].cc_unqblocked = 1; cap = crypto_checkdriver(hid); CRYPTO_Q_UNLOCK(); KASSERT(cap != NULL, ("%s:%u Driver disappeared.", __func__, __LINE__)); result = crypto_invoke(cap, submit, hint); CRYPTO_Q_LOCK(); if (result == ERESTART) { /* * The driver ran out of resources, mark the * driver ``blocked'' for cryptop's and put * the request back in the queue. It would * best to put the request back where we got * it but that's hard so for now we put it * at the front. This should be ok; putting * it at the end does not work. */ /* XXX validate sid again? */ list_add(&submit->crp_next, &crp_q); cryptostats.cs_blocks++; if (crypto_drivers[hid].cc_unqblocked) crypto_drivers[hid].cc_qblocked=0; crypto_drivers[hid].cc_unqblocked=0; } crypto_drivers[hid].cc_unqblocked = 0; } crypto_all_kqblocked = !list_empty(&crp_kq); /* As above, but for key ops */ krp = NULL; list_for_each_entry(krpp, &crp_kq, krp_next) { cap = crypto_checkdriver(krpp->krp_hid); if (cap == NULL || cap->cc_dev == NULL) { /* * Operation needs to be migrated, invalidate * the assigned device so it will reselect a * new one below. Propagate the original * crid selection flags if supplied. */ krp->krp_hid = krp->krp_crid & (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE); if (krp->krp_hid == 0) krp->krp_hid = CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE; break; } if (!cap->cc_kqblocked) { krp = krpp; break; } } if (krp != NULL) { crypto_all_kqblocked = 0; list_del(&krp->krp_next); crypto_drivers[krp->krp_hid].cc_kqblocked = 1; CRYPTO_Q_UNLOCK(); result = crypto_kinvoke(krp, krp->krp_hid); CRYPTO_Q_LOCK(); if (result == ERESTART) { /* * The driver ran out of resources, mark the * driver ``blocked'' for cryptkop's and put * the request back in the queue. It would * best to put the request back where we got * it but that's hard so for now we put it * at the front. This should be ok; putting * it at the end does not work. */ /* XXX validate sid again? */ list_add(&krp->krp_next, &crp_kq); cryptostats.cs_kblocks++; } else crypto_drivers[krp->krp_hid].cc_kqblocked = 0; } if (submit == NULL && krp == NULL) { /* * Nothing more to be processed. Sleep until we're * woken because there are more ops to process. * This happens either by submission or by a driver * becoming unblocked and notifying us through * crypto_unblock. Note that when we wakeup we * start processing each queue again from the * front. It's not clear that it's important to * preserve this ordering since ops may finish * out of order if dispatched to different devices * and some become blocked while others do not. */ dprintk("%s - sleeping (qe=%d qb=%d kqe=%d kqb=%d)\n", __FUNCTION__, list_empty(&crp_q), crypto_all_qblocked, list_empty(&crp_kq), crypto_all_kqblocked); loopcount = 0; CRYPTO_Q_UNLOCK(); wait_event_interruptible(cryptoproc_wait, !(list_empty(&crp_q) || crypto_all_qblocked) || !(list_empty(&crp_kq) || crypto_all_kqblocked) || kthread_should_stop()); if (signal_pending (current)) { #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) spin_lock_irq(¤t->sigmask_lock); #endif flush_signals(current); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) spin_unlock_irq(¤t->sigmask_lock); #endif } CRYPTO_Q_LOCK(); dprintk("%s - awake\n", __FUNCTION__); if (kthread_should_stop()) break; cryptostats.cs_intrs++; } else if (loopcount > crypto_max_loopcount) { /* * Give other processes a chance to run if we've * been using the CPU exclusively for a while. */ loopcount = 0; CRYPTO_Q_UNLOCK(); schedule(); CRYPTO_Q_LOCK(); } loopcount++; } CRYPTO_Q_UNLOCK(); return 0; } /* * Crypto returns thread, does callbacks for processed crypto requests. * Callbacks are done here, rather than in the crypto drivers, because * callbacks typically are expensive and would slow interrupt handling. */ static int crypto_ret_proc(void *arg) { struct cryptop *crpt; struct cryptkop *krpt; unsigned long r_flags; set_current_state(TASK_INTERRUPTIBLE); CRYPTO_RETQ_LOCK(); for (;;) { /* Harvest return q's for completed ops */ crpt = NULL; if (!list_empty(&crp_ret_q)) crpt = list_entry(crp_ret_q.next, typeof(*crpt), crp_next); if (crpt != NULL) list_del(&crpt->crp_next); krpt = NULL; if (!list_empty(&crp_ret_kq)) krpt = list_entry(crp_ret_kq.next, typeof(*krpt), krp_next); if (krpt != NULL) list_del(&krpt->krp_next); if (crpt != NULL || krpt != NULL) { CRYPTO_RETQ_UNLOCK(); /* * Run callbacks unlocked. */ if (crpt != NULL) crpt->crp_callback(crpt); if (krpt != NULL) krpt->krp_callback(krpt); CRYPTO_RETQ_LOCK(); } else { /* * Nothing more to be processed. Sleep until we're * woken because there are more returns to process. */ dprintk("%s - sleeping\n", __FUNCTION__); CRYPTO_RETQ_UNLOCK(); wait_event_interruptible(cryptoretproc_wait, !list_empty(&crp_ret_q) || !list_empty(&crp_ret_kq) || kthread_should_stop()); if (signal_pending (current)) { #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) spin_lock_irq(¤t->sigmask_lock); #endif flush_signals(current); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) spin_unlock_irq(¤t->sigmask_lock); #endif } CRYPTO_RETQ_LOCK(); dprintk("%s - awake\n", __FUNCTION__); if (kthread_should_stop()) { dprintk("%s - EXITING!\n", __FUNCTION__); break; } cryptostats.cs_rets++; } } CRYPTO_RETQ_UNLOCK(); return 0; } #if 0 /* should put this into /proc or something */ static void db_show_drivers(void) { int hid; db_printf("%12s %4s %4s %8s %2s %2s\n" , "Device" , "Ses" , "Kops" , "Flags" , "QB" , "KB" ); for (hid = 0; hid < crypto_drivers_num; hid++) { const struct cryptocap *cap = &crypto_drivers[hid]; if (cap->cc_dev == NULL) continue; db_printf("%-12s %4u %4u %08x %2u %2u\n" , device_get_nameunit(cap->cc_dev) , cap->cc_sessions , cap->cc_koperations , cap->cc_flags , cap->cc_qblocked , cap->cc_kqblocked ); } } DB_SHOW_COMMAND(crypto, db_show_crypto) { struct cryptop *crp; db_show_drivers(); db_printf("\n"); db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n", "HID", "Caps", "Ilen", "Olen", "Etype", "Flags", "Desc", "Callback"); TAILQ_FOREACH(crp, &crp_q, crp_next) { db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n" , (int) CRYPTO_SESID2HID(crp->crp_sid) , (int) CRYPTO_SESID2CAPS(crp->crp_sid) , crp->crp_ilen, crp->crp_olen , crp->crp_etype , crp->crp_flags , crp->crp_desc , crp->crp_callback ); } if (!TAILQ_EMPTY(&crp_ret_q)) { db_printf("\n%4s %4s %4s %8s\n", "HID", "Etype", "Flags", "Callback"); TAILQ_FOREACH(crp, &crp_ret_q, crp_next) { db_printf("%4u %4u %04x %8p\n" , (int) CRYPTO_SESID2HID(crp->crp_sid) , crp->crp_etype , crp->crp_flags , crp->crp_callback ); } } } DB_SHOW_COMMAND(kcrypto, db_show_kcrypto) { struct cryptkop *krp; db_show_drivers(); db_printf("\n"); db_printf("%4s %5s %4s %4s %8s %4s %8s\n", "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback"); TAILQ_FOREACH(krp, &crp_kq, krp_next) { db_printf("%4u %5u %4u %4u %08x %4u %8p\n" , krp->krp_op , krp->krp_status , krp->krp_iparams, krp->krp_oparams , krp->krp_crid, krp->krp_hid , krp->krp_callback ); } if (!TAILQ_EMPTY(&crp_ret_q)) { db_printf("%4s %5s %8s %4s %8s\n", "Op", "Status", "CRID", "HID", "Callback"); TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) { db_printf("%4u %5u %08x %4u %8p\n" , krp->krp_op , krp->krp_status , krp->krp_crid, krp->krp_hid , krp->krp_callback ); } } } #endif static int crypto_init(void) { int error; unsigned long cpu; dprintk("%s(%p)\n", __FUNCTION__, (void *) crypto_init); if (crypto_initted) return 0; crypto_initted = 1; spin_lock_init(&crypto_drivers_lock); spin_lock_init(&crypto_q_lock); spin_lock_init(&crypto_ret_q_lock); cryptop_zone = kmem_cache_create("cryptop", sizeof(struct cryptop), 0, SLAB_HWCACHE_ALIGN, NULL #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23) , NULL #endif ); cryptodesc_zone = kmem_cache_create("cryptodesc", sizeof(struct cryptodesc), 0, SLAB_HWCACHE_ALIGN, NULL #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23) , NULL #endif ); if (cryptodesc_zone == NULL || cryptop_zone == NULL) { printk("crypto: crypto_init cannot setup crypto zones\n"); error = ENOMEM; goto bad; } crypto_drivers_num = CRYPTO_DRIVERS_INITIAL; crypto_drivers = kmalloc(crypto_drivers_num * sizeof(struct cryptocap), GFP_KERNEL); if (crypto_drivers == NULL) { printk("crypto: crypto_init cannot setup crypto drivers\n"); error = ENOMEM; goto bad; } memset(crypto_drivers, 0, crypto_drivers_num * sizeof(struct cryptocap)); ocf_for_each_cpu(cpu) { cryptoproc[cpu] = kthread_create(crypto_proc, (void *) cpu, "ocf_%d", (int) cpu); if (IS_ERR(cryptoproc[cpu])) { error = PTR_ERR(cryptoproc[cpu]); printk("crypto: crypto_init cannot start crypto thread; error %d", error); goto bad; } kthread_bind(cryptoproc[cpu], cpu); wake_up_process(cryptoproc[cpu]); cryptoretproc[cpu] = kthread_create(crypto_ret_proc, (void *) cpu, "ocf_ret_%d", (int) cpu); if (IS_ERR(cryptoretproc[cpu])) { error = PTR_ERR(cryptoretproc[cpu]); printk("crypto: crypto_init cannot start cryptoret thread; error %d", error); goto bad; } kthread_bind(cryptoretproc[cpu], cpu); wake_up_process(cryptoretproc[cpu]); } return 0; bad: crypto_exit(); return error; } static void crypto_exit(void) { int cpu; dprintk("%s()\n", __FUNCTION__); /* * Terminate any crypto threads. */ ocf_for_each_cpu(cpu) { kthread_stop(cryptoproc[cpu]); kthread_stop(cryptoretproc[cpu]); } /* * Reclaim dynamically allocated resources. */ if (crypto_drivers != NULL) kfree(crypto_drivers); if (cryptodesc_zone != NULL) kmem_cache_destroy(cryptodesc_zone); if (cryptop_zone != NULL) kmem_cache_destroy(cryptop_zone); } EXPORT_SYMBOL(crypto_newsession); EXPORT_SYMBOL(crypto_freesession); EXPORT_SYMBOL(crypto_get_driverid); EXPORT_SYMBOL(crypto_kregister); EXPORT_SYMBOL(crypto_register); EXPORT_SYMBOL(crypto_unregister); EXPORT_SYMBOL(crypto_unregister_all); EXPORT_SYMBOL(crypto_unblock); EXPORT_SYMBOL(crypto_dispatch); EXPORT_SYMBOL(crypto_kdispatch); EXPORT_SYMBOL(crypto_freereq); EXPORT_SYMBOL(crypto_getreq); EXPORT_SYMBOL(crypto_done); EXPORT_SYMBOL(crypto_kdone); EXPORT_SYMBOL(crypto_getfeat); EXPORT_SYMBOL(crypto_userasymcrypto); EXPORT_SYMBOL(crypto_getcaps); EXPORT_SYMBOL(crypto_find_driver); EXPORT_SYMBOL(crypto_find_device_byhid); module_init(crypto_init); module_exit(crypto_exit); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("David McCullough "); MODULE_DESCRIPTION("OCF (OpenBSD Cryptographic Framework)");