// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2018-2019, The Linux Foundation. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "mhi_internal.h" /* * 0 - MHI_MSG_LVL_VERBOSE * 1 - MHI_MSG_LVL_INFO * 2 - MHI_MSG_LVL_ERROR * 3 - MHI_MSG_LVL_CRITICAL * 4 - MHI_MSG_LVL_MASK_ALL */ static int log_mhi = MHI_MSG_LVL_ERROR; /* Let's go ERR as default*/ module_param(log_mhi, int, 0); MODULE_PARM_DESC(log_mhi, "0 to 4 log levels"); const char * const mhi_ee_str[MHI_EE_MAX] = { [MHI_EE_PBL] = "PBL", [MHI_EE_SBL] = "SBL", [MHI_EE_AMSS] = "AMSS", [MHI_EE_RDDM] = "RDDM", [MHI_EE_WFW] = "WFW", [MHI_EE_PTHRU] = "PASS THRU", [MHI_EE_EDL] = "EDL", [MHI_EE_DISABLE_TRANSITION] = "DISABLE", }; const char * const mhi_state_tran_str[MHI_ST_TRANSITION_MAX] = { [MHI_ST_TRANSITION_PBL] = "PBL", [MHI_ST_TRANSITION_READY] = "READY", [MHI_ST_TRANSITION_SBL] = "SBL", [MHI_ST_TRANSITION_MISSION_MODE] = "MISSION MODE", }; const char * const mhi_state_str[MHI_STATE_MAX] = { [MHI_STATE_RESET] = "RESET", [MHI_STATE_READY] = "READY", [MHI_STATE_M0] = "M0", [MHI_STATE_M1] = "M1", [MHI_STATE_M2] = "M2", [MHI_STATE_M3] = "M3", [MHI_STATE_BHI] = "BHI", [MHI_STATE_SYS_ERR] = "SYS_ERR", }; static const char * const mhi_pm_state_str[] = { [MHI_PM_BIT_DISABLE] = "DISABLE", [MHI_PM_BIT_POR] = "POR", [MHI_PM_BIT_M0] = "M0", [MHI_PM_BIT_M2] = "M2", [MHI_PM_BIT_M3_ENTER] = "M?->M3", [MHI_PM_BIT_M3] = "M3", [MHI_PM_BIT_M3_EXIT] = "M3->M0", [MHI_PM_BIT_FW_DL_ERR] = "FW DL Error", [MHI_PM_BIT_SYS_ERR_DETECT] = "SYS_ERR Detect", [MHI_PM_BIT_SYS_ERR_PROCESS] = "SYS_ERR Process", [MHI_PM_BIT_SHUTDOWN_PROCESS] = "SHUTDOWN Process", [MHI_PM_BIT_LD_ERR_FATAL_DETECT] = "LD or Error Fatal Detect", }; struct mhi_bus mhi_bus; const char *to_mhi_pm_state_str(enum MHI_PM_STATE state) { int index = __fls(state); if (index >= ARRAY_SIZE(mhi_pm_state_str)) return "Invalid State"; return mhi_pm_state_str[index]; } /* MHI protocol require transfer ring to be aligned to ring length */ static int mhi_alloc_aligned_ring(struct mhi_controller *mhi_cntrl, struct mhi_ring *ring, u64 len) { ring->alloc_size = len + (len - 1); ring->pre_aligned = mhi_alloc_coherent(mhi_cntrl, ring->alloc_size, &ring->dma_handle, GFP_KERNEL); if (!ring->pre_aligned) return -ENOMEM; ring->iommu_base = (ring->dma_handle + (len - 1)) & ~(len - 1); ring->base = ring->pre_aligned + (ring->iommu_base - ring->dma_handle); return 0; } void mhi_deinit_free_irq(struct mhi_controller *mhi_cntrl) { int i; struct mhi_event *mhi_event = mhi_cntrl->mhi_event; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { if (mhi_event->offload_ev) continue; free_irq(mhi_cntrl->irq[mhi_event->msi - mhi_cntrl->irq_start], mhi_event); } free_irq(mhi_cntrl->irq[0], mhi_cntrl); } int mhi_init_irq_setup(struct mhi_controller *mhi_cntrl) { int i; int ret; struct mhi_event *mhi_event = mhi_cntrl->mhi_event; int irq; #ifdef CONFIG_ARCH_IPQ5018 cpumask_t mhi_cpumask = {CPU_BITS_NONE}; #endif /* for BHI INTVEC msi */ ret = request_threaded_irq(mhi_cntrl->irq[0], mhi_intvec_handlr, mhi_intvec_threaded_handlr, IRQF_ONESHOT, "mhi", mhi_cntrl); if (ret) return ret; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { if (mhi_event->offload_ev) continue; irq = mhi_cntrl->irq[mhi_event->msi - mhi_cntrl->irq_start]; ret = request_irq(irq, mhi_msi_handlr, IRQF_SHARED, "mhi", mhi_event); if (ret) { MHI_ERR("Error requesting irq:%d for ev:%d\n", irq, i); goto error_request; } #ifdef CONFIG_ARCH_IPQ5018 if (mhi_event->chan == 101) { cpumask_clear(&mhi_cpumask); cpumask_set_cpu(1, &mhi_cpumask); irq_set_affinity(irq, &mhi_cpumask); pr_emerg("Set IRQ affinity for %d to core 1\n", irq); } #endif } return 0; error_request: for (--i, --mhi_event; i >= 0; i--, mhi_event--) { if (mhi_event->offload_ev) continue; irq = mhi_cntrl->irq[mhi_event->msi - mhi_cntrl->irq_start]; free_irq(irq, mhi_event); } free_irq(mhi_cntrl->irq[0], mhi_cntrl); return ret; } void mhi_deinit_dev_ctxt(struct mhi_controller *mhi_cntrl) { int i; struct mhi_ctxt *mhi_ctxt = mhi_cntrl->mhi_ctxt; struct mhi_cmd *mhi_cmd; struct mhi_event *mhi_event; struct mhi_ring *ring; mhi_cmd = mhi_cntrl->mhi_cmd; for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++) { ring = &mhi_cmd->ring; mhi_free_coherent(mhi_cntrl, ring->alloc_size, ring->pre_aligned, ring->dma_handle); ring->base = NULL; ring->iommu_base = 0; } mhi_free_coherent(mhi_cntrl, sizeof(*mhi_ctxt->cmd_ctxt) * NR_OF_CMD_RINGS, mhi_ctxt->cmd_ctxt, mhi_ctxt->cmd_ctxt_addr); mhi_event = mhi_cntrl->mhi_event; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { if (mhi_event->offload_ev) continue; ring = &mhi_event->ring; mhi_free_coherent(mhi_cntrl, ring->alloc_size, ring->pre_aligned, ring->dma_handle); ring->base = NULL; ring->iommu_base = 0; } mhi_free_coherent(mhi_cntrl, sizeof(*mhi_ctxt->er_ctxt) * mhi_cntrl->total_ev_rings, mhi_ctxt->er_ctxt, mhi_ctxt->er_ctxt_addr); mhi_free_coherent(mhi_cntrl, sizeof(*mhi_ctxt->chan_ctxt) * mhi_cntrl->max_chan, mhi_ctxt->chan_ctxt, mhi_ctxt->chan_ctxt_addr); kfree(mhi_ctxt); mhi_cntrl->mhi_ctxt = NULL; } static int mhi_init_debugfs_mhi_states_open(struct inode *inode, struct file *fp) { return single_open(fp, mhi_debugfs_mhi_states_show, inode->i_private); } static int mhi_init_debugfs_mhi_event_open(struct inode *inode, struct file *fp) { return single_open(fp, mhi_debugfs_mhi_event_show, inode->i_private); } static int mhi_init_debugfs_mhi_chan_open(struct inode *inode, struct file *fp) { return single_open(fp, mhi_debugfs_mhi_chan_show, inode->i_private); } static const struct file_operations debugfs_state_ops = { .open = mhi_init_debugfs_mhi_states_open, .release = single_release, .read = seq_read, }; static const struct file_operations debugfs_ev_ops = { .open = mhi_init_debugfs_mhi_event_open, .release = single_release, .read = seq_read, }; static const struct file_operations debugfs_chan_ops = { .open = mhi_init_debugfs_mhi_chan_open, .release = single_release, .read = seq_read, }; DEFINE_SIMPLE_ATTRIBUTE(debugfs_trigger_reset_fops, NULL, mhi_debugfs_trigger_reset, "%llu\n"); void mhi_init_debugfs(struct mhi_controller *mhi_cntrl) { struct dentry *dentry; char node[32]; if (!mhi_cntrl->parent) return; snprintf(node, sizeof(node), "%04x_%02u:%02u.%02u", mhi_cntrl->dev_id, mhi_cntrl->domain, mhi_cntrl->bus, mhi_cntrl->slot); dentry = debugfs_create_dir(node, mhi_cntrl->parent); if (IS_ERR_OR_NULL(dentry)) return; debugfs_create_file("states", 0444, dentry, mhi_cntrl, &debugfs_state_ops); debugfs_create_file("events", 0444, dentry, mhi_cntrl, &debugfs_ev_ops); debugfs_create_file("chan", 0444, dentry, mhi_cntrl, &debugfs_chan_ops); debugfs_create_file("reset", 0444, dentry, mhi_cntrl, &debugfs_trigger_reset_fops); mhi_cntrl->dentry = dentry; } void mhi_deinit_debugfs(struct mhi_controller *mhi_cntrl) { debugfs_remove_recursive(mhi_cntrl->dentry); mhi_cntrl->dentry = NULL; } int mhi_init_dev_ctxt(struct mhi_controller *mhi_cntrl) { struct mhi_ctxt *mhi_ctxt; struct mhi_chan_ctxt *chan_ctxt; struct mhi_event_ctxt *er_ctxt; struct mhi_cmd_ctxt *cmd_ctxt; struct mhi_chan *mhi_chan; struct mhi_event *mhi_event; struct mhi_cmd *mhi_cmd; int ret = -ENOMEM, i; atomic_set(&mhi_cntrl->dev_wake, 0); atomic_set(&mhi_cntrl->alloc_size, 0); mhi_ctxt = kzalloc(sizeof(*mhi_ctxt), GFP_KERNEL); if (!mhi_ctxt) return -ENOMEM; /* setup channel ctxt */ mhi_ctxt->chan_ctxt = mhi_alloc_coherent(mhi_cntrl, sizeof(*mhi_ctxt->chan_ctxt) * mhi_cntrl->max_chan, &mhi_ctxt->chan_ctxt_addr, GFP_KERNEL); if (!mhi_ctxt->chan_ctxt) goto error_alloc_chan_ctxt; mhi_chan = mhi_cntrl->mhi_chan; chan_ctxt = mhi_ctxt->chan_ctxt; for (i = 0; i < mhi_cntrl->max_chan; i++, chan_ctxt++, mhi_chan++) { /* If it's offload channel skip this step */ if (mhi_chan->offload_ch) continue; chan_ctxt->chstate = MHI_CH_STATE_DISABLED; chan_ctxt->brstmode = mhi_chan->db_cfg.brstmode; chan_ctxt->pollcfg = mhi_chan->db_cfg.pollcfg; chan_ctxt->chtype = cpu_to_le32(mhi_chan->type); chan_ctxt->erindex = cpu_to_le32(mhi_chan->er_index); mhi_chan->ch_state = MHI_CH_STATE_DISABLED; mhi_chan->tre_ring.db_addr = &chan_ctxt->wp; } /* setup event context */ mhi_ctxt->er_ctxt = mhi_alloc_coherent(mhi_cntrl, sizeof(*mhi_ctxt->er_ctxt) * mhi_cntrl->total_ev_rings, &mhi_ctxt->er_ctxt_addr, GFP_KERNEL); if (!mhi_ctxt->er_ctxt) goto error_alloc_er_ctxt; er_ctxt = mhi_ctxt->er_ctxt; mhi_event = mhi_cntrl->mhi_event; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++, mhi_event++) { struct mhi_ring *ring = &mhi_event->ring; /* it's a satellite ev, we do not touch it */ if (mhi_event->offload_ev) continue; er_ctxt->intmodc = 0; er_ctxt->intmodt = cpu_to_le16(mhi_event->intmod); er_ctxt->ertype = cpu_to_le32(MHI_ER_TYPE_VALID); er_ctxt->msivec = cpu_to_le32(mhi_event->msi); mhi_event->db_cfg.db_mode = true; ring->el_size = sizeof(struct mhi_tre); ring->len = ring->el_size * ring->elements; ret = mhi_alloc_aligned_ring(mhi_cntrl, ring, ring->len); if (ret) goto error_alloc_er; ring->rp = ring->wp = ring->base; er_ctxt->rbase = cpu_to_le64(ring->iommu_base); er_ctxt->rp = er_ctxt->wp = er_ctxt->rbase; er_ctxt->rlen = cpu_to_le64(ring->len); ring->ctxt_wp = &er_ctxt->wp; } /* setup cmd context */ mhi_ctxt->cmd_ctxt = mhi_alloc_coherent(mhi_cntrl, sizeof(*mhi_ctxt->cmd_ctxt) * NR_OF_CMD_RINGS, &mhi_ctxt->cmd_ctxt_addr, GFP_KERNEL); if (!mhi_ctxt->cmd_ctxt) goto error_alloc_er; mhi_cmd = mhi_cntrl->mhi_cmd; cmd_ctxt = mhi_ctxt->cmd_ctxt; for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) { struct mhi_ring *ring = &mhi_cmd->ring; ring->el_size = sizeof(struct mhi_tre); ring->elements = CMD_EL_PER_RING; ring->len = ring->el_size * ring->elements; ret = mhi_alloc_aligned_ring(mhi_cntrl, ring, ring->len); if (ret) goto error_alloc_cmd; ring->rp = ring->wp = ring->base; cmd_ctxt->rbase = cpu_to_le64(ring->iommu_base); cmd_ctxt->rp = cmd_ctxt->wp = cmd_ctxt->rbase; cmd_ctxt->rlen = cpu_to_le64(ring->len); ring->ctxt_wp = &cmd_ctxt->wp; } mhi_cntrl->mhi_ctxt = mhi_ctxt; return 0; error_alloc_cmd: for (--i, --mhi_cmd; i >= 0; i--, mhi_cmd--) { struct mhi_ring *ring = &mhi_cmd->ring; mhi_free_coherent(mhi_cntrl, ring->alloc_size, ring->pre_aligned, ring->dma_handle); } mhi_free_coherent(mhi_cntrl, sizeof(*mhi_ctxt->cmd_ctxt) * NR_OF_CMD_RINGS, mhi_ctxt->cmd_ctxt, mhi_ctxt->cmd_ctxt_addr); i = mhi_cntrl->total_ev_rings; mhi_event = mhi_cntrl->mhi_event + i; error_alloc_er: for (--i, --mhi_event; i >= 0; i--, mhi_event--) { struct mhi_ring *ring = &mhi_event->ring; if (mhi_event->offload_ev) continue; mhi_free_coherent(mhi_cntrl, ring->alloc_size, ring->pre_aligned, ring->dma_handle); } mhi_free_coherent(mhi_cntrl, sizeof(*mhi_ctxt->er_ctxt) * mhi_cntrl->total_ev_rings, mhi_ctxt->er_ctxt, mhi_ctxt->er_ctxt_addr); error_alloc_er_ctxt: mhi_free_coherent(mhi_cntrl, sizeof(*mhi_ctxt->chan_ctxt) * mhi_cntrl->max_chan, mhi_ctxt->chan_ctxt, mhi_ctxt->chan_ctxt_addr); error_alloc_chan_ctxt: kfree(mhi_ctxt); return ret; } static int mhi_get_tsync_er_cfg(struct mhi_controller *mhi_cntrl) { int i; struct mhi_event *mhi_event = mhi_cntrl->mhi_event; /* find event ring with timesync support */ for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) if (mhi_event->data_type == MHI_ER_TSYNC_ELEMENT_TYPE) return mhi_event->er_index; return -ENOENT; } int mhi_init_timesync(struct mhi_controller *mhi_cntrl) { struct mhi_timesync *mhi_tsync; u32 time_offset, db_offset; int ret; read_lock_bh(&mhi_cntrl->pm_lock); if (!MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) { ret = -EIO; goto exit_timesync; } ret = mhi_get_capability_offset(mhi_cntrl, TIMESYNC_CAP_ID, &time_offset); if (ret) { MHI_LOG("No timesync capability found\n"); goto exit_timesync; } read_unlock_bh(&mhi_cntrl->pm_lock); if (!mhi_cntrl->time_get || !mhi_cntrl->lpm_disable || !mhi_cntrl->lpm_enable) return -EINVAL; /* register method supported */ mhi_tsync = kzalloc(sizeof(*mhi_tsync), GFP_KERNEL); if (!mhi_tsync) return -ENOMEM; spin_lock_init(&mhi_tsync->lock); INIT_LIST_HEAD(&mhi_tsync->head); init_completion(&mhi_tsync->completion); /* save time_offset for obtaining time */ MHI_LOG("TIME OFFS:0x%x\n", time_offset); mhi_tsync->time_reg = mhi_cntrl->regs + time_offset + TIMESYNC_TIME_LOW_OFFSET; mhi_cntrl->mhi_tsync = mhi_tsync; ret = mhi_create_timesync_sysfs(mhi_cntrl); if (unlikely(ret)) { /* kernel method still work */ MHI_ERR("Failed to create timesync sysfs nodes\n"); } read_lock_bh(&mhi_cntrl->pm_lock); if (!MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) { ret = -EIO; goto exit_timesync; } /* get DB offset if supported, else return */ ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->regs, time_offset + TIMESYNC_DB_OFFSET, &db_offset); if (ret || !db_offset) { ret = 0; goto exit_timesync; } MHI_LOG("TIMESYNC_DB OFFS:0x%x\n", db_offset); mhi_tsync->db = mhi_cntrl->regs + db_offset; read_unlock_bh(&mhi_cntrl->pm_lock); /* get time-sync event ring configuration */ ret = mhi_get_tsync_er_cfg(mhi_cntrl); if (ret < 0) { MHI_LOG("Could not find timesync event ring\n"); return ret; } mhi_tsync->er_index = ret; ret = mhi_send_cmd(mhi_cntrl, NULL, MHI_CMD_TIMSYNC_CFG); if (ret) { MHI_ERR("Failed to send time sync cfg cmd\n"); return ret; } ret = wait_for_completion_timeout(&mhi_tsync->completion, msecs_to_jiffies(mhi_cntrl->timeout_ms)); if (!ret || mhi_tsync->ccs != MHI_EV_CC_SUCCESS) { MHI_ERR("Failed to get time cfg cmd completion\n"); return -EIO; } return 0; exit_timesync: read_unlock_bh(&mhi_cntrl->pm_lock); return ret; } int mhi_init_mmio(struct mhi_controller *mhi_cntrl) { u32 val; int i, ret; struct mhi_chan *mhi_chan; struct mhi_event *mhi_event; void __iomem *base = mhi_cntrl->regs; struct { u32 offset; u32 mask; u32 shift; u32 val; } reg_info[] = { { CCABAP_HIGHER, U32_MAX, 0, upper_32_bits(mhi_cntrl->mhi_ctxt->chan_ctxt_addr), }, { CCABAP_LOWER, U32_MAX, 0, lower_32_bits(mhi_cntrl->mhi_ctxt->chan_ctxt_addr), }, { ECABAP_HIGHER, U32_MAX, 0, upper_32_bits(mhi_cntrl->mhi_ctxt->er_ctxt_addr), }, { ECABAP_LOWER, U32_MAX, 0, lower_32_bits(mhi_cntrl->mhi_ctxt->er_ctxt_addr), }, { CRCBAP_HIGHER, U32_MAX, 0, upper_32_bits(mhi_cntrl->mhi_ctxt->cmd_ctxt_addr), }, { CRCBAP_LOWER, U32_MAX, 0, lower_32_bits(mhi_cntrl->mhi_ctxt->cmd_ctxt_addr), }, { MHICFG, MHICFG_NER_MASK, MHICFG_NER_SHIFT, mhi_cntrl->total_ev_rings, }, { MHICFG, MHICFG_NHWER_MASK, MHICFG_NHWER_SHIFT, mhi_cntrl->hw_ev_rings, }, { MHICTRLBASE_HIGHER, U32_MAX, 0, upper_32_bits(mhi_cntrl->iova_start), }, { MHICTRLBASE_LOWER, U32_MAX, 0, lower_32_bits(mhi_cntrl->iova_start), }, { MHIDATABASE_HIGHER, U32_MAX, 0, upper_32_bits(mhi_cntrl->iova_start), }, { MHIDATABASE_LOWER, U32_MAX, 0, lower_32_bits(mhi_cntrl->iova_start), }, { MHICTRLLIMIT_HIGHER, U32_MAX, 0, upper_32_bits(mhi_cntrl->iova_stop), }, { MHICTRLLIMIT_LOWER, U32_MAX, 0, lower_32_bits(mhi_cntrl->iova_stop), }, { MHIDATALIMIT_HIGHER, U32_MAX, 0, upper_32_bits(mhi_cntrl->iova_stop), }, { MHIDATALIMIT_LOWER, U32_MAX, 0, lower_32_bits(mhi_cntrl->iova_stop), }, { 0, 0, 0 } }; MHI_LOG("Initializing MMIO\n"); /* set up DB register for all the chan rings */ ret = mhi_read_reg_field(mhi_cntrl, base, CHDBOFF, CHDBOFF_CHDBOFF_MASK, CHDBOFF_CHDBOFF_SHIFT, &val); if (ret) return -EIO; MHI_LOG("CHDBOFF:0x%x\n", val); /* setup wake db */ mhi_cntrl->wake_db = base + val + (8 * MHI_DEV_WAKE_DB); mhi_write_reg(mhi_cntrl, mhi_cntrl->wake_db, 4, 0); mhi_write_reg(mhi_cntrl, mhi_cntrl->wake_db, 0, 0); mhi_cntrl->wake_set = false; /* setup channel db addresses */ mhi_chan = mhi_cntrl->mhi_chan; for (i = 0; i < mhi_cntrl->max_chan; i++, val += 8, mhi_chan++) mhi_chan->tre_ring.db_addr = base + val; /* setup event ring db addresses */ ret = mhi_read_reg_field(mhi_cntrl, base, ERDBOFF, ERDBOFF_ERDBOFF_MASK, ERDBOFF_ERDBOFF_SHIFT, &val); if (ret) return -EIO; MHI_LOG("ERDBOFF:0x%x\n", val); mhi_event = mhi_cntrl->mhi_event; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, val += 8, mhi_event++) { if (mhi_event->offload_ev) continue; mhi_event->ring.db_addr = base + val; } /* set up DB register for primary CMD rings */ mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING].ring.db_addr = base + CRDB_LOWER; MHI_LOG("Programming all MMIO values.\n"); for (i = 0; reg_info[i].offset; i++) mhi_write_reg_field(mhi_cntrl, base, reg_info[i].offset, reg_info[i].mask, reg_info[i].shift, reg_info[i].val); return 0; } void mhi_deinit_chan_ctxt(struct mhi_controller *mhi_cntrl, struct mhi_chan *mhi_chan) { struct mhi_ring *buf_ring; struct mhi_ring *tre_ring; struct mhi_chan_ctxt *chan_ctxt; buf_ring = &mhi_chan->buf_ring; tre_ring = &mhi_chan->tre_ring; chan_ctxt = &mhi_cntrl->mhi_ctxt->chan_ctxt[mhi_chan->chan]; mhi_free_coherent(mhi_cntrl, tre_ring->alloc_size, tre_ring->pre_aligned, tre_ring->dma_handle); kfree(buf_ring->base); buf_ring->base = tre_ring->base = NULL; chan_ctxt->rbase = 0; } int mhi_init_chan_ctxt(struct mhi_controller *mhi_cntrl, struct mhi_chan *mhi_chan) { struct mhi_ring *buf_ring; struct mhi_ring *tre_ring; struct mhi_chan_ctxt *chan_ctxt; int ret; u32 state_enabled = MHI_CH_STATE_ENABLED; buf_ring = &mhi_chan->buf_ring; tre_ring = &mhi_chan->tre_ring; tre_ring->el_size = sizeof(struct mhi_tre); tre_ring->len = tre_ring->el_size * tre_ring->elements; chan_ctxt = &mhi_cntrl->mhi_ctxt->chan_ctxt[mhi_chan->chan]; ret = mhi_alloc_aligned_ring(mhi_cntrl, tre_ring, tre_ring->len); if (ret) return -ENOMEM; buf_ring->el_size = sizeof(struct mhi_buf_info); buf_ring->len = buf_ring->el_size * buf_ring->elements; buf_ring->base = kzalloc(buf_ring->len, GFP_KERNEL); if (!buf_ring->base) { mhi_free_coherent(mhi_cntrl, tre_ring->alloc_size, tre_ring->pre_aligned, tre_ring->dma_handle); return -ENOMEM; } chan_ctxt->chstate = cpu_to_le32(state_enabled); chan_ctxt->rbase = cpu_to_le64(tre_ring->iommu_base); chan_ctxt->rp = chan_ctxt->wp = chan_ctxt->rbase; chan_ctxt->rlen = cpu_to_le64(tre_ring->len); tre_ring->ctxt_wp = &chan_ctxt->wp; tre_ring->rp = tre_ring->wp = tre_ring->base; buf_ring->rp = buf_ring->wp = buf_ring->base; mhi_chan->db_cfg.db_mode = true; /* update to all cores */ smp_wmb(); return 0; } int mhi_device_configure(struct mhi_device *mhi_dev, enum dma_data_direction dir, struct mhi_buf *cfg_tbl, int elements) { struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; struct mhi_chan *mhi_chan; struct mhi_event_ctxt *er_ctxt; struct mhi_chan_ctxt *ch_ctxt; int er_index, chan; switch (dir) { case DMA_TO_DEVICE: mhi_chan = mhi_dev->ul_chan; break; case DMA_BIDIRECTIONAL: case DMA_FROM_DEVICE: case DMA_NONE: mhi_chan = mhi_dev->dl_chan; break; default: return -EINVAL; } er_index = mhi_chan->er_index; chan = mhi_chan->chan; for (; elements > 0; elements--, cfg_tbl++) { /* update event context array */ if (!strcmp(cfg_tbl->name, "ECA")) { er_ctxt = &mhi_cntrl->mhi_ctxt->er_ctxt[er_index]; if (sizeof(*er_ctxt) != cfg_tbl->len) { MHI_ERR( "Invalid ECA size, expected:%zu actual%zu\n", sizeof(*er_ctxt), cfg_tbl->len); return -EINVAL; } memcpy((void *)er_ctxt, cfg_tbl->buf, sizeof(*er_ctxt)); continue; } /* update channel context array */ if (!strcmp(cfg_tbl->name, "CCA")) { ch_ctxt = &mhi_cntrl->mhi_ctxt->chan_ctxt[chan]; if (cfg_tbl->len != sizeof(*ch_ctxt)) { MHI_ERR( "Invalid CCA size, expected:%zu actual:%zu\n", sizeof(*ch_ctxt), cfg_tbl->len); return -EINVAL; } memcpy((void *)ch_ctxt, cfg_tbl->buf, sizeof(*ch_ctxt)); continue; } return -EINVAL; } return 0; } static int of_parse_ev_cfg(struct mhi_controller *mhi_cntrl, struct device_node *of_node) { int i, ret, num = 0; struct mhi_event *mhi_event; struct device_node *child; u32 temp = 0; of_node = of_find_node_by_name(of_node, "mhi_events"); if (!of_node) return -EINVAL; for_each_available_child_of_node(of_node, child) { if (!strcmp(child->name, "mhi_event")) num++; } if (!num) return -EINVAL; mhi_cntrl->total_ev_rings = num; mhi_cntrl->mhi_event = kcalloc(num, sizeof(*mhi_cntrl->mhi_event), GFP_KERNEL); if (!mhi_cntrl->mhi_event) return -ENOMEM; /* populate ev ring */ mhi_event = mhi_cntrl->mhi_event; i = 0; for_each_available_child_of_node(of_node, child) { if (strcmp(child->name, "mhi_event")) continue; mhi_event->er_index = i++; ret = of_property_read_u32(child, "mhi,num-elements", &temp); mhi_event->ring.elements = temp; if (ret) goto error_ev_cfg; ret = of_property_read_u32(child, "mhi,intmod", &mhi_event->intmod); if (ret) goto error_ev_cfg; ret = of_property_read_u32(child, "mhi,msi", &mhi_event->msi); if (ret) goto error_ev_cfg; mhi_event->msi += mhi_cntrl->irq_start; ret = of_property_read_u32(child, "mhi,chan", &mhi_event->chan); if (!ret) { if (mhi_event->chan >= mhi_cntrl->max_chan) goto error_ev_cfg; /* this event ring has a dedicated channel */ mhi_event->mhi_chan = &mhi_cntrl->mhi_chan[mhi_event->chan]; } ret = of_property_read_u32(child, "mhi,priority", &mhi_event->priority); if (ret) goto error_ev_cfg; ret = of_property_read_u32(child, "mhi,brstmode", &mhi_event->db_cfg.brstmode); if (ret || MHI_INVALID_BRSTMODE(mhi_event->db_cfg.brstmode)) goto error_ev_cfg; mhi_event->db_cfg.process_db = (mhi_event->db_cfg.brstmode == MHI_DB_BRST_ENABLE) ? mhi_db_brstmode : mhi_db_brstmode_disable; ret = of_property_read_u32(child, "mhi,data-type", &mhi_event->data_type); if (ret) mhi_event->data_type = MHI_ER_DATA_ELEMENT_TYPE; if (mhi_event->data_type > MHI_ER_DATA_TYPE_MAX) goto error_ev_cfg; switch (mhi_event->data_type) { case MHI_ER_DATA_ELEMENT_TYPE: mhi_event->process_event = mhi_process_data_event_ring; break; case MHI_ER_CTRL_ELEMENT_TYPE: mhi_event->process_event = mhi_process_ctrl_ev_ring; break; case MHI_ER_TSYNC_ELEMENT_TYPE: mhi_event->process_event = mhi_process_tsync_event_ring; break; } mhi_event->hw_ring = of_property_read_bool(child, "mhi,hw-ev"); if (mhi_event->hw_ring) mhi_cntrl->hw_ev_rings++; else mhi_cntrl->sw_ev_rings++; mhi_event->cl_manage = of_property_read_bool(child, "mhi,client-manage"); mhi_event->offload_ev = of_property_read_bool(child, "mhi,offload"); mhi_event++; } /* we need msi for each event ring + additional one for BHI */ mhi_cntrl->msi_required = mhi_cntrl->total_ev_rings + 1; return 0; error_ev_cfg: kfree(mhi_cntrl->mhi_event); return -EINVAL; } static int of_parse_ch_cfg(struct mhi_controller *mhi_cntrl, struct device_node *of_node) { int ret; struct device_node *child; u32 chan; u32 temp = 0; ret = of_property_read_u32(of_node, "mhi,max-channels", &mhi_cntrl->max_chan); if (ret) return ret; of_node = of_find_node_by_name(of_node, "mhi_channels"); if (!of_node) return -EINVAL; mhi_cntrl->mhi_chan = kcalloc(mhi_cntrl->max_chan, sizeof(*mhi_cntrl->mhi_chan), GFP_KERNEL); if (!mhi_cntrl->mhi_chan) return -ENOMEM; INIT_LIST_HEAD(&mhi_cntrl->lpm_chans); /* populate channel configurations */ for_each_available_child_of_node(of_node, child) { struct mhi_chan *mhi_chan; if (strcmp(child->name, "mhi_chan")) continue; ret = of_property_read_u32(child, "reg", &chan); if (ret || chan >= mhi_cntrl->max_chan) goto error_chan_cfg; mhi_chan = &mhi_cntrl->mhi_chan[chan]; ret = of_property_read_string(child, "label", &mhi_chan->name); if (ret) goto error_chan_cfg; mhi_chan->chan = chan; ret = of_property_read_u32(child, "mhi,num-elements", &temp); mhi_chan->tre_ring.elements = temp; if (!ret && !mhi_chan->tre_ring.elements) goto error_chan_cfg; /* * For some channels, local ring len should be bigger than * transfer ring len due to internal logical channels in device. * So host can queue much more buffers than transfer ring len. * Example, RSC channels should have a larger local channel * than transfer ring length. */ temp = 0; ret = of_property_read_u32(child, "mhi,local-elements", &temp); mhi_chan->buf_ring.elements = temp; if (ret) mhi_chan->buf_ring.elements = mhi_chan->tre_ring.elements; ret = of_property_read_u32(child, "mhi,event-ring", &mhi_chan->er_index); if (ret) goto error_chan_cfg; ret = of_property_read_u32(child, "mhi,chan-dir", &mhi_chan->dir); if (ret) goto error_chan_cfg; /* * For most channels, chtype is identical to channel directions, * if not defined, assign ch direction to chtype */ ret = of_property_read_u32(child, "mhi,chan-type", &mhi_chan->type); if (ret) mhi_chan->type = (enum mhi_ch_type)mhi_chan->dir; ret = of_property_read_u32(child, "mhi,ee", &mhi_chan->ee_mask); if (ret) goto error_chan_cfg; of_property_read_u32(child, "mhi,pollcfg", &mhi_chan->db_cfg.pollcfg); ret = of_property_read_u32(child, "mhi,data-type", &mhi_chan->xfer_type); if (ret) goto error_chan_cfg; switch (mhi_chan->xfer_type) { case MHI_XFER_BUFFER: mhi_chan->gen_tre = mhi_gen_tre; mhi_chan->queue_xfer = mhi_queue_buf; break; case MHI_XFER_SKB: mhi_chan->queue_xfer = mhi_queue_skb; break; case MHI_XFER_SCLIST: mhi_chan->gen_tre = mhi_gen_tre; mhi_chan->queue_xfer = mhi_queue_sclist; break; case MHI_XFER_NOP: mhi_chan->queue_xfer = mhi_queue_nop; break; case MHI_XFER_DMA: case MHI_XFER_RSC_DMA: mhi_chan->queue_xfer = mhi_queue_dma; break; default: goto error_chan_cfg; } mhi_chan->lpm_notify = of_property_read_bool(child, "mhi,lpm-notify"); mhi_chan->offload_ch = of_property_read_bool(child, "mhi,offload-chan"); mhi_chan->db_cfg.reset_req = of_property_read_bool(child, "mhi,db-mode-switch"); mhi_chan->pre_alloc = of_property_read_bool(child, "mhi,auto-queue"); mhi_chan->auto_start = of_property_read_bool(child, "mhi,auto-start"); mhi_chan->wake_capable = of_property_read_bool(child, "mhi,wake-capable"); if (mhi_chan->pre_alloc && (mhi_chan->dir != DMA_FROM_DEVICE || mhi_chan->xfer_type != MHI_XFER_BUFFER)) goto error_chan_cfg; /* bi-dir and dirctionless channels must be a offload chan */ if ((mhi_chan->dir == DMA_BIDIRECTIONAL || mhi_chan->dir == DMA_NONE) && !mhi_chan->offload_ch) goto error_chan_cfg; /* if mhi host allocate the buffers then client cannot queue */ if (mhi_chan->pre_alloc) mhi_chan->queue_xfer = mhi_queue_nop; if (!mhi_chan->offload_ch) { ret = of_property_read_u32(child, "mhi,doorbell-mode", &mhi_chan->db_cfg.brstmode); if (ret || MHI_INVALID_BRSTMODE(mhi_chan->db_cfg.brstmode)) goto error_chan_cfg; mhi_chan->db_cfg.process_db = (mhi_chan->db_cfg.brstmode == MHI_DB_BRST_ENABLE) ? mhi_db_brstmode : mhi_db_brstmode_disable; } mhi_chan->configured = true; if (mhi_chan->lpm_notify) list_add_tail(&mhi_chan->node, &mhi_cntrl->lpm_chans); } return 0; error_chan_cfg: kfree(mhi_cntrl->mhi_chan); return -EINVAL; } static int of_parse_dt(struct mhi_controller *mhi_cntrl, struct device_node *of_node) { int ret; /* parse MHI channel configuration */ ret = of_parse_ch_cfg(mhi_cntrl, of_node); if (ret) return ret; /* parse MHI event configuration */ ret = of_parse_ev_cfg(mhi_cntrl, of_node); if (ret) goto error_ev_cfg; ret = of_property_read_u32(of_node, "mhi,timeout", &mhi_cntrl->timeout_ms); if (ret) mhi_cntrl->timeout_ms = MHI_TIMEOUT_MS; mhi_cntrl->bounce_buf = of_property_read_bool(of_node, "mhi,use-bb"); ret = of_property_read_u32(of_node, "mhi,buffer-len", (u32 *)&mhi_cntrl->buffer_len); if (ret) mhi_cntrl->buffer_len = MHI_MAX_MTU; return 0; error_ev_cfg: kfree(mhi_cntrl->mhi_chan); return ret; } static int __regsiter_mhi_controller(struct mhi_controller *mhi_cntrl, struct mhi_event *mhi_event, struct mhi_chan *mhi_chan, struct mhi_cmd *mhi_cmd) { int i, ret = 0; mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS, sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL); if (!mhi_cntrl->mhi_cmd) { ret = -ENOMEM; return ret; } INIT_LIST_HEAD(&mhi_cntrl->transition_list); mutex_init(&mhi_cntrl->pm_mutex); rwlock_init(&mhi_cntrl->pm_lock); spin_lock_init(&mhi_cntrl->transition_lock); spin_lock_init(&mhi_cntrl->wlock); INIT_WORK(&mhi_cntrl->st_worker, mhi_pm_st_worker); INIT_WORK(&mhi_cntrl->fw_worker, mhi_fw_load_worker); INIT_WORK(&mhi_cntrl->syserr_worker, mhi_pm_sys_err_worker); init_waitqueue_head(&mhi_cntrl->state_event); mhi_cmd = mhi_cntrl->mhi_cmd; for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++) spin_lock_init(&mhi_cmd->lock); mhi_event = mhi_cntrl->mhi_event; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { if (mhi_event->offload_ev) continue; mhi_event->mhi_cntrl = mhi_cntrl; spin_lock_init(&mhi_event->lock); if (mhi_event->data_type == MHI_ER_CTRL_ELEMENT_TYPE) tasklet_init(&mhi_event->task, mhi_ctrl_ev_task, (ulong)mhi_event); else tasklet_init(&mhi_event->task, mhi_ev_task, (ulong)mhi_event); } mhi_chan = mhi_cntrl->mhi_chan; for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) { mutex_init(&mhi_chan->mutex); init_completion(&mhi_chan->completion); rwlock_init(&mhi_chan->lock); } if (mhi_cntrl->bounce_buf) { mhi_cntrl->map_single = mhi_map_single_use_bb; mhi_cntrl->unmap_single = mhi_unmap_single_use_bb; } else { mhi_cntrl->map_single = mhi_map_single_no_bb; mhi_cntrl->unmap_single = mhi_unmap_single_no_bb; } return ret; } int of_register_mhi_controller(struct mhi_controller *mhi_cntrl) { int ret; struct mhi_event *mhi_event; struct mhi_chan *mhi_chan; struct mhi_cmd *mhi_cmd; struct mhi_device *mhi_dev; struct resource mhi_res; struct device_node *cma_node; phys_addr_t cma_addr; size_t cma_size; if (!mhi_cntrl->of_node) return -EINVAL; if (!mhi_cntrl->runtime_get || !mhi_cntrl->runtime_put) return -EINVAL; if (!mhi_cntrl->status_cb || !mhi_cntrl->link_status) return -EINVAL; ret = of_parse_dt(mhi_cntrl, mhi_cntrl->of_node); if (ret) return -EINVAL; ret = __regsiter_mhi_controller(mhi_cntrl, mhi_event, mhi_chan, mhi_cmd); if (ret) goto error_alloc_cmd; /* register controller with mhi_bus */ mhi_dev = mhi_alloc_device(mhi_cntrl); if (!mhi_dev) { ret = -ENOMEM; goto error_alloc_dev; } cma_node = of_parse_phandle(mhi_cntrl->dev->of_node, "memory-region", 0); if (cma_node && !of_address_to_resource(cma_node, 0, &mhi_res)) { cma_addr = mhi_res.start; cma_size = resource_size(&mhi_res); ret = dma_declare_coherent_memory(&mhi_dev->dev, cma_addr, cma_addr, cma_size, DMA_MEMORY_IO | DMA_MEMORY_MAP | DMA_MEMORY_EXCLUSIVE); if (!ret) { MHI_LOG("Failed to declare dma coherent memory, falling back to common memory pool"); } } else { MHI_ERR("mhi coherent pool is not reserved"); } mhi_dev->dev_type = MHI_CONTROLLER_TYPE; mhi_dev->mhi_cntrl = mhi_cntrl; dev_set_name(&mhi_dev->dev, "%04x_%02u.%02u.%02u", mhi_dev->dev_id, mhi_dev->domain, mhi_dev->bus, mhi_dev->slot); ret = device_add(&mhi_dev->dev); if (ret) goto error_add_dev; mhi_cntrl->mhi_dev = mhi_dev; mhi_cntrl->parent = debugfs_lookup(mhi_bus_type.name, NULL); mhi_cntrl->klog_lvl = log_mhi; /* adding it to this list only for debug purpose */ mutex_lock(&mhi_bus.lock); list_add_tail(&mhi_cntrl->node, &mhi_bus.controller_list); mutex_unlock(&mhi_bus.lock); return 0; error_add_dev: dma_release_declared_memory(&mhi_dev->dev); mhi_dealloc_device(mhi_cntrl, mhi_dev); error_alloc_dev: kfree(mhi_cntrl->mhi_cmd); error_alloc_cmd: kfree(mhi_cntrl->mhi_chan); kfree(mhi_cntrl->mhi_event); return ret; }; EXPORT_SYMBOL(of_register_mhi_controller); void mhi_unregister_mhi_controller(struct mhi_controller *mhi_cntrl) { struct mhi_device *mhi_dev = mhi_cntrl->mhi_dev; kfree(mhi_cntrl->mhi_cmd); kfree(mhi_cntrl->mhi_event); kfree(mhi_cntrl->mhi_chan); kfree(mhi_cntrl->mhi_tsync); dma_release_declared_memory(&mhi_dev->dev); device_del(&mhi_dev->dev); put_device(&mhi_dev->dev); mutex_lock(&mhi_bus.lock); list_del(&mhi_cntrl->node); mutex_unlock(&mhi_bus.lock); } EXPORT_SYMBOL(mhi_unregister_mhi_controller); static int parse_ev_cfg(struct mhi_controller *mhi_cntrl, struct mhi_controller_config *config) { struct mhi_event *mhi_event; struct mhi_event_config *event_cfg; struct device *dev = &mhi_cntrl->mhi_dev->dev; int i, num; num = config->num_events; mhi_cntrl->total_ev_rings = num; mhi_cntrl->mhi_event = kcalloc(num, sizeof(*mhi_cntrl->mhi_event), GFP_KERNEL); if (!mhi_cntrl->mhi_event) return -ENOMEM; /* Populate event ring */ mhi_event = mhi_cntrl->mhi_event; for (i = 0; i < num; i++) { event_cfg = &config->event_cfg[i]; mhi_event->er_index = i; mhi_event->ring.elements = event_cfg->num_elements; mhi_event->intmod = event_cfg->irq_moderation_ms; mhi_event->irq = event_cfg->irq; if (event_cfg->channel != U32_MAX) { /* This event ring has a dedicated channel */ mhi_event->chan = event_cfg->channel; if (mhi_event->chan >= mhi_cntrl->max_chan) { dev_err(dev, "Event Ring channel not available\n"); goto error_ev_cfg; } mhi_event->mhi_chan = &mhi_cntrl->mhi_chan[mhi_event->chan]; } /* Priority is fixed to 1 for now */ mhi_event->priority = 1; mhi_event->db_cfg.brstmode = event_cfg->mode; if (MHI_INVALID_BRSTMODE(mhi_event->db_cfg.brstmode)) goto error_ev_cfg; if (mhi_event->db_cfg.brstmode == MHI_DB_BRST_ENABLE) mhi_event->db_cfg.process_db = mhi_db_brstmode; else mhi_event->db_cfg.process_db = mhi_db_brstmode_disable; mhi_event->data_type = event_cfg->data_type; switch (mhi_event->data_type) { case MHI_ER_DATA_ELEMENT_TYPE: mhi_event->process_event = mhi_process_data_event_ring; break; case MHI_ER_CTRL_ELEMENT_TYPE: mhi_event->process_event = mhi_process_ctrl_ev_ring; break; default: dev_err(dev, "Event Ring type not supported\n"); goto error_ev_cfg; } mhi_event->hw_ring = event_cfg->hardware_event; if (mhi_event->hw_ring) mhi_cntrl->hw_ev_rings++; else mhi_cntrl->sw_ev_rings++; mhi_event->cl_manage = event_cfg->client_managed; mhi_event->offload_ev = event_cfg->offload_channel; mhi_event++; } /* We need IRQ for each event ring + additional one for BHI */ mhi_cntrl->nr_irqs_req = mhi_cntrl->total_ev_rings + 1; return 0; error_ev_cfg: kfree(mhi_cntrl->mhi_event); return -EINVAL; } static int parse_ch_cfg(struct mhi_controller *mhi_cntrl, struct mhi_controller_config *config) { struct mhi_channel_config *ch_cfg; struct device *dev = &mhi_cntrl->mhi_dev->dev; int i; u32 chan; mhi_cntrl->max_chan = config->max_channels; /* * The allocation of MHI channels can exceed 32KB in some scenarios, * so to avoid any memory possible allocation failures, vzalloc is * used here */ mhi_cntrl->mhi_chan = vzalloc(mhi_cntrl->max_chan * sizeof(*mhi_cntrl->mhi_chan)); if (!mhi_cntrl->mhi_chan) return -ENOMEM; INIT_LIST_HEAD(&mhi_cntrl->lpm_chans); /* Populate channel configurations */ for (i = 0; i < config->num_channels; i++) { struct mhi_chan *mhi_chan; ch_cfg = &config->ch_cfg[i]; chan = ch_cfg->num; if (chan >= mhi_cntrl->max_chan) { dev_err(dev, "Channel %d not available\n", chan); goto error_chan_cfg; } mhi_chan = &mhi_cntrl->mhi_chan[chan]; mhi_chan->name = ch_cfg->name; mhi_chan->chan = chan; mhi_chan->tre_ring.elements = ch_cfg->num_elements; if (!mhi_chan->tre_ring.elements) goto error_chan_cfg; /* * For some channels, local ring length should be bigger than * the transfer ring length due to internal logical channels * in device. So host can queue much more buffers than transfer * ring length. Example, RSC channels should have a larger local * channel length than transfer ring length. */ mhi_chan->buf_ring.elements = ch_cfg->local_elements; if (!mhi_chan->buf_ring.elements) mhi_chan->buf_ring.elements = mhi_chan->tre_ring.elements; mhi_chan->er_index = ch_cfg->event_ring; mhi_chan->dir = ch_cfg->dir; /* * For most channels, chtype is identical to channel directions. * So, if it is not defined then assign channel direction to * chtype */ mhi_chan->type = ch_cfg->type; if (!mhi_chan->type) mhi_chan->type = (enum mhi_ch_type)mhi_chan->dir; mhi_chan->ee_mask = ch_cfg->ee_mask; mhi_chan->db_cfg.pollcfg = ch_cfg->pollcfg; /* * We need to assign gen_tre and queue_xfer for the * mhi_chan structure. Right now, Upstream has direct * calls to them but in downstream we assign them * based on buffer_data_typpe for channel. * Since buffer_data_type is not available in upstream * structure, we use channel direction to assign it. */ if((enum mhi_ch_type)mhi_chan->dir == MHI_CH_TYPE_INBOUND) { mhi_chan->gen_tre = mhi_gen_tre; mhi_chan->queue_xfer = mhi_queue_buf; } else { mhi_chan->queue_xfer = mhi_queue_skb; } mhi_chan->lpm_notify = ch_cfg->lpm_notify; mhi_chan->offload_ch = ch_cfg->offload_channel; mhi_chan->db_cfg.reset_req = ch_cfg->doorbell_mode_switch; mhi_chan->pre_alloc = ch_cfg->auto_queue; mhi_chan->auto_start = ch_cfg->auto_start; /* * If MHI host allocates buffers, then the channel direction * should be DMA_FROM_DEVICE */ if (mhi_chan->pre_alloc && mhi_chan->dir != DMA_FROM_DEVICE) { dev_err(dev, "Invalid channel configuration\n"); goto error_chan_cfg; } /* * Bi-directional and direction less channel must be an * offload channel */ if ((mhi_chan->dir == DMA_BIDIRECTIONAL || mhi_chan->dir == DMA_NONE) && !mhi_chan->offload_ch) { dev_err(dev, "Invalid channel configuration\n"); goto error_chan_cfg; } /* if mhi host allocate the buffers then client cannot queue */ if (mhi_chan->pre_alloc) mhi_chan->queue_xfer = mhi_queue_nop; if (!mhi_chan->offload_ch) { mhi_chan->db_cfg.brstmode = ch_cfg->doorbell; if (MHI_INVALID_BRSTMODE(mhi_chan->db_cfg.brstmode)) { dev_err(dev, "Invalid Door bell mode\n"); goto error_chan_cfg; } } if (mhi_chan->db_cfg.brstmode == MHI_DB_BRST_ENABLE) mhi_chan->db_cfg.process_db = mhi_db_brstmode; else mhi_chan->db_cfg.process_db = mhi_db_brstmode_disable; mhi_chan->configured = true; if (mhi_chan->lpm_notify) list_add_tail(&mhi_chan->node, &mhi_cntrl->lpm_chans); } return 0; error_chan_cfg: vfree(mhi_cntrl->mhi_chan); return -EINVAL; } static int parse_config(struct mhi_controller *mhi_cntrl, struct mhi_controller_config *config) { int ret; /* Parse MHI channel configuration */ ret = parse_ch_cfg(mhi_cntrl, config); if (ret) return ret; /* Parse MHI event configuration */ ret = parse_ev_cfg(mhi_cntrl, config); if (ret) goto error_ev_cfg; mhi_cntrl->timeout_ms = config->timeout_ms; if (!mhi_cntrl->timeout_ms) mhi_cntrl->timeout_ms = MHI_TIMEOUT_MS; mhi_cntrl->bounce_buf = config->use_bounce_buf; mhi_cntrl->buffer_len = config->buf_len; if (!mhi_cntrl->buffer_len) mhi_cntrl->buffer_len = MHI_MAX_MTU; return 0; error_ev_cfg: vfree(mhi_cntrl->mhi_chan); return ret; } int mhi_register_controller(struct mhi_controller *mhi_cntrl, struct mhi_controller_config *config) { struct mhi_event *mhi_event; struct mhi_chan *mhi_chan; struct mhi_cmd *mhi_cmd; struct mhi_device *mhi_dev; u32 soc_info; int ret; if (!mhi_cntrl) return -EINVAL; if (!mhi_cntrl->runtime_get || !mhi_cntrl->runtime_put || !mhi_cntrl->status_cb || !mhi_cntrl->read_reg || !mhi_cntrl->write_reg) return -EINVAL; ret = parse_config(mhi_cntrl, config); if (ret) return -EINVAL; ret = __regsiter_mhi_controller(mhi_cntrl, mhi_event, mhi_chan, mhi_cmd); if (ret) goto error_alloc_cmd; /* Read the MHI device info */ ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->regs, SOC_HW_VERSION_OFFS, &soc_info); if (ret) goto error_alloc_dev; mhi_cntrl->family_number = (soc_info & SOC_HW_VERSION_FAM_NUM_BMSK) >> SOC_HW_VERSION_FAM_NUM_SHFT; mhi_cntrl->device_number = (soc_info & SOC_HW_VERSION_DEV_NUM_BMSK) >> SOC_HW_VERSION_DEV_NUM_SHFT; mhi_cntrl->major_version = (soc_info & SOC_HW_VERSION_MAJOR_VER_BMSK) >> SOC_HW_VERSION_MAJOR_VER_SHFT; mhi_cntrl->minor_version = (soc_info & SOC_HW_VERSION_MINOR_VER_BMSK) >> SOC_HW_VERSION_MINOR_VER_SHFT; /* Register controller with MHI bus */ mhi_dev = mhi_alloc_device(mhi_cntrl); if (!mhi_dev) { ret = -ENOMEM; goto error_alloc_dev; } mhi_dev->dev_type = MHI_CONTROLLER_TYPE; mhi_dev->mhi_cntrl = mhi_cntrl; dev_set_name(&mhi_dev->dev, "%s", dev_name(mhi_cntrl->cntrl_dev)); /* Init wakeup source */ device_init_wakeup(&mhi_dev->dev, true); ret = device_add(&mhi_dev->dev); if (ret) goto error_add_dev; mhi_cntrl->mhi_dev = mhi_dev; mhi_cntrl->klog_lvl = log_mhi; return 0; error_add_dev: put_device(&mhi_dev->dev); error_alloc_dev: kfree(mhi_cntrl->mhi_cmd); error_alloc_cmd: vfree(mhi_cntrl->mhi_chan); kfree(mhi_cntrl->mhi_event); return ret; } EXPORT_SYMBOL_GPL(mhi_register_controller); void mhi_unregister_controller(struct mhi_controller *mhi_cntrl) { struct mhi_device *mhi_dev = mhi_cntrl->mhi_dev; struct mhi_chan *mhi_chan = mhi_cntrl->mhi_chan; unsigned int i; kfree(mhi_cntrl->mhi_cmd); kfree(mhi_cntrl->mhi_event); /* Drop the references to MHI devices created for channels */ for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) { if (!mhi_chan->mhi_dev) continue; put_device(&mhi_chan->mhi_dev->dev); } vfree(mhi_cntrl->mhi_chan); device_del(&mhi_dev->dev); put_device(&mhi_dev->dev); } EXPORT_SYMBOL_GPL(mhi_unregister_controller); /* set ptr to control private data */ static inline void mhi_controller_set_devdata(struct mhi_controller *mhi_cntrl, void *priv) { mhi_cntrl->priv_data = priv; } /* allocate mhi controller to register */ struct mhi_controller *mhi_alloc_controller(size_t size) { struct mhi_controller *mhi_cntrl; mhi_cntrl = kzalloc(size + sizeof(*mhi_cntrl), GFP_KERNEL); if (mhi_cntrl && size) mhi_controller_set_devdata(mhi_cntrl, mhi_cntrl + 1); return mhi_cntrl; } EXPORT_SYMBOL(mhi_alloc_controller); int mhi_prepare_for_power_up(struct mhi_controller *mhi_cntrl) { int ret; u32 bhie_off; mutex_lock(&mhi_cntrl->pm_mutex); ret = mhi_init_dev_ctxt(mhi_cntrl); if (ret) { MHI_ERR("Error with init dev_ctxt\n"); goto error_dev_ctxt; } ret = mhi_init_irq_setup(mhi_cntrl); if (ret) { MHI_ERR("Error setting up irq\n"); goto error_setup_irq; } /* * allocate rddm table if specified, this table is for debug purpose * so we'll ignore erros */ if (mhi_cntrl->rddm_size) { mhi_alloc_bhie_table(mhi_cntrl, &mhi_cntrl->rddm_image, mhi_cntrl->rddm_size); /* * This controller supports rddm, we need to manually clear * BHIE RX registers since por values are undefined. */ ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->regs, BHIEOFF, &bhie_off); if (ret) { MHI_ERR("Error getting bhie offset\n"); goto bhie_error; } memset_io(mhi_cntrl->regs + bhie_off + BHIE_RXVECADDR_LOW_OFFS, 0, BHIE_RXVECSTATUS_OFFS - BHIE_RXVECADDR_LOW_OFFS + 4); } mhi_cntrl->pre_init = true; mutex_unlock(&mhi_cntrl->pm_mutex); return 0; bhie_error: if (mhi_cntrl->rddm_image) { mhi_free_bhie_table(mhi_cntrl, mhi_cntrl->rddm_image); mhi_cntrl->rddm_image = NULL; } mhi_deinit_free_irq(mhi_cntrl); error_setup_irq: mhi_deinit_dev_ctxt(mhi_cntrl); error_dev_ctxt: mutex_unlock(&mhi_cntrl->pm_mutex); return ret; } EXPORT_SYMBOL(mhi_prepare_for_power_up); void mhi_unprepare_after_power_down(struct mhi_controller *mhi_cntrl) { if (mhi_cntrl->fbc_image) { mhi_free_bhie_table(mhi_cntrl, mhi_cntrl->fbc_image); mhi_cntrl->fbc_image = NULL; } if (mhi_cntrl->rddm_image) { mhi_free_bhie_table(mhi_cntrl, mhi_cntrl->rddm_image); mhi_cntrl->rddm_image = NULL; } mhi_deinit_free_irq(mhi_cntrl); mhi_deinit_dev_ctxt(mhi_cntrl); mhi_cntrl->pre_init = false; } EXPORT_SYMBOL(mhi_unprepare_after_power_down); /* match dev to drv */ static int mhi_match(struct device *dev, struct device_driver *drv) { struct mhi_device *mhi_dev = to_mhi_device(dev); struct mhi_driver *mhi_drv = to_mhi_driver(drv); const struct mhi_device_id *id; /* if controller type there is no client driver associated with it */ if (mhi_dev->dev_type == MHI_CONTROLLER_TYPE) return 0; for (id = mhi_drv->id_table; id->chan[0]; id++) if (!strcmp(mhi_dev->chan_name, id->chan)) { mhi_dev->id = id; return 1; } return 0; }; static void mhi_release_device(struct device *dev) { struct mhi_device *mhi_dev = to_mhi_device(dev); if (mhi_dev->ul_chan) mhi_dev->ul_chan->mhi_dev = NULL; if (mhi_dev->dl_chan) mhi_dev->dl_chan->mhi_dev = NULL; kfree(mhi_dev); } struct bus_type mhi_bus_type = { .name = "mhi", .dev_name = "mhi", .match = mhi_match, }; static int mhi_driver_probe(struct device *dev) { struct mhi_device *mhi_dev = to_mhi_device(dev); struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; struct device_driver *drv = dev->driver; struct mhi_driver *mhi_drv = to_mhi_driver(drv); struct mhi_event *mhi_event; struct mhi_chan *ul_chan = mhi_dev->ul_chan; struct mhi_chan *dl_chan = mhi_dev->dl_chan; bool auto_start = false; int ret; /* bring device out of lpm */ ret = mhi_device_get_sync(mhi_dev); if (ret) return ret; ret = -EINVAL; if (ul_chan) { /* lpm notification require status_cb */ if (ul_chan->lpm_notify && !mhi_drv->status_cb) goto exit_probe; if (!ul_chan->offload_ch && !mhi_drv->ul_xfer_cb) goto exit_probe; ul_chan->xfer_cb = mhi_drv->ul_xfer_cb; mhi_dev->status_cb = mhi_drv->status_cb; auto_start = ul_chan->auto_start; } if (dl_chan) { if (dl_chan->lpm_notify && !mhi_drv->status_cb) goto exit_probe; if (!dl_chan->offload_ch && !mhi_drv->dl_xfer_cb) goto exit_probe; mhi_event = &mhi_cntrl->mhi_event[dl_chan->er_index]; /* * if this channal event ring manage by client, then * status_cb must be defined so we can send the async * cb whenever there are pending data */ if (mhi_event->cl_manage && !mhi_drv->status_cb) goto exit_probe; dl_chan->xfer_cb = mhi_drv->dl_xfer_cb; /* ul & dl uses same status cb */ mhi_dev->status_cb = mhi_drv->status_cb; auto_start = (auto_start || dl_chan->auto_start); } ret = mhi_drv->probe(mhi_dev, mhi_dev->id); if (!ret && auto_start) mhi_prepare_for_transfer(mhi_dev); exit_probe: mhi_device_put(mhi_dev); return ret; } static int mhi_driver_remove(struct device *dev) { struct mhi_device *mhi_dev = to_mhi_device(dev); struct mhi_driver *mhi_drv = to_mhi_driver(dev->driver); struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; struct mhi_chan *mhi_chan; enum MHI_CH_STATE ch_state[] = { MHI_CH_STATE_DISABLED, MHI_CH_STATE_DISABLED }; int dir; /* control device has no work to do */ if (mhi_dev->dev_type == MHI_CONTROLLER_TYPE) return 0; MHI_LOG("Removing device for chan:%s\n", mhi_dev->chan_name); printk("Removing device for chan:%s\n", mhi_dev->chan_name); /* reset both channels */ for (dir = 0; dir < 2; dir++) { mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan; if (!mhi_chan) continue; /* wake all threads waiting for completion */ write_lock_irq(&mhi_chan->lock); mhi_chan->ccs = MHI_EV_CC_INVALID; complete_all(&mhi_chan->completion); write_unlock_irq(&mhi_chan->lock); /* move channel state to disable, no more processing */ mutex_lock(&mhi_chan->mutex); write_lock_irq(&mhi_chan->lock); ch_state[dir] = mhi_chan->ch_state; mhi_chan->ch_state = MHI_CH_STATE_SUSPENDED; write_unlock_irq(&mhi_chan->lock); /* reset the channel */ if (!mhi_chan->offload_ch) mhi_reset_chan(mhi_cntrl, mhi_chan); mutex_unlock(&mhi_chan->mutex); } /* destroy the device */ mhi_drv->remove(mhi_dev); /* de_init channel if it was enabled */ for (dir = 0; dir < 2; dir++) { mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan; if (!mhi_chan) continue; mutex_lock(&mhi_chan->mutex); if (ch_state[dir] == MHI_CH_STATE_ENABLED && !mhi_chan->offload_ch) mhi_deinit_chan_ctxt(mhi_cntrl, mhi_chan); mhi_chan->ch_state = MHI_CH_STATE_DISABLED; mutex_unlock(&mhi_chan->mutex); } if (mhi_cntrl->tsync_dev == mhi_dev) mhi_cntrl->tsync_dev = NULL; /* relinquish any pending votes */ read_lock_bh(&mhi_cntrl->pm_lock); while (atomic_read(&mhi_dev->dev_wake)) mhi_device_put(mhi_dev); read_unlock_bh(&mhi_cntrl->pm_lock); return 0; } int mhi_driver_register(struct mhi_driver *mhi_drv) { struct device_driver *driver = &mhi_drv->driver; if (!mhi_drv->probe || !mhi_drv->remove) return -EINVAL; driver->bus = &mhi_bus_type; driver->probe = mhi_driver_probe; driver->remove = mhi_driver_remove; return driver_register(driver); } EXPORT_SYMBOL(mhi_driver_register); void mhi_driver_unregister(struct mhi_driver *mhi_drv) { driver_unregister(&mhi_drv->driver); } EXPORT_SYMBOL(mhi_driver_unregister); struct mhi_device *mhi_alloc_device(struct mhi_controller *mhi_cntrl) { struct mhi_device *mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL); struct device *dev; if (!mhi_dev) return NULL; dev = &mhi_dev->dev; device_initialize(dev); dev->bus = &mhi_bus_type; dev->release = mhi_release_device; dev->parent = mhi_cntrl->dev; dev->coherent_dma_mask = mhi_cntrl->dev->coherent_dma_mask; dev->archdata.dma_ops = mhi_cntrl->dev->archdata.dma_ops; mhi_dev->mhi_cntrl = mhi_cntrl; mhi_dev->dev_id = mhi_cntrl->dev_id; mhi_dev->domain = mhi_cntrl->domain; mhi_dev->bus = mhi_cntrl->bus; mhi_dev->slot = mhi_cntrl->slot; mhi_dev->mtu = MHI_MAX_MTU; atomic_set(&mhi_dev->dev_wake, 0); return mhi_dev; } static int __init mhi_init(void) { int ret; mutex_init(&mhi_bus.lock); INIT_LIST_HEAD(&mhi_bus.controller_list); /* parent directory */ debugfs_create_dir(mhi_bus_type.name, NULL); ret = bus_register(&mhi_bus_type); if (!ret) mhi_dtr_init(); return ret; } postcore_initcall(mhi_init);