// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2018-2021, The Linux Foundation. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mhi_internal.h" static void __mhi_unprepare_channel(struct mhi_controller *mhi_cntrl, struct mhi_chan *mhi_chan); int __must_check mhi_read_reg(struct mhi_controller *mhi_cntrl, void __iomem *base, u32 offset, u32 *out) { u32 tmp = readl_relaxed(base + offset); /* unexpected value, query the link status */ if (PCI_INVALID_READ(tmp) && mhi_cntrl->link_status(mhi_cntrl)) return -EIO; *out = tmp; return 0; } int __must_check mhi_read_reg_field(struct mhi_controller *mhi_cntrl, void __iomem *base, u32 offset, u32 mask, u32 shift, u32 *out) { u32 tmp; int ret; ret = mhi_read_reg(mhi_cntrl, base, offset, &tmp); if (ret) return ret; *out = (tmp & mask) >> shift; return 0; } int __must_check mhi_poll_reg_field(struct mhi_controller *mhi_cntrl, void __iomem *base, u32 offset, u32 mask, u32 shift, u32 val, u32 delayus) { int ret; u32 out, retry = (mhi_cntrl->timeout_ms * 1000) / delayus; while (retry--) { ret = mhi_read_reg_field(mhi_cntrl, base, offset, mask, shift, &out); if (ret) return ret; if (out == val) return 0; fsleep(delayus); } return -ETIMEDOUT; } int mhi_get_capability_offset(struct mhi_controller *mhi_cntrl, u32 capability, u32 *offset) { u32 cur_cap, next_offset; int ret; /* get the 1st supported capability offset */ ret = mhi_read_reg_field(mhi_cntrl, mhi_cntrl->regs, MISC_OFFSET, MISC_CAP_MASK, MISC_CAP_SHIFT, offset); if (ret) return ret; do { ret = mhi_read_reg_field(mhi_cntrl, mhi_cntrl->regs, *offset, CAP_CAPID_MASK, CAP_CAPID_SHIFT, &cur_cap); if (ret) return ret; if (cur_cap == capability) return 0; ret = mhi_read_reg_field(mhi_cntrl, mhi_cntrl->regs, *offset, CAP_NEXT_CAP_MASK, CAP_NEXT_CAP_SHIFT, &next_offset); if (ret) return ret; *offset += next_offset; } while (next_offset); return -ENXIO; } void mhi_write_reg(struct mhi_controller *mhi_cntrl, void __iomem *base, u32 offset, u32 val) { writel_relaxed(val, base + offset); } void mhi_write_reg_field(struct mhi_controller *mhi_cntrl, void __iomem *base, u32 offset, u32 mask, u32 shift, u32 val) { int ret; u32 tmp; ret = mhi_read_reg(mhi_cntrl, base, offset, &tmp); if (ret) return; tmp &= ~mask; tmp |= (val << shift); mhi_write_reg(mhi_cntrl, base, offset, tmp); } void mhi_write_db(struct mhi_controller *mhi_cntrl, void __iomem *db_addr, dma_addr_t wp) { mhi_write_reg(mhi_cntrl, db_addr, 4, upper_32_bits(wp)); mhi_write_reg(mhi_cntrl, db_addr, 0, lower_32_bits(wp)); } void mhi_db_brstmode(struct mhi_controller *mhi_cntrl, struct db_cfg *db_cfg, void __iomem *db_addr, dma_addr_t wp) { if (db_cfg->db_mode) { db_cfg->db_val = wp; mhi_write_db(mhi_cntrl, db_addr, wp); db_cfg->db_mode = false; } } void mhi_db_brstmode_disable(struct mhi_controller *mhi_cntrl, struct db_cfg *db_cfg, void __iomem *db_addr, dma_addr_t wp) { db_cfg->db_val = wp; mhi_write_db(mhi_cntrl, db_addr, wp); } void mhi_ring_er_db(struct mhi_event *mhi_event) { struct mhi_ring *ring = &mhi_event->ring; mhi_event->db_cfg.process_db(mhi_event->mhi_cntrl, &mhi_event->db_cfg, ring->db_addr, le64_to_cpu(*ring->ctxt_wp)); } void mhi_ring_cmd_db(struct mhi_controller *mhi_cntrl, struct mhi_cmd *mhi_cmd) { dma_addr_t db; struct mhi_ring *ring = &mhi_cmd->ring; db = ring->iommu_base + (ring->wp - ring->base); *ring->ctxt_wp = cpu_to_le64(db); mhi_write_db(mhi_cntrl, ring->db_addr, db); } void mhi_ring_chan_db(struct mhi_controller *mhi_cntrl, struct mhi_chan *mhi_chan) { struct mhi_ring *ring = &mhi_chan->tre_ring; dma_addr_t db; db = ring->iommu_base + (ring->wp - ring->base); *ring->ctxt_wp = cpu_to_le64(db); mhi_chan->db_cfg.process_db(mhi_cntrl, &mhi_chan->db_cfg, ring->db_addr, db); } enum mhi_ee mhi_get_exec_env(struct mhi_controller *mhi_cntrl) { u32 exec; int ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_EXECENV, &exec); return (ret) ? MHI_EE_MAX : exec; } EXPORT_SYMBOL(mhi_get_exec_env); enum mhi_dev_state mhi_get_mhi_state(struct mhi_controller *mhi_cntrl) { u32 state; int ret = mhi_read_reg_field(mhi_cntrl, mhi_cntrl->regs, MHISTATUS, MHISTATUS_MHISTATE_MASK, MHISTATUS_MHISTATE_SHIFT, &state); return ret ? MHI_STATE_MAX : state; } int mhi_queue_sclist(struct mhi_device *mhi_dev, struct mhi_chan *mhi_chan, void *buf, size_t len, enum MHI_FLAGS mflags) { return -EINVAL; } int mhi_queue_nop(struct mhi_device *mhi_dev, struct mhi_chan *mhi_chan, void *buf, size_t len, enum MHI_FLAGS mflags) { return -EINVAL; } static void mhi_add_ring_element(struct mhi_controller *mhi_cntrl, struct mhi_ring *ring) { ring->wp += ring->el_size; if (ring->wp >= (ring->base + ring->len)) ring->wp = ring->base; /* smp update */ smp_wmb(); } static void mhi_del_ring_element(struct mhi_controller *mhi_cntrl, struct mhi_ring *ring) { ring->rp += ring->el_size; if (ring->rp >= (ring->base + ring->len)) ring->rp = ring->base; /* smp update */ smp_wmb(); } static int get_nr_avail_ring_elements(struct mhi_controller *mhi_cntrl, struct mhi_ring *ring) { int nr_el; if (ring->wp < ring->rp) nr_el = ((ring->rp - ring->wp) / ring->el_size) - 1; else { nr_el = (ring->rp - ring->base) / ring->el_size; nr_el += ((ring->base + ring->len - ring->wp) / ring->el_size) - 1; } return nr_el; } static void *mhi_to_virtual(struct mhi_ring *ring, dma_addr_t addr) { return (addr - ring->iommu_base) + ring->base; } dma_addr_t mhi_to_physical(struct mhi_ring *ring, void *addr) { return (addr - ring->base) + ring->iommu_base; } static void mhi_recycle_ev_ring_element(struct mhi_controller *mhi_cntrl, struct mhi_ring *ring) { dma_addr_t ctxt_wp; /* update the WP */ ring->wp += ring->el_size; ctxt_wp = le64_to_cpu(*ring->ctxt_wp) + ring->el_size; if (ring->wp >= (ring->base + ring->len)) { ring->wp = ring->base; ctxt_wp = ring->iommu_base; } *ring->ctxt_wp = cpu_to_le64(ctxt_wp); /* update the RP */ ring->rp += ring->el_size; if (ring->rp >= (ring->base + ring->len)) ring->rp = ring->base; /* visible to other cores */ smp_wmb(); } static bool mhi_is_ring_full(struct mhi_controller *mhi_cntrl, struct mhi_ring *ring) { void *tmp = ring->wp + ring->el_size; if (tmp >= (ring->base + ring->len)) tmp = ring->base; return (tmp == ring->rp); } int mhi_map_single_no_bb(struct mhi_controller *mhi_cntrl, struct mhi_buf_info *buf_info) { buf_info->p_addr = dma_map_single(mhi_cntrl->dev, buf_info->v_addr, buf_info->len, buf_info->dir); if (dma_mapping_error(mhi_cntrl->dev, buf_info->p_addr)) return -ENOMEM; return 0; } int mhi_map_single_use_bb(struct mhi_controller *mhi_cntrl, struct mhi_buf_info *buf_info) { void *buf = mhi_alloc_coherent(mhi_cntrl, buf_info->len, &buf_info->p_addr, GFP_ATOMIC); if (!buf) return -ENOMEM; if (buf_info->dir == DMA_TO_DEVICE) memcpy(buf, buf_info->v_addr, buf_info->len); buf_info->bb_addr = buf; return 0; } void mhi_unmap_single_no_bb(struct mhi_controller *mhi_cntrl, struct mhi_buf_info *buf_info) { dma_unmap_single(mhi_cntrl->dev, buf_info->p_addr, buf_info->len, buf_info->dir); } void mhi_unmap_single_use_bb(struct mhi_controller *mhi_cntrl, struct mhi_buf_info *buf_info) { if (buf_info->dir == DMA_FROM_DEVICE) memcpy(buf_info->v_addr, buf_info->bb_addr, buf_info->len); mhi_free_coherent(mhi_cntrl, buf_info->len, buf_info->bb_addr, buf_info->p_addr); } int mhi_queue_skb(struct mhi_device *mhi_dev, struct mhi_chan *mhi_chan, void *buf, size_t len, enum MHI_FLAGS mflags) { struct sk_buff *skb = buf; struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; struct mhi_ring *tre_ring = &mhi_chan->tre_ring; struct mhi_ring *buf_ring = &mhi_chan->buf_ring; struct mhi_buf_info *buf_info; struct mhi_tre *mhi_tre; bool assert_wake = false; int ret; if (mhi_is_ring_full(mhi_cntrl, tre_ring)) return -ENOMEM; read_lock_bh(&mhi_cntrl->pm_lock); if (unlikely(MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))) { MHI_VERB("MHI is not in activate state, pm_state:%s\n", to_mhi_pm_state_str(mhi_cntrl->pm_state)); read_unlock_bh(&mhi_cntrl->pm_lock); return -EIO; } /* we're in M3 or transitioning to M3 */ if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state)) { mhi_cntrl->runtime_get(mhi_cntrl); mhi_cntrl->runtime_put(mhi_cntrl); } /* * For UL channels always assert WAKE until work is done, * For DL channels only assert if MHI is in a LPM */ if (mhi_chan->dir == DMA_TO_DEVICE || (mhi_chan->dir == DMA_FROM_DEVICE && mhi_cntrl->pm_state != MHI_PM_M0)) { assert_wake = true; mhi_cntrl->wake_get(mhi_cntrl, false); } /* generate the tre */ buf_info = buf_ring->wp; buf_info->v_addr = skb->data; buf_info->cb_buf = skb; buf_info->wp = tre_ring->wp; buf_info->dir = mhi_chan->dir; buf_info->len = len; ret = mhi_cntrl->map_single(mhi_cntrl, buf_info); if (ret) goto map_error; mhi_tre = tre_ring->wp; mhi_tre->ptr = cpu_to_le64(MHI_TRE_DATA_PTR(buf_info->p_addr)); mhi_tre->dword[0] = cpu_to_le32(MHI_TRE_DATA_DWORD0(buf_info->len)); mhi_tre->dword[1] = cpu_to_le32(MHI_TRE_DATA_DWORD1(1, 1, 0, 0)); MHI_VERB("chan:%d WP:0x%llx TRE:0x%llx 0x%08x 0x%08x\n", mhi_chan->chan, (u64)mhi_to_physical(tre_ring, mhi_tre), mhi_tre->ptr, mhi_tre->dword[0], mhi_tre->dword[1]); /* increment WP */ mhi_add_ring_element(mhi_cntrl, tre_ring); mhi_add_ring_element(mhi_cntrl, buf_ring); if (likely(MHI_DB_ACCESS_VALID(mhi_cntrl->pm_state))) { read_lock_bh(&mhi_chan->lock); mhi_ring_chan_db(mhi_cntrl, mhi_chan); read_unlock_bh(&mhi_chan->lock); } if (mhi_chan->dir == DMA_FROM_DEVICE && assert_wake) mhi_cntrl->wake_put(mhi_cntrl, true); read_unlock_bh(&mhi_cntrl->pm_lock); return 0; map_error: if (assert_wake) mhi_cntrl->wake_put(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); return ret; } int mhi_queue_dma(struct mhi_device *mhi_dev, struct mhi_chan *mhi_chan, void *buf, size_t len, enum MHI_FLAGS mflags) { struct mhi_buf *mhi_buf = buf; struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; struct mhi_ring *tre_ring = &mhi_chan->tre_ring; struct mhi_ring *buf_ring = &mhi_chan->buf_ring; struct mhi_buf_info *buf_info; struct mhi_tre *mhi_tre; bool assert_wake = false; if (mhi_is_ring_full(mhi_cntrl, tre_ring)) return -ENOMEM; read_lock_bh(&mhi_cntrl->pm_lock); if (unlikely(MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))) { MHI_VERB("MHI is not in activate state, pm_state:%s\n", to_mhi_pm_state_str(mhi_cntrl->pm_state)); read_unlock_bh(&mhi_cntrl->pm_lock); return -EIO; } /* we're in M3 or transitioning to M3 */ if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state)) { mhi_cntrl->runtime_get(mhi_cntrl); mhi_cntrl->runtime_put(mhi_cntrl); } /* * For UL channels always assert WAKE until work is done, * For DL channels only assert if MHI is in a LPM */ if (mhi_chan->dir == DMA_TO_DEVICE || (mhi_chan->dir == DMA_FROM_DEVICE && mhi_cntrl->pm_state != MHI_PM_M0)) { assert_wake = true; mhi_cntrl->wake_get(mhi_cntrl, false); } /* generate the tre */ buf_info = buf_ring->wp; MHI_ASSERT(buf_info->used, "TRE Not Freed\n"); buf_info->p_addr = cpu_to_le64(mhi_buf->dma_addr); buf_info->pre_mapped = true; buf_info->cb_buf = mhi_buf; buf_info->wp = tre_ring->wp; buf_info->dir = mhi_chan->dir; buf_info->len = len; mhi_tre = tre_ring->wp; if (mhi_chan->xfer_type == MHI_XFER_RSC_DMA) { buf_info->used = true; mhi_tre->ptr = cpu_to_le64(MHI_RSCTRE_DATA_PTR(buf_info->p_addr, buf_info->len)); mhi_tre->dword[0] = cpu_to_le32(MHI_RSCTRE_DATA_DWORD0(buf_ring->wp - buf_ring->base)); mhi_tre->dword[1] = cpu_to_le32(MHI_RSCTRE_DATA_DWORD1); } else { mhi_tre->ptr = cpu_to_le64(MHI_TRE_DATA_PTR(buf_info->p_addr)); mhi_tre->dword[0] = cpu_to_le32(MHI_TRE_DATA_DWORD0(buf_info->len)); mhi_tre->dword[1] = cpu_to_le32(MHI_TRE_DATA_DWORD1(1, 1, 0, 0)); } MHI_VERB("chan:%d WP:0x%llx TRE:0x%llx 0x%08x 0x%08x\n", mhi_chan->chan, (u64)mhi_to_physical(tre_ring, mhi_tre), mhi_tre->ptr, mhi_tre->dword[0], mhi_tre->dword[1]); /* increment WP */ mhi_add_ring_element(mhi_cntrl, tre_ring); mhi_add_ring_element(mhi_cntrl, buf_ring); if (likely(MHI_DB_ACCESS_VALID(mhi_cntrl->pm_state))) { read_lock_bh(&mhi_chan->lock); mhi_ring_chan_db(mhi_cntrl, mhi_chan); read_unlock_bh(&mhi_chan->lock); } if (mhi_chan->dir == DMA_FROM_DEVICE && assert_wake) mhi_cntrl->wake_put(mhi_cntrl, true); read_unlock_bh(&mhi_cntrl->pm_lock); return 0; } int mhi_gen_tre(struct mhi_controller *mhi_cntrl, struct mhi_chan *mhi_chan, void *buf, void *cb, size_t buf_len, enum MHI_FLAGS flags) { struct mhi_ring *buf_ring, *tre_ring; struct mhi_tre *mhi_tre; struct mhi_buf_info *buf_info; int eot, eob, chain, bei; int ret; buf_ring = &mhi_chan->buf_ring; tre_ring = &mhi_chan->tre_ring; buf_info = buf_ring->wp; buf_info->v_addr = buf; buf_info->cb_buf = cb; buf_info->wp = tre_ring->wp; buf_info->dir = mhi_chan->dir; buf_info->len = buf_len; ret = mhi_cntrl->map_single(mhi_cntrl, buf_info); if (ret) return ret; eob = !!(flags & MHI_EOB); eot = !!(flags & MHI_EOT); chain = !!(flags & MHI_CHAIN); bei = !!(mhi_chan->intmod); mhi_tre = tre_ring->wp; mhi_tre->ptr = cpu_to_le64(MHI_TRE_DATA_PTR(buf_info->p_addr)); mhi_tre->dword[0] = cpu_to_le32(MHI_TRE_DATA_DWORD0(buf_len)); mhi_tre->dword[1] = cpu_to_le32(MHI_TRE_DATA_DWORD1(bei, eot, eob, chain)); MHI_VERB("chan:%d WP:0x%llx TRE:0x%llx 0x%08x 0x%08x\n", mhi_chan->chan, (u64)mhi_to_physical(tre_ring, mhi_tre), mhi_tre->ptr, mhi_tre->dword[0], mhi_tre->dword[1]); /* increment WP */ mhi_add_ring_element(mhi_cntrl, tre_ring); mhi_add_ring_element(mhi_cntrl, buf_ring); return 0; } int mhi_queue_buf(struct mhi_device *mhi_dev, struct mhi_chan *mhi_chan, void *buf, size_t len, enum MHI_FLAGS mflags) { struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; struct mhi_ring *tre_ring; unsigned long flags; bool assert_wake = false; int ret; /* * this check here only as a guard, it's always * possible mhi can enter error while executing rest of function, * which is not fatal so we do not need to hold pm_lock */ if (unlikely(MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))) { MHI_VERB("MHI is not in active state, pm_state:%s\n", to_mhi_pm_state_str(mhi_cntrl->pm_state)); return -EIO; } tre_ring = &mhi_chan->tre_ring; if (mhi_is_ring_full(mhi_cntrl, tre_ring)) return -ENOMEM; ret = mhi_chan->gen_tre(mhi_cntrl, mhi_chan, buf, buf, len, mflags); if (unlikely(ret)) return ret; read_lock_irqsave(&mhi_cntrl->pm_lock, flags); /* we're in M3 or transitioning to M3 */ if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state)) { mhi_cntrl->runtime_get(mhi_cntrl); mhi_cntrl->runtime_put(mhi_cntrl); } /* * For UL channels always assert WAKE until work is done, * For DL channels only assert if MHI is in a LPM */ if (mhi_chan->dir == DMA_TO_DEVICE || (mhi_chan->dir == DMA_FROM_DEVICE && mhi_cntrl->pm_state != MHI_PM_M0)) { assert_wake = true; mhi_cntrl->wake_get(mhi_cntrl, false); } if (likely(MHI_DB_ACCESS_VALID(mhi_cntrl->pm_state))) { unsigned long flags; read_lock_irqsave(&mhi_chan->lock, flags); mhi_ring_chan_db(mhi_cntrl, mhi_chan); read_unlock_irqrestore(&mhi_chan->lock, flags); } if (mhi_chan->dir == DMA_FROM_DEVICE && assert_wake) mhi_cntrl->wake_put(mhi_cntrl, true); read_unlock_irqrestore(&mhi_cntrl->pm_lock, flags); return 0; } /* destroy specific device */ int mhi_destroy_device(struct device *dev, void *data) { struct mhi_device *mhi_dev; struct mhi_controller *mhi_cntrl; if (dev->bus != &mhi_bus_type) return 0; mhi_dev = to_mhi_device(dev); mhi_cntrl = mhi_dev->mhi_cntrl; /* only destroying virtual devices thats attached to bus */ if (mhi_dev->dev_type == MHI_CONTROLLER_TYPE) return 0; MHI_LOG("destroy device for chan:%s\n", mhi_dev->chan_name); /* notify the client and remove the device from mhi bus */ device_del(dev); put_device(dev); return 0; } void mhi_notify(struct mhi_device *mhi_dev, enum mhi_callback cb_reason) { struct mhi_driver *mhi_drv; if (!mhi_dev->dev.driver) return; mhi_drv = to_mhi_driver(mhi_dev->dev.driver); if (mhi_drv->status_cb) mhi_drv->status_cb(mhi_dev, cb_reason); } static void mhi_assign_of_node(struct mhi_controller *mhi_cntrl, struct mhi_device *mhi_dev) { struct device_node *controller, *node; const char *dt_name; int ret; controller = of_find_node_by_name(mhi_cntrl->of_node, "mhi_devices"); if (!controller) return; for_each_available_child_of_node(controller, node) { ret = of_property_read_string(node, "mhi,chan", &dt_name); if (ret) continue; if (!strcmp(mhi_dev->chan_name, dt_name)) { mhi_dev->dev.of_node = node; break; } } } static ssize_t time_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mhi_device *mhi_dev = to_mhi_device(dev); struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; u64 t_host, t_device; int ret; ret = mhi_get_remote_time_sync(mhi_dev, &t_host, &t_device); if (ret) { MHI_ERR("Failed to obtain time, ret:%d\n", ret); return ret; } return scnprintf(buf, PAGE_SIZE, "local: %llu remote: %llu (ticks)\n", t_host, t_device); } static DEVICE_ATTR_RO(time); static ssize_t time_us_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mhi_device *mhi_dev = to_mhi_device(dev); struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; u64 t_host, t_device; int ret; ret = mhi_get_remote_time_sync(mhi_dev, &t_host, &t_device); if (ret) { MHI_ERR("Failed to obtain time, ret:%d\n", ret); return ret; } return scnprintf(buf, PAGE_SIZE, "local: %llu remote: %llu (us)\n", TIME_TICKS_TO_US(t_host), TIME_TICKS_TO_US(t_device)); } static DEVICE_ATTR_RO(time_us); static struct attribute *mhi_tsync_attrs[] = { &dev_attr_time.attr, &dev_attr_time_us.attr, NULL, }; static const struct attribute_group mhi_tsync_group = { .attrs = mhi_tsync_attrs, }; void mhi_destroy_timesync(struct mhi_controller *mhi_cntrl) { if (mhi_cntrl->mhi_tsync) { sysfs_remove_group(&mhi_cntrl->mhi_dev->dev.kobj, &mhi_tsync_group); kfree(mhi_cntrl->mhi_tsync); mhi_cntrl->mhi_tsync = NULL; } } int mhi_create_timesync_sysfs(struct mhi_controller *mhi_cntrl) { return sysfs_create_group(&mhi_cntrl->mhi_dev->dev.kobj, &mhi_tsync_group); } static void mhi_create_time_sync_dev(struct mhi_controller *mhi_cntrl) { struct mhi_device *mhi_dev; int ret; if (!MHI_IN_MISSION_MODE(mhi_cntrl->ee)) return; mhi_dev = mhi_alloc_device(mhi_cntrl); if (!mhi_dev) return; mhi_dev->dev_type = MHI_TIMESYNC_TYPE; mhi_dev->chan_name = "TIME_SYNC"; if (!mhi_cntrl->dev_id) dev_set_name(&mhi_dev->dev, "%s_%s", dev_name(mhi_cntrl->cntrl_dev), mhi_dev->chan_name); else dev_set_name(&mhi_dev->dev, "%04x_%02u.%02u.%02u_%s", mhi_dev->dev_id, mhi_dev->domain, mhi_dev->bus, mhi_dev->slot, mhi_dev->chan_name); /* add if there is a matching DT node */ mhi_assign_of_node(mhi_cntrl, mhi_dev); ret = device_add(&mhi_dev->dev); if (ret) { MHI_ERR("Failed to register dev for chan:%s\n", mhi_dev->chan_name); mhi_dealloc_device(mhi_cntrl, mhi_dev); return; } mhi_cntrl->tsync_dev = mhi_dev; } /* bind mhi channels into mhi devices */ void mhi_create_devices(struct mhi_controller *mhi_cntrl) { int i; struct mhi_chan *mhi_chan; struct mhi_device *mhi_dev; int ret; /* * we need to create time sync device before creating other * devices, because client may try to capture time during * clint probe. */ mhi_create_time_sync_dev(mhi_cntrl); mhi_chan = mhi_cntrl->mhi_chan; for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) { if (!mhi_chan->configured || mhi_chan->mhi_dev || !(mhi_chan->ee_mask & BIT(mhi_cntrl->ee))) continue; mhi_dev = mhi_alloc_device(mhi_cntrl); if (!mhi_dev) return; mhi_dev->dev_type = MHI_XFER_TYPE; switch (mhi_chan->dir) { case DMA_TO_DEVICE: mhi_dev->ul_chan = mhi_chan; mhi_dev->ul_chan_id = mhi_chan->chan; mhi_dev->ul_xfer = mhi_chan->queue_xfer; mhi_dev->ul_event_id = mhi_chan->er_index; break; case DMA_NONE: case DMA_BIDIRECTIONAL: mhi_dev->ul_chan_id = mhi_chan->chan; mhi_dev->ul_event_id = mhi_chan->er_index; case DMA_FROM_DEVICE: /* we use dl_chan for offload channels */ mhi_dev->dl_chan = mhi_chan; mhi_dev->dl_chan_id = mhi_chan->chan; mhi_dev->dl_xfer = mhi_chan->queue_xfer; mhi_dev->dl_event_id = mhi_chan->er_index; } mhi_chan->mhi_dev = mhi_dev; /* check next channel if it matches */ if ((i + 1) < mhi_cntrl->max_chan && mhi_chan[1].configured) { if (!strcmp(mhi_chan[1].name, mhi_chan->name)) { i++; mhi_chan++; if (mhi_chan->dir == DMA_TO_DEVICE) { mhi_dev->ul_chan = mhi_chan; mhi_dev->ul_chan_id = mhi_chan->chan; mhi_dev->ul_xfer = mhi_chan->queue_xfer; mhi_dev->ul_event_id = mhi_chan->er_index; } else { mhi_dev->dl_chan = mhi_chan; mhi_dev->dl_chan_id = mhi_chan->chan; mhi_dev->dl_xfer = mhi_chan->queue_xfer; mhi_dev->dl_event_id = mhi_chan->er_index; } mhi_chan->mhi_dev = mhi_dev; } } mhi_dev->chan_name = mhi_chan->name; if (!mhi_cntrl->dev_id) dev_set_name(&mhi_dev->dev, "%s_%s", dev_name(mhi_cntrl->cntrl_dev), mhi_dev->chan_name); else dev_set_name(&mhi_dev->dev, "%04x_%02u.%02u.%02u_%s", mhi_dev->dev_id, mhi_dev->domain, mhi_dev->bus, mhi_dev->slot, mhi_dev->chan_name); /* add if there is a matching DT node */ mhi_assign_of_node(mhi_cntrl, mhi_dev); /* init wake source */ if (mhi_dev->dl_chan && mhi_dev->dl_chan->wake_capable) device_init_wakeup(&mhi_dev->dev, true); ret = device_add(&mhi_dev->dev); if (ret) { MHI_ERR("Failed to register dev for chan:%s\n", mhi_dev->chan_name); mhi_dealloc_device(mhi_cntrl, mhi_dev); } } } static int parse_xfer_event(struct mhi_controller *mhi_cntrl, struct mhi_tre *event, struct mhi_chan *mhi_chan) { struct mhi_ring *buf_ring, *tre_ring; u32 ev_code; struct mhi_result result; unsigned long flags = 0; ev_code = ((le32_to_cpu(event->dword[0]) >> 24) & 0xFF); buf_ring = &mhi_chan->buf_ring; tre_ring = &mhi_chan->tre_ring; result.transaction_status = (ev_code == MHI_EV_CC_OVERFLOW) ? -EOVERFLOW : 0; /* * if it's a DB Event then we need to grab the lock * with preemption disable and as a write because we * have to update db register and another thread could * be doing same. */ if (ev_code >= MHI_EV_CC_OOB) write_lock_irqsave(&mhi_chan->lock, flags); else read_lock_bh(&mhi_chan->lock); if (mhi_chan->ch_state != MHI_CH_STATE_ENABLED) goto end_process_tx_event; switch (ev_code) { case MHI_EV_CC_OVERFLOW: case MHI_EV_CC_EOB: case MHI_EV_CC_EOT: { dma_addr_t ptr = le64_to_cpu(event->ptr); struct mhi_tre *local_rp, *ev_tre; void *dev_rp; struct mhi_buf_info *buf_info; u16 xfer_len; /* Get the TRB this event points to */ ev_tre = mhi_to_virtual(tre_ring, ptr); /* device rp after servicing the TREs */ dev_rp = ev_tre + 1; if (dev_rp >= (tre_ring->base + tre_ring->len)) dev_rp = tre_ring->base; result.dir = mhi_chan->dir; if (dev_rp < tre_ring->base) panic("Panic since device read pointer for" " channel %s is not valid.\n", mhi_chan->name); /* local rp */ local_rp = tre_ring->rp; while (local_rp != dev_rp) { buf_info = buf_ring->rp; /* Always get the get len from the event */ xfer_len = (le32_to_cpu(event->dword[0]) & 0xFFFF); /* unmap if it's not premapped by client */ if (likely(!buf_info->pre_mapped)) mhi_cntrl->unmap_single(mhi_cntrl, buf_info); result.buf_addr = buf_info->cb_buf; result.bytes_xferd = xfer_len; mhi_del_ring_element(mhi_cntrl, buf_ring); mhi_del_ring_element(mhi_cntrl, tre_ring); local_rp = tre_ring->rp; /* notify client */ mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); if (mhi_chan->dir == DMA_TO_DEVICE) { read_lock_bh(&mhi_cntrl->pm_lock); mhi_cntrl->wake_put(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); } /* * recycle the buffer if buffer is pre-allocated, * if there is error, not much we can do apart from * dropping the packet */ if (mhi_chan->pre_alloc) { if (mhi_queue_buf(mhi_chan->mhi_dev, mhi_chan, buf_info->cb_buf, buf_info->len, MHI_EOT)) { MHI_ERR( "Error recycling buffer for chan:%d\n", mhi_chan->chan); kfree(buf_info->cb_buf); } } } break; } /* CC_EOT */ case MHI_EV_CC_OOB: case MHI_EV_CC_DB_MODE: { unsigned long flags; MHI_VERB("DB_MODE/OOB Detected chan %d.\n", mhi_chan->chan); mhi_chan->db_cfg.db_mode = true; read_lock_irqsave(&mhi_cntrl->pm_lock, flags); if (tre_ring->wp != tre_ring->rp && MHI_DB_ACCESS_VALID(mhi_cntrl->pm_state)) { mhi_ring_chan_db(mhi_cntrl, mhi_chan); } read_unlock_irqrestore(&mhi_cntrl->pm_lock, flags); break; } case MHI_EV_CC_BAD_TRE: MHI_ASSERT(1, "Received BAD TRE event for ring"); break; default: MHI_CRITICAL("Unknown TX completion.\n"); break; } /* switch(MHI_EV_READ_CODE(EV_TRB_CODE,event)) */ end_process_tx_event: if (ev_code >= MHI_EV_CC_OOB) write_unlock_irqrestore(&mhi_chan->lock, flags); else read_unlock_bh(&mhi_chan->lock); return 0; } static int parse_rsc_event(struct mhi_controller *mhi_cntrl, struct mhi_tre *event, struct mhi_chan *mhi_chan) { struct mhi_ring *buf_ring, *tre_ring; struct mhi_buf_info *buf_info; struct mhi_result result; int ev_code; u32 cookie; /* offset to local descriptor */ u16 xfer_len; buf_ring = &mhi_chan->buf_ring; tre_ring = &mhi_chan->tre_ring; ev_code = ((le32_to_cpu(event->dword[0]) >> 24) & 0xFF); cookie = lower_32_bits(le64_to_cpu(event->ptr)); xfer_len = (le32_to_cpu(event->dword[0]) & 0xFFFF); /* received out of bound cookie */ MHI_ASSERT(cookie >= buf_ring->len, "Invalid Cookie\n"); buf_info = buf_ring->base + cookie; result.transaction_status = (ev_code == MHI_EV_CC_OVERFLOW) ? -EOVERFLOW : 0; /* truncate to buf len if xfer_len is larger */ result.bytes_xferd = min_t(u16, xfer_len, buf_info->len); result.buf_addr = buf_info->cb_buf; result.dir = mhi_chan->dir; read_lock_bh(&mhi_chan->lock); if (mhi_chan->ch_state != MHI_CH_STATE_ENABLED) goto end_process_rsc_event; MHI_ASSERT(!buf_info->used, "TRE already Freed\n"); /* notify the client */ mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); /* * Note: We're arbitrarily incrementing RP even though, completion * packet we processed might not be the same one, reason we can do this * is because device guaranteed to cache descriptors in order it * receive, so even though completion event is different we can re-use * all descriptors in between. * Example: * Transfer Ring has descriptors: A, B, C, D * Last descriptor host queue is D (WP) and first descriptor * host queue is A (RP). * The completion event we just serviced is descriptor C. * Then we can safely queue descriptors to replace A, B, and C * even though host did not receive any completions. */ mhi_del_ring_element(mhi_cntrl, tre_ring); buf_info->used = false; end_process_rsc_event: read_unlock_bh(&mhi_chan->lock); return 0; } static void mhi_process_cmd_completion(struct mhi_controller *mhi_cntrl, struct mhi_tre *tre) { dma_addr_t ptr = le64_to_cpu(tre->ptr); struct mhi_cmd *cmd_ring = &mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING]; struct mhi_ring *mhi_ring = &cmd_ring->ring; struct mhi_tre *cmd_pkt; struct mhi_chan *mhi_chan; struct mhi_timesync *mhi_tsync; enum mhi_cmd_type type; u32 chan; cmd_pkt = mhi_to_virtual(mhi_ring, ptr); /* out of order completion received */ MHI_ASSERT(cmd_pkt != mhi_ring->rp, "Out of order cmd completion"); type = ((le32_to_cpu((cmd_pkt)->dword[1]) >> 16) & 0xFF); if (type == MHI_CMD_TYPE_TSYNC) { mhi_tsync = mhi_cntrl->mhi_tsync; mhi_tsync->ccs = (le32_to_cpu((tre)->dword[0]) >> 24) & 0xFF; complete(&mhi_tsync->completion); } else { chan = ((le32_to_cpu((cmd_pkt)->dword[1]) >> 24) & 0xFF); mhi_chan = &mhi_cntrl->mhi_chan[chan]; write_lock_bh(&mhi_chan->lock); mhi_chan->ccs = (le32_to_cpu((tre)->dword[0]) >> 24) & 0xFF; complete(&mhi_chan->completion); write_unlock_bh(&mhi_chan->lock); } mhi_del_ring_element(mhi_cntrl, mhi_ring); } int mhi_process_ctrl_ev_ring(struct mhi_controller *mhi_cntrl, struct mhi_event *mhi_event, u32 event_quota) { struct mhi_tre *dev_rp, *local_rp; struct mhi_ring *ev_ring = &mhi_event->ring; struct mhi_event_ctxt *er_ctxt = &mhi_cntrl->mhi_ctxt->er_ctxt[mhi_event->er_index]; int count = 0; /* * this is a quick check to avoid unnecessary event processing * in case we already in error state, but it's still possible * to transition to error state while processing events */ if (unlikely(MHI_EVENT_ACCESS_INVALID(mhi_cntrl->pm_state))) { MHI_ERR("No EV access, PM_STATE:%s\n", to_mhi_pm_state_str(mhi_cntrl->pm_state)); return -EIO; } dev_rp = mhi_to_virtual(ev_ring, le64_to_cpu(er_ctxt->rp)); local_rp = ev_ring->rp; while (dev_rp != local_rp) { enum MHI_PKT_TYPE type = ((le32_to_cpu(local_rp->dword[1]) >> 16) & 0xFF); MHI_VERB("Processing Event:0x%llx 0x%08x 0x%08x\n", local_rp->ptr, local_rp->dword[0], local_rp->dword[1]); switch (type) { case MHI_PKT_TYPE_STATE_CHANGE_EVENT: { enum mhi_dev_state new_state; new_state = ((le32_to_cpu(local_rp->dword[0]) >> 24) & 0xFF); MHI_LOG("MHI state change event to state:%s\n", TO_MHI_STATE_STR(new_state)); switch (new_state) { case MHI_STATE_M0: mhi_pm_m0_transition(mhi_cntrl); break; case MHI_STATE_M1: mhi_pm_m1_transition(mhi_cntrl); break; case MHI_STATE_M3: mhi_pm_m3_transition(mhi_cntrl); break; case MHI_STATE_SYS_ERR: { enum MHI_PM_STATE new_state; MHI_ERR("MHI system error detected\n"); write_lock_irq(&mhi_cntrl->pm_lock); new_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_SYS_ERR_DETECT); write_unlock_irq(&mhi_cntrl->pm_lock); if (new_state == MHI_PM_SYS_ERR_DETECT) schedule_work( &mhi_cntrl->syserr_worker); break; } default: MHI_ERR("Unsupported STE:%s\n", TO_MHI_STATE_STR(new_state)); } break; } case MHI_PKT_TYPE_CMD_COMPLETION_EVENT: mhi_process_cmd_completion(mhi_cntrl, local_rp); break; case MHI_PKT_TYPE_EE_EVENT: { enum MHI_ST_TRANSITION st = MHI_ST_TRANSITION_MAX; enum mhi_ee event = ((le32_to_cpu(local_rp->dword[0]) >> 24) & 0xFF); MHI_LOG("MHI EE received event:%s\n", TO_MHI_EXEC_STR(event)); switch (event) { case MHI_EE_SBL: st = MHI_ST_TRANSITION_SBL; break; case MHI_EE_WFW: case MHI_EE_AMSS: st = MHI_ST_TRANSITION_MISSION_MODE; break; case MHI_EE_RDDM: mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_EE_RDDM); write_lock_irq(&mhi_cntrl->pm_lock); mhi_cntrl->ee = event; write_unlock_irq(&mhi_cntrl->pm_lock); wake_up_all(&mhi_cntrl->state_event); break; default: MHI_ERR("Unhandled EE event:%s\n", TO_MHI_EXEC_STR(event)); } if (st != MHI_ST_TRANSITION_MAX) mhi_queue_state_transition(mhi_cntrl, st); break; } default: break; } mhi_recycle_ev_ring_element(mhi_cntrl, ev_ring); local_rp = ev_ring->rp; dev_rp = mhi_to_virtual(ev_ring, le64_to_cpu(er_ctxt->rp)); count++; } read_lock_bh(&mhi_cntrl->pm_lock); if (likely(MHI_DB_ACCESS_VALID(mhi_cntrl->pm_state))) mhi_ring_er_db(mhi_event); read_unlock_bh(&mhi_cntrl->pm_lock); MHI_VERB("exit er_index:%u\n", mhi_event->er_index); return count; } int mhi_process_data_event_ring(struct mhi_controller *mhi_cntrl, struct mhi_event *mhi_event, u32 event_quota) { struct mhi_tre *dev_rp, *local_rp; struct mhi_ring *ev_ring = &mhi_event->ring; struct mhi_event_ctxt *er_ctxt; int count = 0; u32 chan; struct mhi_chan *mhi_chan; if (unlikely(MHI_EVENT_ACCESS_INVALID(mhi_cntrl->pm_state))) { MHI_ERR("No EV access, PM_STATE:%s\n", to_mhi_pm_state_str(mhi_cntrl->pm_state)); return -EIO; } er_ctxt = &mhi_cntrl->mhi_ctxt->er_ctxt[mhi_event->er_index]; dev_rp = mhi_to_virtual(ev_ring, le64_to_cpu(er_ctxt->rp)); local_rp = ev_ring->rp; while (dev_rp != local_rp && event_quota > 0) { enum MHI_PKT_TYPE type = ((le32_to_cpu(local_rp->dword[1]) >> 16) & 0xFF); MHI_VERB("Processing Event:0x%llx 0x%08x 0x%08x\n", local_rp->ptr, local_rp->dword[0], local_rp->dword[1]); chan = ((le32_to_cpu(local_rp->dword[1]) >> 24) & 0xFF); if (chan >= mhi_cntrl->max_chan) { MHI_ERR("invalid channel id %u\n", chan); goto next_er_element; } mhi_chan = &mhi_cntrl->mhi_chan[chan]; if (likely(type == MHI_PKT_TYPE_TX_EVENT)) { parse_xfer_event(mhi_cntrl, local_rp, mhi_chan); event_quota--; } else if (type == MHI_PKT_TYPE_RSC_TX_EVENT) { parse_rsc_event(mhi_cntrl, local_rp, mhi_chan); event_quota--; } next_er_element: mhi_recycle_ev_ring_element(mhi_cntrl, ev_ring); local_rp = ev_ring->rp; dev_rp = mhi_to_virtual(ev_ring, le64_to_cpu(er_ctxt->rp)); count++; } read_lock_bh(&mhi_cntrl->pm_lock); if (likely(MHI_DB_ACCESS_VALID(mhi_cntrl->pm_state))) mhi_ring_er_db(mhi_event); read_unlock_bh(&mhi_cntrl->pm_lock); MHI_VERB("exit er_index:%u\n", mhi_event->er_index); return count; } int mhi_process_tsync_event_ring(struct mhi_controller *mhi_cntrl, struct mhi_event *mhi_event, u32 event_quota) { struct mhi_tre *dev_rp, *local_rp; struct mhi_ring *ev_ring = &mhi_event->ring; struct mhi_event_ctxt *er_ctxt = &mhi_cntrl->mhi_ctxt->er_ctxt[mhi_event->er_index]; struct mhi_timesync *mhi_tsync = mhi_cntrl->mhi_tsync; int count = 0; u32 sequence; u64 remote_time; if (unlikely(MHI_EVENT_ACCESS_INVALID(mhi_cntrl->pm_state))) { MHI_ERR("No EV access, PM_STATE:%s\n", to_mhi_pm_state_str(mhi_cntrl->pm_state)); read_unlock_bh(&mhi_cntrl->pm_lock); return -EIO; } dev_rp = mhi_to_virtual(ev_ring, le64_to_cpu(er_ctxt->rp)); local_rp = ev_ring->rp; while (dev_rp != local_rp) { enum MHI_PKT_TYPE type = ((le32_to_cpu(local_rp->dword[1]) >> 16) & 0xFF); struct tsync_node *tsync_node; MHI_VERB("Processing Event:0x%llx 0x%08x 0x%08x\n", local_rp->ptr, local_rp->dword[0], local_rp->dword[1]); MHI_ASSERT(type != MHI_PKT_TYPE_TSYNC_EVENT, "!TSYNC event"); sequence = le32_to_cpu(local_rp->dword[0]); remote_time = le64_to_cpu(local_rp->ptr); do { spin_lock_irq(&mhi_tsync->lock); tsync_node = list_first_entry_or_null(&mhi_tsync->head, struct tsync_node, node); MHI_ASSERT(!tsync_node, "Unexpected Event"); if (unlikely(!tsync_node)) break; list_del(&tsync_node->node); spin_unlock_irq(&mhi_tsync->lock); /* * device may not able to process all time sync commands * host issue and only process last command it receive */ if (tsync_node->sequence == sequence) { tsync_node->cb_func(tsync_node->mhi_dev, sequence, tsync_node->local_time, remote_time); kfree(tsync_node); } else { kfree(tsync_node); } } while (true); mhi_recycle_ev_ring_element(mhi_cntrl, ev_ring); local_rp = ev_ring->rp; dev_rp = mhi_to_virtual(ev_ring, le64_to_cpu(er_ctxt->rp)); count++; } read_lock_bh(&mhi_cntrl->pm_lock); if (likely(MHI_DB_ACCESS_VALID(mhi_cntrl->pm_state))) mhi_ring_er_db(mhi_event); read_unlock_bh(&mhi_cntrl->pm_lock); MHI_VERB("exit er_index:%u\n", mhi_event->er_index); return count; } void mhi_ev_task(unsigned long data) { struct mhi_event *mhi_event = (struct mhi_event *)data; struct mhi_controller *mhi_cntrl = mhi_event->mhi_cntrl; MHI_VERB("Enter for ev_index:%d\n", mhi_event->er_index); /* process all pending events */ spin_lock_bh(&mhi_event->lock); mhi_event->process_event(mhi_cntrl, mhi_event, U32_MAX); spin_unlock_bh(&mhi_event->lock); } void mhi_ctrl_ev_task(unsigned long data) { struct mhi_event *mhi_event = (struct mhi_event *)data; struct mhi_controller *mhi_cntrl = mhi_event->mhi_cntrl; enum mhi_dev_state state; enum MHI_PM_STATE pm_state = 0; int ret; MHI_VERB("Enter for ev_index:%d\n", mhi_event->er_index); /* * we can check pm_state w/o a lock here because there is no way * pm_state can change from reg access valid to no access while this * therad being executed. */ if (!MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) return; /* process ctrl events events */ ret = mhi_event->process_event(mhi_cntrl, mhi_event, U32_MAX); /* * we received a MSI but no events to process maybe device went to * SYS_ERR state, check the state */ if (!ret) { write_lock_irq(&mhi_cntrl->pm_lock); state = mhi_get_mhi_state(mhi_cntrl); if (state == MHI_STATE_SYS_ERR) { MHI_ERR("MHI system error detected\n"); pm_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_SYS_ERR_DETECT); } write_unlock_irq(&mhi_cntrl->pm_lock); if (pm_state == MHI_PM_SYS_ERR_DETECT) schedule_work(&mhi_cntrl->syserr_worker); } } irqreturn_t mhi_msi_handlr(int irq_number, void *dev) { struct mhi_event *mhi_event = dev; struct mhi_controller *mhi_cntrl = mhi_event->mhi_cntrl; struct mhi_event_ctxt *er_ctxt = &mhi_cntrl->mhi_ctxt->er_ctxt[mhi_event->er_index]; struct mhi_ring *ev_ring = &mhi_event->ring; void *dev_rp = mhi_to_virtual(ev_ring, le64_to_cpu(er_ctxt->rp)); /* confirm ER has pending events to process before scheduling work */ if (ev_ring->rp == dev_rp) return IRQ_HANDLED; /* client managed event ring, notify pending data */ if (mhi_event->cl_manage) { struct mhi_chan *mhi_chan = mhi_event->mhi_chan; struct mhi_device *mhi_dev = mhi_chan->mhi_dev; if (mhi_dev) mhi_dev->status_cb(mhi_dev, MHI_CB_PENDING_DATA); } else tasklet_schedule(&mhi_event->task); return IRQ_HANDLED; } /* this is the threaded fn */ irqreturn_t mhi_intvec_threaded_handlr(int irq_number, void *dev) { struct mhi_controller *mhi_cntrl = dev; enum mhi_dev_state state = MHI_STATE_MAX; enum MHI_PM_STATE pm_state = 0; enum mhi_ee ee; MHI_VERB("Enter\n"); write_lock_irq(&mhi_cntrl->pm_lock); if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) { state = mhi_get_mhi_state(mhi_cntrl); ee = mhi_get_exec_env(mhi_cntrl); MHI_LOG("device ee:%s dev_state:%s\n", TO_MHI_EXEC_STR(ee), TO_MHI_STATE_STR(state)); } if (state == MHI_STATE_SYS_ERR) { MHI_ERR("MHI system error detected\n"); pm_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_SYS_ERR_DETECT); } write_unlock_irq(&mhi_cntrl->pm_lock); if (pm_state == MHI_PM_SYS_ERR_DETECT) { wake_up_all(&mhi_cntrl->state_event); /* for fatal errors, we let controller decide next step */ if (MHI_IN_PBL(ee)) mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_FATAL_ERROR); else schedule_work(&mhi_cntrl->syserr_worker); } MHI_VERB("Exit\n"); return IRQ_HANDLED; } irqreturn_t mhi_intvec_handlr(int irq_number, void *dev) { struct mhi_controller *mhi_cntrl = dev; /* wake up any events waiting for state change */ MHI_VERB("Enter\n"); wake_up_all(&mhi_cntrl->state_event); MHI_VERB("Exit\n"); return IRQ_WAKE_THREAD; } int mhi_send_cmd(struct mhi_controller *mhi_cntrl, struct mhi_chan *mhi_chan, enum MHI_CMD cmd) { struct mhi_tre *cmd_tre = NULL; struct mhi_cmd *mhi_cmd = &mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING]; struct mhi_ring *ring = &mhi_cmd->ring; int chan = 0; MHI_VERB("Entered, MHI pm_state:%s dev_state:%s ee:%s\n", to_mhi_pm_state_str(mhi_cntrl->pm_state), TO_MHI_STATE_STR(mhi_cntrl->dev_state), TO_MHI_EXEC_STR(mhi_cntrl->ee)); if (mhi_chan) chan = mhi_chan->chan; spin_lock_bh(&mhi_cmd->lock); if (!get_nr_avail_ring_elements(mhi_cntrl, ring)) { spin_unlock_bh(&mhi_cmd->lock); return -ENOMEM; } /* prepare the cmd tre */ cmd_tre = ring->wp; switch (cmd) { case MHI_CMD_RESET_CHAN: cmd_tre->ptr = cpu_to_le64(MHI_TRE_CMD_RESET_PTR); cmd_tre->dword[0] = cpu_to_le32(MHI_TRE_CMD_RESET_DWORD0); cmd_tre->dword[1] = cpu_to_le32(MHI_TRE_CMD_RESET_DWORD1(chan)); break; case MHI_CMD_START_CHAN: cmd_tre->ptr = cpu_to_le64(MHI_TRE_CMD_START_PTR); cmd_tre->dword[0] = cpu_to_le32(MHI_TRE_CMD_START_DWORD0); cmd_tre->dword[1] = cpu_to_le32(MHI_TRE_CMD_START_DWORD1(chan)); break; case MHI_CMD_TIMSYNC_CFG: cmd_tre->ptr = cpu_to_le64(MHI_TRE_CMD_TSYNC_CFG_PTR); cmd_tre->dword[0] = cpu_to_le32(MHI_TRE_CMD_TSYNC_CFG_DWORD0); cmd_tre->dword[1] = cpu_to_le32(MHI_TRE_CMD_TSYNC_CFG_DWORD1 (mhi_cntrl->mhi_tsync->er_index)); break; } MHI_VERB("WP:0x%llx TRE: 0x%llx 0x%08x 0x%08x\n", (u64)mhi_to_physical(ring, cmd_tre), cmd_tre->ptr, cmd_tre->dword[0], cmd_tre->dword[1]); /* queue to hardware */ mhi_add_ring_element(mhi_cntrl, ring); read_lock_bh(&mhi_cntrl->pm_lock); if (likely(MHI_DB_ACCESS_VALID(mhi_cntrl->pm_state))) mhi_ring_cmd_db(mhi_cntrl, mhi_cmd); read_unlock_bh(&mhi_cntrl->pm_lock); spin_unlock_bh(&mhi_cmd->lock); return 0; } static int __mhi_prepare_channel(struct mhi_controller *mhi_cntrl, struct mhi_chan *mhi_chan) { int ret = 0; MHI_LOG("Entered: preparing channel:%d\n", mhi_chan->chan); if (!(BIT(mhi_cntrl->ee) & mhi_chan->ee_mask)) { MHI_ERR("Current EE:%s Required EE Mask:0x%x for chan:%s\n", TO_MHI_EXEC_STR(mhi_cntrl->ee), mhi_chan->ee_mask, mhi_chan->name); return -ENOTCONN; } mutex_lock(&mhi_chan->mutex); /* if channel is not disable state do not allow to start */ if (mhi_chan->ch_state != MHI_CH_STATE_DISABLED) { ret = -EIO; MHI_LOG("channel:%d is not in disabled state, ch_state%d\n", mhi_chan->chan, mhi_chan->ch_state); goto error_init_chan; } /* client manages channel context for offload channels */ if (!mhi_chan->offload_ch) { ret = mhi_init_chan_ctxt(mhi_cntrl, mhi_chan); if (ret) { MHI_ERR("Error with init chan\n"); goto error_init_chan; } } reinit_completion(&mhi_chan->completion); read_lock_bh(&mhi_cntrl->pm_lock); if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { MHI_ERR("MHI host is not in active state\n"); read_unlock_bh(&mhi_cntrl->pm_lock); ret = -EIO; goto error_pm_state; } mhi_cntrl->wake_get(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); mhi_cntrl->runtime_get(mhi_cntrl); mhi_cntrl->runtime_put(mhi_cntrl); ret = mhi_send_cmd(mhi_cntrl, mhi_chan, MHI_CMD_START_CHAN); if (ret) { MHI_ERR("Failed to send start chan cmd\n"); goto error_send_cmd; } ret = wait_for_completion_timeout(&mhi_chan->completion, msecs_to_jiffies(mhi_cntrl->timeout_ms)); if (!ret || mhi_chan->ccs != MHI_EV_CC_SUCCESS) { MHI_ERR("Failed to receive cmd completion for chan:%d\n", mhi_chan->chan); ret = -EIO; goto error_send_cmd; } write_lock_irq(&mhi_chan->lock); mhi_chan->ch_state = MHI_CH_STATE_ENABLED; write_unlock_irq(&mhi_chan->lock); /* pre allocate buffer for xfer ring */ if (mhi_chan->pre_alloc) { int nr_el = get_nr_avail_ring_elements(mhi_cntrl, &mhi_chan->tre_ring); size_t len = mhi_cntrl->buffer_len; while (nr_el--) { void *buf; buf = kmalloc(len, GFP_KERNEL); if (!buf) { ret = -ENOMEM; goto error_pre_alloc; } /* prepare transfer descriptors */ ret = mhi_chan->gen_tre(mhi_cntrl, mhi_chan, buf, buf, len, MHI_EOT); if (ret) { MHI_ERR("Chan:%d error prepare buffer\n", mhi_chan->chan); kfree(buf); goto error_pre_alloc; } } read_lock_bh(&mhi_cntrl->pm_lock); if (MHI_DB_ACCESS_VALID(mhi_cntrl->pm_state)) { read_lock_irq(&mhi_chan->lock); mhi_ring_chan_db(mhi_cntrl, mhi_chan); read_unlock_irq(&mhi_chan->lock); } read_unlock_bh(&mhi_cntrl->pm_lock); } read_lock_bh(&mhi_cntrl->pm_lock); mhi_cntrl->wake_put(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); mutex_unlock(&mhi_chan->mutex); MHI_LOG("Chan:%d successfully moved to start state\n", mhi_chan->chan); return 0; error_send_cmd: read_lock_bh(&mhi_cntrl->pm_lock); mhi_cntrl->wake_put(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); error_pm_state: if (!mhi_chan->offload_ch) mhi_deinit_chan_ctxt(mhi_cntrl, mhi_chan); error_init_chan: mutex_unlock(&mhi_chan->mutex); return ret; error_pre_alloc: read_lock_bh(&mhi_cntrl->pm_lock); mhi_cntrl->wake_put(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); mutex_unlock(&mhi_chan->mutex); __mhi_unprepare_channel(mhi_cntrl, mhi_chan); return ret; } static void mhi_mark_stale_events(struct mhi_controller *mhi_cntrl, struct mhi_event *mhi_event, struct mhi_event_ctxt *er_ctxt, int chan) { struct mhi_tre *dev_rp, *local_rp; struct mhi_ring *ev_ring; unsigned long flags; MHI_LOG("Marking all events for chan:%d as stale\n", chan); ev_ring = &mhi_event->ring; /* mark all stale events related to channel as STALE event */ spin_lock_irqsave(&mhi_event->lock, flags); dev_rp = mhi_to_virtual(ev_ring, le64_to_cpu(er_ctxt->rp)); local_rp = ev_ring->rp; while (dev_rp != local_rp) { if (((le32_to_cpu(local_rp->dword[1]) >> 16) & 0xFF) == MHI_PKT_TYPE_TX_EVENT && chan == ((le32_to_cpu(local_rp->dword[1]) >> 24) & 0xFF)) local_rp->dword[1] = cpu_to_le32((chan << 24) | (MHI_PKT_TYPE_STALE_EVENT << 16)); local_rp++; if (local_rp == (ev_ring->base + ev_ring->len)) local_rp = ev_ring->base; } MHI_LOG("Finished marking events as stale events\n"); spin_unlock_irqrestore(&mhi_event->lock, flags); } int mhi_test_rp_wp(struct device *dev, void *data) { struct mhi_device *mhi_dev; struct mhi_chan *mhi_chan; struct mhi_ring *ring; struct mhi_controller *mhi_cntrl; int dir; if (dev->bus != &mhi_bus_type) return 0; mhi_dev = to_mhi_device(dev); mhi_cntrl = mhi_dev->mhi_cntrl; if (mhi_dev->dev_type == MHI_CONTROLLER_TYPE) return 0; /* reset both channels */ for (dir = 0; dir < 2; dir++) { mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan; if (!mhi_chan) continue; ring = &mhi_chan->tre_ring; if (ring->wp >= (ring->base + ring->len)) printk("%s chan_name = %s rp %p wp %p\n", __func__, mhi_chan->name, ring->rp, ring->wp); } return 0; } static void mhi_reset_data_chan(struct mhi_controller *mhi_cntrl, struct mhi_chan *mhi_chan) { struct mhi_ring *buf_ring, *tre_ring; struct mhi_result result; /* reset any pending buffers */ buf_ring = &mhi_chan->buf_ring; tre_ring = &mhi_chan->tre_ring; result.transaction_status = -ENOTCONN; result.bytes_xferd = 0; printk("%s rp %p wp %p\n", __func__, tre_ring->rp, tre_ring->wp); device_for_each_child(mhi_cntrl->dev, NULL, mhi_test_rp_wp); while (tre_ring->rp != tre_ring->wp) { struct mhi_buf_info *buf_info = buf_ring->rp; if (mhi_chan->dir == DMA_TO_DEVICE) mhi_cntrl->wake_put(mhi_cntrl, false); if (!buf_info->pre_mapped) mhi_cntrl->unmap_single(mhi_cntrl, buf_info); mhi_del_ring_element(mhi_cntrl, buf_ring); mhi_del_ring_element(mhi_cntrl, tre_ring); if (mhi_chan->pre_alloc) { kfree(buf_info->cb_buf); } else { result.buf_addr = buf_info->cb_buf; mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); } } } static void mhi_reset_rsc_chan(struct mhi_controller *mhi_cntrl, struct mhi_chan *mhi_chan) { struct mhi_ring *buf_ring, *tre_ring; struct mhi_result result; struct mhi_buf_info *buf_info; /* reset any pending buffers */ buf_ring = &mhi_chan->buf_ring; tre_ring = &mhi_chan->tre_ring; result.transaction_status = -ENOTCONN; result.bytes_xferd = 0; buf_info = buf_ring->base; for (; (void *)buf_info < buf_ring->base + buf_ring->len; buf_info++) { if (!buf_info->used) continue; result.buf_addr = buf_info->cb_buf; mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); buf_info->used = false; } } void mhi_reset_chan(struct mhi_controller *mhi_cntrl, struct mhi_chan *mhi_chan) { struct mhi_event *mhi_event; struct mhi_event_ctxt *er_ctxt; int chan = mhi_chan->chan; /* nothing to reset, client don't queue buffers */ if (mhi_chan->offload_ch) return; read_lock_bh(&mhi_cntrl->pm_lock); mhi_event = &mhi_cntrl->mhi_event[mhi_chan->er_index]; er_ctxt = &mhi_cntrl->mhi_ctxt->er_ctxt[mhi_chan->er_index]; mhi_mark_stale_events(mhi_cntrl, mhi_event, er_ctxt, chan); if (mhi_chan->xfer_type == MHI_XFER_RSC_DMA) mhi_reset_rsc_chan(mhi_cntrl, mhi_chan); else mhi_reset_data_chan(mhi_cntrl, mhi_chan); read_unlock_bh(&mhi_cntrl->pm_lock); MHI_LOG("Reset complete.\n"); } static void __mhi_unprepare_channel(struct mhi_controller *mhi_cntrl, struct mhi_chan *mhi_chan) { int ret; enum mhi_ee current_ee; MHI_LOG("Entered: unprepare channel:%d\n", mhi_chan->chan); /* get current execution environment */ current_ee = mhi_get_exec_env(mhi_cntrl); /* no more processing events for this channel */ mutex_lock(&mhi_chan->mutex); write_lock_irq(&mhi_chan->lock); if (mhi_chan->ch_state != MHI_CH_STATE_ENABLED) { MHI_LOG("chan:%d is already disabled\n", mhi_chan->chan); write_unlock_irq(&mhi_chan->lock); mutex_unlock(&mhi_chan->mutex); return; } mhi_chan->ch_state = MHI_CH_STATE_DISABLED; write_unlock_irq(&mhi_chan->lock); reinit_completion(&mhi_chan->completion); read_lock_bh(&mhi_cntrl->pm_lock); if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { read_unlock_bh(&mhi_cntrl->pm_lock); goto error_invalid_state; } mhi_cntrl->wake_get(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); mhi_cntrl->runtime_get(mhi_cntrl); mhi_cntrl->runtime_put(mhi_cntrl); ret = mhi_send_cmd(mhi_cntrl, mhi_chan, MHI_CMD_RESET_CHAN); if (ret) { MHI_ERR("Failed to send reset chan cmd\n"); goto error_completion; } if (!MHI_IN_SBL(current_ee)) { /* even if it fails we will still reset */ ret = wait_for_completion_timeout(&mhi_chan->completion, msecs_to_jiffies(mhi_cntrl->timeout_ms)); if (!ret || mhi_chan->ccs != MHI_EV_CC_SUCCESS) MHI_ERR("Failed to receive cmd completion, still resetting\n"); } error_completion: read_lock_bh(&mhi_cntrl->pm_lock); mhi_cntrl->wake_put(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); error_invalid_state: if (!mhi_chan->offload_ch) { mhi_reset_chan(mhi_cntrl, mhi_chan); mhi_deinit_chan_ctxt(mhi_cntrl, mhi_chan); } MHI_LOG("chan:%d successfully resetted\n", mhi_chan->chan); mutex_unlock(&mhi_chan->mutex); } int mhi_debugfs_mhi_states_show(struct seq_file *m, void *d) { struct mhi_controller *mhi_cntrl = m->private; seq_printf(m, "pm_state:%s dev_state:%s EE:%s M0:%u M2:%u M3:%u wake:%d dev_wake:%u alloc_size:%u\n", to_mhi_pm_state_str(mhi_cntrl->pm_state), TO_MHI_STATE_STR(mhi_cntrl->dev_state), TO_MHI_EXEC_STR(mhi_cntrl->ee), mhi_cntrl->M0, mhi_cntrl->M2, mhi_cntrl->M3, mhi_cntrl->wake_set, atomic_read(&mhi_cntrl->dev_wake), atomic_read(&mhi_cntrl->alloc_size)); return 0; } int mhi_debugfs_mhi_event_show(struct seq_file *m, void *d) { struct mhi_controller *mhi_cntrl = m->private; struct mhi_event *mhi_event; struct mhi_event_ctxt *er_ctxt; int i; er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt; mhi_event = mhi_cntrl->mhi_event; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++, mhi_event++) { struct mhi_ring *ring = &mhi_event->ring; if (mhi_event->offload_ev) { seq_printf(m, "Index:%d offload event ring\n", i); } else { seq_printf(m, "Index:%d modc:%d modt:%d base:0x%0llx len:0x%llx", i, er_ctxt->intmodc, er_ctxt->intmodt, er_ctxt->rbase, er_ctxt->rlen); seq_printf(m, " rp:0x%llx wp:0x%llx local_rp:0x%llx db:0x%llx\n", le64_to_cpu(er_ctxt->rp), le64_to_cpu(er_ctxt->wp), (unsigned long long)mhi_to_physical(ring, ring->rp), (unsigned long long)mhi_event->db_cfg.db_val); } } return 0; } int mhi_debugfs_mhi_chan_show(struct seq_file *m, void *d) { struct mhi_controller *mhi_cntrl = m->private; struct mhi_chan *mhi_chan; struct mhi_chan_ctxt *chan_ctxt; int i; mhi_chan = mhi_cntrl->mhi_chan; chan_ctxt = mhi_cntrl->mhi_ctxt->chan_ctxt; for (i = 0; i < mhi_cntrl->max_chan; i++, chan_ctxt++, mhi_chan++) { struct mhi_ring *ring = &mhi_chan->tre_ring; if (mhi_chan->offload_ch) { seq_printf(m, "%s(%u) offload channel\n", mhi_chan->name, mhi_chan->chan); } else if (mhi_chan->mhi_dev) { seq_printf(m, "%s(%u) state:0x%x brstmode:0x%x pllcfg:0x%x type:0x%x erindex:%u", mhi_chan->name, mhi_chan->chan, chan_ctxt->chstate, chan_ctxt->brstmode, chan_ctxt->pollcfg, le32_to_cpu(chan_ctxt->chtype), chan_ctxt->erindex); seq_printf(m, " base:0x%llx len:0x%llx wp:0x%llx local_rp:0x%llx local_wp:0x%llx db:0x%llx\n", chan_ctxt->rbase, chan_ctxt->rlen, chan_ctxt->wp, (unsigned long long)mhi_to_physical(ring, ring->rp), (unsigned long long)mhi_to_physical(ring, ring->wp), (unsigned long long)mhi_chan->db_cfg.db_val); } } return 0; } /* move channel to start state */ int mhi_prepare_for_transfer(struct mhi_device *mhi_dev) { int ret, dir; struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; struct mhi_chan *mhi_chan; for (dir = 0; dir < 2; dir++) { mhi_chan = dir ? mhi_dev->dl_chan : mhi_dev->ul_chan; if (!mhi_chan) continue; ret = __mhi_prepare_channel(mhi_cntrl, mhi_chan); if (ret) { MHI_ERR("Error moving chan %s,%d to START state\n", mhi_chan->name, mhi_chan->chan); goto error_open_chan; } } return 0; error_open_chan: for (--dir; dir >= 0; dir--) { mhi_chan = dir ? mhi_dev->dl_chan : mhi_dev->ul_chan; if (!mhi_chan) continue; __mhi_unprepare_channel(mhi_cntrl, mhi_chan); } return ret; } EXPORT_SYMBOL(mhi_prepare_for_transfer); void mhi_unprepare_from_transfer(struct mhi_device *mhi_dev) { struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; struct mhi_chan *mhi_chan; int dir; for (dir = 0; dir < 2; dir++) { mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan; if (!mhi_chan) continue; __mhi_unprepare_channel(mhi_cntrl, mhi_chan); } } EXPORT_SYMBOL(mhi_unprepare_from_transfer); int mhi_get_no_free_descriptors(struct mhi_device *mhi_dev, enum dma_data_direction dir) { struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; struct mhi_chan *mhi_chan = (dir == DMA_TO_DEVICE) ? mhi_dev->ul_chan : mhi_dev->dl_chan; struct mhi_ring *tre_ring = &mhi_chan->tre_ring; return get_nr_avail_ring_elements(mhi_cntrl, tre_ring); } EXPORT_SYMBOL(mhi_get_no_free_descriptors); static int __mhi_bdf_to_controller(struct device *dev, void *tmp) { struct mhi_device *mhi_dev = to_mhi_device(dev); struct mhi_device *match = tmp; /* return any none-zero value if match */ if (mhi_dev->dev_type == MHI_CONTROLLER_TYPE && mhi_dev->domain == match->domain && mhi_dev->bus == match->bus && mhi_dev->slot == match->slot && mhi_dev->dev_id == match->dev_id) return 1; return 0; } struct mhi_controller *mhi_bdf_to_controller(u32 domain, u32 bus, u32 slot, u32 dev_id) { struct mhi_device tmp, *mhi_dev; struct device *dev; tmp.domain = domain; tmp.bus = bus; tmp.slot = slot; tmp.dev_id = dev_id; dev = bus_find_device(&mhi_bus_type, NULL, &tmp, __mhi_bdf_to_controller); if (!dev) return NULL; mhi_dev = to_mhi_device(dev); return mhi_dev->mhi_cntrl; } EXPORT_SYMBOL(mhi_bdf_to_controller); int mhi_poll(struct mhi_device *mhi_dev, u32 budget) { struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; struct mhi_chan *mhi_chan = mhi_dev->dl_chan; struct mhi_event *mhi_event = &mhi_cntrl->mhi_event[mhi_chan->er_index]; int ret; spin_lock_bh(&mhi_event->lock); ret = mhi_event->process_event(mhi_cntrl, mhi_event, budget); spin_unlock_bh(&mhi_event->lock); return ret; } EXPORT_SYMBOL(mhi_poll); int mhi_get_remote_time_sync(struct mhi_device *mhi_dev, u64 *t_host, u64 *t_dev) { struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; struct mhi_timesync *mhi_tsync = mhi_cntrl->mhi_tsync; int ret; /* not all devices support time feature */ if (!mhi_tsync) return -EIO; /* bring to M0 state */ ret = __mhi_device_get_sync(mhi_cntrl); if (ret) return ret; mutex_lock(&mhi_tsync->lpm_mutex); read_lock_bh(&mhi_cntrl->pm_lock); if (unlikely(MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))) { MHI_ERR("MHI is not in active state, pm_state:%s\n", to_mhi_pm_state_str(mhi_cntrl->pm_state)); ret = -EIO; goto error_invalid_state; } /* disable link level low power modes */ ret = mhi_cntrl->lpm_disable(mhi_cntrl); if (ret) goto error_invalid_state; /* * time critical code to fetch device times, * delay between these two steps should be * deterministic as possible. */ preempt_disable(); local_irq_disable(); *t_host = mhi_cntrl->time_get(mhi_cntrl); *t_dev = readq_relaxed_no_log(mhi_tsync->time_reg); local_irq_enable(); preempt_enable(); mhi_cntrl->lpm_enable(mhi_cntrl); error_invalid_state: mhi_cntrl->wake_put(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); mutex_unlock(&mhi_tsync->lpm_mutex); return ret; } EXPORT_SYMBOL(mhi_get_remote_time_sync); /** * mhi_get_remote_time - Get external modem time relative to host time * Trigger event to capture modem time, also capture host time so client * can do a relative drift comparision. * Recommended only tsync device calls this method and do not call this * from atomic context * @mhi_dev: Device associated with the channels * @sequence:unique sequence id track event * @cb_func: callback function to call back */ int mhi_get_remote_time(struct mhi_device *mhi_dev, u32 sequence, void (*cb_func)(struct mhi_device *mhi_dev, u32 sequence, u64 local_time, u64 remote_time)) { struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; struct mhi_timesync *mhi_tsync = mhi_cntrl->mhi_tsync; struct tsync_node *tsync_node; int ret; /* not all devices support time feature */ if (!mhi_tsync) return -EIO; /* tsync db can only be rung in M0 state */ ret = __mhi_device_get_sync(mhi_cntrl); if (ret) return ret; /* * technically we can use GFP_KERNEL, but wants to avoid * # of times scheduling out */ tsync_node = kzalloc(sizeof(*tsync_node), GFP_ATOMIC); if (!tsync_node) { ret = -ENOMEM; goto error_no_mem; } tsync_node->sequence = sequence; tsync_node->cb_func = cb_func; tsync_node->mhi_dev = mhi_dev; /* disable link level low power modes */ mhi_cntrl->lpm_disable(mhi_cntrl); read_lock_bh(&mhi_cntrl->pm_lock); if (unlikely(MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))) { MHI_ERR("MHI is not in active state, pm_state:%s\n", to_mhi_pm_state_str(mhi_cntrl->pm_state)); ret = -EIO; goto error_invalid_state; } spin_lock_irq(&mhi_tsync->lock); list_add_tail(&tsync_node->node, &mhi_tsync->head); spin_unlock_irq(&mhi_tsync->lock); /* * time critical code, delay between these two steps should be * deterministic as possible. */ preempt_disable(); local_irq_disable(); tsync_node->local_time = mhi_cntrl->time_get(mhi_cntrl); writel_relaxed_no_log(tsync_node->sequence, mhi_tsync->db); /* write must go thru immediately */ wmb(); local_irq_enable(); preempt_enable(); ret = 0; error_invalid_state: if (ret) kfree(tsync_node); read_unlock_bh(&mhi_cntrl->pm_lock); mhi_cntrl->lpm_enable(mhi_cntrl); error_no_mem: read_lock_bh(&mhi_cntrl->pm_lock); mhi_cntrl->wake_put(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); return ret; } EXPORT_SYMBOL(mhi_get_remote_time); void mhi_debug_reg_dump(struct mhi_controller *mhi_cntrl) { enum mhi_dev_state state; enum mhi_ee ee; int i, ret; u32 val; void __iomem *mhi_base = mhi_cntrl->regs; void __iomem *bhi_base = mhi_cntrl->bhi; void __iomem *bhie_base = mhi_cntrl->bhie; void __iomem *wake_db = mhi_cntrl->wake_db; struct { const char *name; int offset; void *base; } debug_reg[] = { { "MHI_CNTRL", MHICTRL, mhi_base}, { "MHI_STATUS", MHISTATUS, mhi_base}, { "MHI_WAKE_DB", 0, wake_db}, { "BHI_EXECENV", BHI_EXECENV, bhi_base}, { "BHI_STATUS", BHI_STATUS, bhi_base}, { "BHI_ERRCODE", BHI_ERRCODE, bhi_base}, { "BHI_ERRDBG1", BHI_ERRDBG1, bhi_base}, { "BHI_ERRDBG2", BHI_ERRDBG2, bhi_base}, { "BHI_ERRDBG3", BHI_ERRDBG3, bhi_base}, { "BHIE_TXVEC_DB", BHIE_TXVECDB_OFFS, bhie_base}, { "BHIE_TXVEC_STATUS", BHIE_TXVECSTATUS_OFFS, bhie_base}, { "BHIE_RXVEC_DB", BHIE_RXVECDB_OFFS, bhie_base}, { "BHIE_RXVEC_STATUS", BHIE_RXVECSTATUS_OFFS, bhie_base}, { NULL }, }; MHI_LOG("host pm_state:%s dev_state:%s ee:%s\n", to_mhi_pm_state_str(mhi_cntrl->pm_state), TO_MHI_STATE_STR(mhi_cntrl->dev_state), TO_MHI_EXEC_STR(mhi_cntrl->ee)); state = mhi_get_mhi_state(mhi_cntrl); ee = mhi_get_exec_env(mhi_cntrl); MHI_LOG("device ee:%s dev_state:%s\n", TO_MHI_EXEC_STR(ee), TO_MHI_STATE_STR(state)); for (i = 0; debug_reg[i].name; i++) { ret = mhi_read_reg(mhi_cntrl, debug_reg[i].base, debug_reg[i].offset, &val); MHI_LOG("reg:%s val:0x%x, ret:%d\n", debug_reg[i].name, val, ret); } } EXPORT_SYMBOL(mhi_debug_reg_dump);