/* * ipmi_si.c * * The interface to the IPMI driver for the system interfaces (KCS, SMIC, * BT). * * Author: MontaVista Software, Inc. * Corey Minyard * source@mvista.com * * Copyright 2002 MontaVista Software Inc. * Copyright 2006 IBM Corp., Christian Krafft * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * This file holds the "policy" for the interface to the SMI state * machine. It does the configuration, handles timers and interrupts, * and drives the real SMI state machine. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ipmi_si_sm.h" #include #include #include #include #include #include #include #ifdef CONFIG_PARISC #include /* for register_parisc_driver() stuff */ #include #endif #define PFX "ipmi_si: " /* Measure times between events in the driver. */ #undef DEBUG_TIMING /* Call every 10 ms. */ #define SI_TIMEOUT_TIME_USEC 10000 #define SI_USEC_PER_JIFFY (1000000/HZ) #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a short timeout */ enum si_intf_state { SI_NORMAL, SI_GETTING_FLAGS, SI_GETTING_EVENTS, SI_CLEARING_FLAGS, SI_GETTING_MESSAGES, SI_CHECKING_ENABLES, SI_SETTING_ENABLES /* FIXME - add watchdog stuff. */ }; /* Some BT-specific defines we need here. */ #define IPMI_BT_INTMASK_REG 2 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 enum si_type { SI_KCS, SI_SMIC, SI_BT }; static char *si_to_str[] = { "kcs", "smic", "bt" }; #define DEVICE_NAME "ipmi_si" static struct platform_driver ipmi_driver; /* * Indexes into stats[] in smi_info below. */ enum si_stat_indexes { /* * Number of times the driver requested a timer while an operation * was in progress. */ SI_STAT_short_timeouts = 0, /* * Number of times the driver requested a timer while nothing was in * progress. */ SI_STAT_long_timeouts, /* Number of times the interface was idle while being polled. */ SI_STAT_idles, /* Number of interrupts the driver handled. */ SI_STAT_interrupts, /* Number of time the driver got an ATTN from the hardware. */ SI_STAT_attentions, /* Number of times the driver requested flags from the hardware. */ SI_STAT_flag_fetches, /* Number of times the hardware didn't follow the state machine. */ SI_STAT_hosed_count, /* Number of completed messages. */ SI_STAT_complete_transactions, /* Number of IPMI events received from the hardware. */ SI_STAT_events, /* Number of watchdog pretimeouts. */ SI_STAT_watchdog_pretimeouts, /* Number of asynchronous messages received. */ SI_STAT_incoming_messages, /* This *must* remain last, add new values above this. */ SI_NUM_STATS }; struct smi_info { int intf_num; ipmi_smi_t intf; struct si_sm_data *si_sm; const struct si_sm_handlers *handlers; enum si_type si_type; spinlock_t si_lock; struct ipmi_smi_msg *waiting_msg; struct ipmi_smi_msg *curr_msg; enum si_intf_state si_state; /* * Used to handle the various types of I/O that can occur with * IPMI */ struct si_sm_io io; int (*io_setup)(struct smi_info *info); void (*io_cleanup)(struct smi_info *info); int (*irq_setup)(struct smi_info *info); void (*irq_cleanup)(struct smi_info *info); unsigned int io_size; enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ void (*addr_source_cleanup)(struct smi_info *info); void *addr_source_data; /* * Per-OEM handler, called from handle_flags(). Returns 1 * when handle_flags() needs to be re-run or 0 indicating it * set si_state itself. */ int (*oem_data_avail_handler)(struct smi_info *smi_info); /* * Flags from the last GET_MSG_FLAGS command, used when an ATTN * is set to hold the flags until we are done handling everything * from the flags. */ #define RECEIVE_MSG_AVAIL 0x01 #define EVENT_MSG_BUFFER_FULL 0x02 #define WDT_PRE_TIMEOUT_INT 0x08 #define OEM0_DATA_AVAIL 0x20 #define OEM1_DATA_AVAIL 0x40 #define OEM2_DATA_AVAIL 0x80 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ OEM1_DATA_AVAIL | \ OEM2_DATA_AVAIL) unsigned char msg_flags; /* Does the BMC have an event buffer? */ bool has_event_buffer; /* * If set to true, this will request events the next time the * state machine is idle. */ atomic_t req_events; /* * If true, run the state machine to completion on every send * call. Generally used after a panic to make sure stuff goes * out. */ bool run_to_completion; /* The I/O port of an SI interface. */ int port; /* * The space between start addresses of the two ports. For * instance, if the first port is 0xca2 and the spacing is 4, then * the second port is 0xca6. */ unsigned int spacing; /* zero if no irq; */ int irq; /* The timer for this si. */ struct timer_list si_timer; /* This flag is set, if the timer can be set */ bool timer_can_start; /* This flag is set, if the timer is running (timer_pending() isn't enough) */ bool timer_running; /* The time (in jiffies) the last timeout occurred at. */ unsigned long last_timeout_jiffies; /* Are we waiting for the events, pretimeouts, received msgs? */ atomic_t need_watch; /* * The driver will disable interrupts when it gets into a * situation where it cannot handle messages due to lack of * memory. Once that situation clears up, it will re-enable * interrupts. */ bool interrupt_disabled; /* * Does the BMC support events? */ bool supports_event_msg_buff; /* * Can we disable interrupts the global enables receive irq * bit? There are currently two forms of brokenness, some * systems cannot disable the bit (which is technically within * the spec but a bad idea) and some systems have the bit * forced to zero even though interrupts work (which is * clearly outside the spec). The next bool tells which form * of brokenness is present. */ bool cannot_disable_irq; /* * Some systems are broken and cannot set the irq enable * bit, even if they support interrupts. */ bool irq_enable_broken; /* Is the driver in maintenance mode? */ bool in_maintenance_mode; /* * Did we get an attention that we did not handle? */ bool got_attn; /* From the get device id response... */ struct ipmi_device_id device_id; /* Driver model stuff. */ struct device *dev; struct platform_device *pdev; /* * True if we allocated the device, false if it came from * someplace else (like PCI). */ bool dev_registered; /* Slave address, could be reported from DMI. */ unsigned char slave_addr; /* Counters and things for the proc filesystem. */ atomic_t stats[SI_NUM_STATS]; struct task_struct *thread; struct list_head link; union ipmi_smi_info_union addr_info; }; #define smi_inc_stat(smi, stat) \ atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) #define smi_get_stat(smi, stat) \ ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) #define SI_MAX_PARMS 4 static int force_kipmid[SI_MAX_PARMS]; static int num_force_kipmid; #ifdef CONFIG_PCI static bool pci_registered; #endif #ifdef CONFIG_PARISC static bool parisc_registered; #endif static unsigned int kipmid_max_busy_us[SI_MAX_PARMS]; static int num_max_busy_us; static bool unload_when_empty = true; static int add_smi(struct smi_info *smi); static int try_smi_init(struct smi_info *smi); static void cleanup_one_si(struct smi_info *to_clean); static void cleanup_ipmi_si(void); #ifdef DEBUG_TIMING void debug_timestamp(char *msg) { struct timespec64 t; getnstimeofday64(&t); pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec); } #else #define debug_timestamp(x) #endif static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); static int register_xaction_notifier(struct notifier_block *nb) { return atomic_notifier_chain_register(&xaction_notifier_list, nb); } static void deliver_recv_msg(struct smi_info *smi_info, struct ipmi_smi_msg *msg) { /* Deliver the message to the upper layer. */ if (smi_info->intf) ipmi_smi_msg_received(smi_info->intf, msg); else ipmi_free_smi_msg(msg); } static void return_hosed_msg(struct smi_info *smi_info, int cCode) { struct ipmi_smi_msg *msg = smi_info->curr_msg; if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) cCode = IPMI_ERR_UNSPECIFIED; /* else use it as is */ /* Make it a response */ msg->rsp[0] = msg->data[0] | 4; msg->rsp[1] = msg->data[1]; msg->rsp[2] = cCode; msg->rsp_size = 3; smi_info->curr_msg = NULL; deliver_recv_msg(smi_info, msg); } static enum si_sm_result start_next_msg(struct smi_info *smi_info) { int rv; if (!smi_info->waiting_msg) { smi_info->curr_msg = NULL; rv = SI_SM_IDLE; } else { int err; smi_info->curr_msg = smi_info->waiting_msg; smi_info->waiting_msg = NULL; debug_timestamp("Start2"); err = atomic_notifier_call_chain(&xaction_notifier_list, 0, smi_info); if (err & NOTIFY_STOP_MASK) { rv = SI_SM_CALL_WITHOUT_DELAY; goto out; } err = smi_info->handlers->start_transaction( smi_info->si_sm, smi_info->curr_msg->data, smi_info->curr_msg->data_size); if (err) return_hosed_msg(smi_info, err); rv = SI_SM_CALL_WITHOUT_DELAY; } out: return rv; } static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val) { if (!smi_info->timer_can_start) return; smi_info->last_timeout_jiffies = jiffies; mod_timer(&smi_info->si_timer, new_val); smi_info->timer_running = true; } /* * Start a new message and (re)start the timer and thread. */ static void start_new_msg(struct smi_info *smi_info, unsigned char *msg, unsigned int size) { smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); if (smi_info->thread) wake_up_process(smi_info->thread); smi_info->handlers->start_transaction(smi_info->si_sm, msg, size); } static void start_check_enables(struct smi_info *smi_info) { unsigned char msg[2]; msg[0] = (IPMI_NETFN_APP_REQUEST << 2); msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; start_new_msg(smi_info, msg, 2); smi_info->si_state = SI_CHECKING_ENABLES; } static void start_clear_flags(struct smi_info *smi_info) { unsigned char msg[3]; /* Make sure the watchdog pre-timeout flag is not set at startup. */ msg[0] = (IPMI_NETFN_APP_REQUEST << 2); msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; msg[2] = WDT_PRE_TIMEOUT_INT; start_new_msg(smi_info, msg, 3); smi_info->si_state = SI_CLEARING_FLAGS; } static void start_getting_msg_queue(struct smi_info *smi_info) { smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; smi_info->curr_msg->data_size = 2; start_new_msg(smi_info, smi_info->curr_msg->data, smi_info->curr_msg->data_size); smi_info->si_state = SI_GETTING_MESSAGES; } static void start_getting_events(struct smi_info *smi_info) { smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; smi_info->curr_msg->data_size = 2; start_new_msg(smi_info, smi_info->curr_msg->data, smi_info->curr_msg->data_size); smi_info->si_state = SI_GETTING_EVENTS; } /* * When we have a situtaion where we run out of memory and cannot * allocate messages, we just leave them in the BMC and run the system * polled until we can allocate some memory. Once we have some * memory, we will re-enable the interrupt. * * Note that we cannot just use disable_irq(), since the interrupt may * be shared. */ static inline bool disable_si_irq(struct smi_info *smi_info) { if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { smi_info->interrupt_disabled = true; start_check_enables(smi_info); return true; } return false; } static inline bool enable_si_irq(struct smi_info *smi_info) { if ((smi_info->irq) && (smi_info->interrupt_disabled)) { smi_info->interrupt_disabled = false; start_check_enables(smi_info); return true; } return false; } /* * Allocate a message. If unable to allocate, start the interrupt * disable process and return NULL. If able to allocate but * interrupts are disabled, free the message and return NULL after * starting the interrupt enable process. */ static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info) { struct ipmi_smi_msg *msg; msg = ipmi_alloc_smi_msg(); if (!msg) { if (!disable_si_irq(smi_info)) smi_info->si_state = SI_NORMAL; } else if (enable_si_irq(smi_info)) { ipmi_free_smi_msg(msg); msg = NULL; } return msg; } static void handle_flags(struct smi_info *smi_info) { retry: if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { /* Watchdog pre-timeout */ smi_inc_stat(smi_info, watchdog_pretimeouts); start_clear_flags(smi_info); smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; if (smi_info->intf) ipmi_smi_watchdog_pretimeout(smi_info->intf); } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { /* Messages available. */ smi_info->curr_msg = alloc_msg_handle_irq(smi_info); if (!smi_info->curr_msg) return; start_getting_msg_queue(smi_info); } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { /* Events available. */ smi_info->curr_msg = alloc_msg_handle_irq(smi_info); if (!smi_info->curr_msg) return; start_getting_events(smi_info); } else if (smi_info->msg_flags & OEM_DATA_AVAIL && smi_info->oem_data_avail_handler) { if (smi_info->oem_data_avail_handler(smi_info)) goto retry; } else smi_info->si_state = SI_NORMAL; } /* * Global enables we care about. */ #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \ IPMI_BMC_EVT_MSG_INTR) static u8 current_global_enables(struct smi_info *smi_info, u8 base, bool *irq_on) { u8 enables = 0; if (smi_info->supports_event_msg_buff) enables |= IPMI_BMC_EVT_MSG_BUFF; if (((smi_info->irq && !smi_info->interrupt_disabled) || smi_info->cannot_disable_irq) && !smi_info->irq_enable_broken) enables |= IPMI_BMC_RCV_MSG_INTR; if (smi_info->supports_event_msg_buff && smi_info->irq && !smi_info->interrupt_disabled && !smi_info->irq_enable_broken) enables |= IPMI_BMC_EVT_MSG_INTR; *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR); return enables; } static void check_bt_irq(struct smi_info *smi_info, bool irq_on) { u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG); irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT; if ((bool)irqstate == irq_on) return; if (irq_on) smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, IPMI_BT_INTMASK_ENABLE_IRQ_BIT); else smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0); } static void handle_transaction_done(struct smi_info *smi_info) { struct ipmi_smi_msg *msg; debug_timestamp("Done"); switch (smi_info->si_state) { case SI_NORMAL: if (!smi_info->curr_msg) break; smi_info->curr_msg->rsp_size = smi_info->handlers->get_result( smi_info->si_sm, smi_info->curr_msg->rsp, IPMI_MAX_MSG_LENGTH); /* * Do this here becase deliver_recv_msg() releases the * lock, and a new message can be put in during the * time the lock is released. */ msg = smi_info->curr_msg; smi_info->curr_msg = NULL; deliver_recv_msg(smi_info, msg); break; case SI_GETTING_FLAGS: { unsigned char msg[4]; unsigned int len; /* We got the flags from the SMI, now handle them. */ len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); if (msg[2] != 0) { /* Error fetching flags, just give up for now. */ smi_info->si_state = SI_NORMAL; } else if (len < 4) { /* * Hmm, no flags. That's technically illegal, but * don't use uninitialized data. */ smi_info->si_state = SI_NORMAL; } else { smi_info->msg_flags = msg[3]; handle_flags(smi_info); } break; } case SI_CLEARING_FLAGS: { unsigned char msg[3]; /* We cleared the flags. */ smi_info->handlers->get_result(smi_info->si_sm, msg, 3); if (msg[2] != 0) { /* Error clearing flags */ dev_warn(smi_info->dev, "Error clearing flags: %2.2x\n", msg[2]); } smi_info->si_state = SI_NORMAL; break; } case SI_GETTING_EVENTS: { smi_info->curr_msg->rsp_size = smi_info->handlers->get_result( smi_info->si_sm, smi_info->curr_msg->rsp, IPMI_MAX_MSG_LENGTH); /* * Do this here becase deliver_recv_msg() releases the * lock, and a new message can be put in during the * time the lock is released. */ msg = smi_info->curr_msg; smi_info->curr_msg = NULL; if (msg->rsp[2] != 0) { /* Error getting event, probably done. */ msg->done(msg); /* Take off the event flag. */ smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; handle_flags(smi_info); } else { smi_inc_stat(smi_info, events); /* * Do this before we deliver the message * because delivering the message releases the * lock and something else can mess with the * state. */ handle_flags(smi_info); deliver_recv_msg(smi_info, msg); } break; } case SI_GETTING_MESSAGES: { smi_info->curr_msg->rsp_size = smi_info->handlers->get_result( smi_info->si_sm, smi_info->curr_msg->rsp, IPMI_MAX_MSG_LENGTH); /* * Do this here becase deliver_recv_msg() releases the * lock, and a new message can be put in during the * time the lock is released. */ msg = smi_info->curr_msg; smi_info->curr_msg = NULL; if (msg->rsp[2] != 0) { /* Error getting event, probably done. */ msg->done(msg); /* Take off the msg flag. */ smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; handle_flags(smi_info); } else { smi_inc_stat(smi_info, incoming_messages); /* * Do this before we deliver the message * because delivering the message releases the * lock and something else can mess with the * state. */ handle_flags(smi_info); deliver_recv_msg(smi_info, msg); } break; } case SI_CHECKING_ENABLES: { unsigned char msg[4]; u8 enables; bool irq_on; /* We got the flags from the SMI, now handle them. */ smi_info->handlers->get_result(smi_info->si_sm, msg, 4); if (msg[2] != 0) { dev_warn(smi_info->dev, "Couldn't get irq info: %x.\n", msg[2]); dev_warn(smi_info->dev, "Maybe ok, but ipmi might run very slowly.\n"); smi_info->si_state = SI_NORMAL; break; } enables = current_global_enables(smi_info, 0, &irq_on); if (smi_info->si_type == SI_BT) /* BT has its own interrupt enable bit. */ check_bt_irq(smi_info, irq_on); if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) { /* Enables are not correct, fix them. */ msg[0] = (IPMI_NETFN_APP_REQUEST << 2); msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK); smi_info->handlers->start_transaction( smi_info->si_sm, msg, 3); smi_info->si_state = SI_SETTING_ENABLES; } else if (smi_info->supports_event_msg_buff) { smi_info->curr_msg = ipmi_alloc_smi_msg(); if (!smi_info->curr_msg) { smi_info->si_state = SI_NORMAL; break; } start_getting_msg_queue(smi_info); } else { smi_info->si_state = SI_NORMAL; } break; } case SI_SETTING_ENABLES: { unsigned char msg[4]; smi_info->handlers->get_result(smi_info->si_sm, msg, 4); if (msg[2] != 0) dev_warn(smi_info->dev, "Could not set the global enables: 0x%x.\n", msg[2]); if (smi_info->supports_event_msg_buff) { smi_info->curr_msg = ipmi_alloc_smi_msg(); if (!smi_info->curr_msg) { smi_info->si_state = SI_NORMAL; break; } start_getting_msg_queue(smi_info); } else { smi_info->si_state = SI_NORMAL; } break; } } } /* * Called on timeouts and events. Timeouts should pass the elapsed * time, interrupts should pass in zero. Must be called with * si_lock held and interrupts disabled. */ static enum si_sm_result smi_event_handler(struct smi_info *smi_info, int time) { enum si_sm_result si_sm_result; restart: /* * There used to be a loop here that waited a little while * (around 25us) before giving up. That turned out to be * pointless, the minimum delays I was seeing were in the 300us * range, which is far too long to wait in an interrupt. So * we just run until the state machine tells us something * happened or it needs a delay. */ si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); time = 0; while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { smi_inc_stat(smi_info, complete_transactions); handle_transaction_done(smi_info); si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); } else if (si_sm_result == SI_SM_HOSED) { smi_inc_stat(smi_info, hosed_count); /* * Do the before return_hosed_msg, because that * releases the lock. */ smi_info->si_state = SI_NORMAL; if (smi_info->curr_msg != NULL) { /* * If we were handling a user message, format * a response to send to the upper layer to * tell it about the error. */ return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); } si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); } /* * We prefer handling attn over new messages. But don't do * this if there is not yet an upper layer to handle anything. */ if (likely(smi_info->intf) && (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) { unsigned char msg[2]; if (smi_info->si_state != SI_NORMAL) { /* * We got an ATTN, but we are doing something else. * Handle the ATTN later. */ smi_info->got_attn = true; } else { smi_info->got_attn = false; smi_inc_stat(smi_info, attentions); /* * Got a attn, send down a get message flags to see * what's causing it. It would be better to handle * this in the upper layer, but due to the way * interrupts work with the SMI, that's not really * possible. */ msg[0] = (IPMI_NETFN_APP_REQUEST << 2); msg[1] = IPMI_GET_MSG_FLAGS_CMD; start_new_msg(smi_info, msg, 2); smi_info->si_state = SI_GETTING_FLAGS; goto restart; } } /* If we are currently idle, try to start the next message. */ if (si_sm_result == SI_SM_IDLE) { smi_inc_stat(smi_info, idles); si_sm_result = start_next_msg(smi_info); if (si_sm_result != SI_SM_IDLE) goto restart; } if ((si_sm_result == SI_SM_IDLE) && (atomic_read(&smi_info->req_events))) { /* * We are idle and the upper layer requested that I fetch * events, so do so. */ atomic_set(&smi_info->req_events, 0); /* * Take this opportunity to check the interrupt and * message enable state for the BMC. The BMC can be * asynchronously reset, and may thus get interrupts * disable and messages disabled. */ if (smi_info->supports_event_msg_buff || smi_info->irq) { start_check_enables(smi_info); } else { smi_info->curr_msg = alloc_msg_handle_irq(smi_info); if (!smi_info->curr_msg) goto out; start_getting_events(smi_info); } goto restart; } if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) { /* Ok it if fails, the timer will just go off. */ if (del_timer(&smi_info->si_timer)) smi_info->timer_running = false; } out: return si_sm_result; } static void check_start_timer_thread(struct smi_info *smi_info) { if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) { smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); if (smi_info->thread) wake_up_process(smi_info->thread); start_next_msg(smi_info); smi_event_handler(smi_info, 0); } } static void flush_messages(void *send_info) { struct smi_info *smi_info = send_info; enum si_sm_result result; /* * Currently, this function is called only in run-to-completion * mode. This means we are single-threaded, no need for locks. */ result = smi_event_handler(smi_info, 0); while (result != SI_SM_IDLE) { udelay(SI_SHORT_TIMEOUT_USEC); result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC); } } static void sender(void *send_info, struct ipmi_smi_msg *msg) { struct smi_info *smi_info = send_info; unsigned long flags; debug_timestamp("Enqueue"); if (smi_info->run_to_completion) { /* * If we are running to completion, start it. Upper * layer will call flush_messages to clear it out. */ smi_info->waiting_msg = msg; return; } spin_lock_irqsave(&smi_info->si_lock, flags); /* * The following two lines don't need to be under the lock for * the lock's sake, but they do need SMP memory barriers to * avoid getting things out of order. We are already claiming * the lock, anyway, so just do it under the lock to avoid the * ordering problem. */ BUG_ON(smi_info->waiting_msg); smi_info->waiting_msg = msg; check_start_timer_thread(smi_info); spin_unlock_irqrestore(&smi_info->si_lock, flags); } static void set_run_to_completion(void *send_info, bool i_run_to_completion) { struct smi_info *smi_info = send_info; smi_info->run_to_completion = i_run_to_completion; if (i_run_to_completion) flush_messages(smi_info); } /* * Use -1 in the nsec value of the busy waiting timespec to tell that * we are spinning in kipmid looking for something and not delaying * between checks */ static inline void ipmi_si_set_not_busy(struct timespec64 *ts) { ts->tv_nsec = -1; } static inline int ipmi_si_is_busy(struct timespec64 *ts) { return ts->tv_nsec != -1; } static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result, const struct smi_info *smi_info, struct timespec64 *busy_until) { unsigned int max_busy_us = 0; if (smi_info->intf_num < num_max_busy_us) max_busy_us = kipmid_max_busy_us[smi_info->intf_num]; if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) ipmi_si_set_not_busy(busy_until); else if (!ipmi_si_is_busy(busy_until)) { getnstimeofday64(busy_until); timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); } else { struct timespec64 now; getnstimeofday64(&now); if (unlikely(timespec64_compare(&now, busy_until) > 0)) { ipmi_si_set_not_busy(busy_until); return 0; } } return 1; } /* * A busy-waiting loop for speeding up IPMI operation. * * Lousy hardware makes this hard. This is only enabled for systems * that are not BT and do not have interrupts. It starts spinning * when an operation is complete or until max_busy tells it to stop * (if that is enabled). See the paragraph on kimid_max_busy_us in * Documentation/IPMI.txt for details. */ static int ipmi_thread(void *data) { struct smi_info *smi_info = data; unsigned long flags; enum si_sm_result smi_result; struct timespec64 busy_until; ipmi_si_set_not_busy(&busy_until); set_user_nice(current, MAX_NICE); while (!kthread_should_stop()) { int busy_wait; spin_lock_irqsave(&(smi_info->si_lock), flags); smi_result = smi_event_handler(smi_info, 0); /* * If the driver is doing something, there is a possible * race with the timer. If the timer handler see idle, * and the thread here sees something else, the timer * handler won't restart the timer even though it is * required. So start it here if necessary. */ if (smi_result != SI_SM_IDLE && !smi_info->timer_running) smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); spin_unlock_irqrestore(&(smi_info->si_lock), flags); busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, &busy_until); if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { ; /* do nothing */ } else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) { /* * In maintenance mode we run as fast as * possible to allow firmware updates to * complete as fast as possible, but normally * don't bang on the scheduler. */ if (smi_info->in_maintenance_mode) schedule(); else usleep_range(100, 200); } else if (smi_result == SI_SM_IDLE) { if (atomic_read(&smi_info->need_watch)) { schedule_timeout_interruptible(100); } else { /* Wait to be woken up when we are needed. */ __set_current_state(TASK_INTERRUPTIBLE); schedule(); } } else { schedule_timeout_interruptible(1); } } return 0; } static void poll(void *send_info) { struct smi_info *smi_info = send_info; unsigned long flags = 0; bool run_to_completion = smi_info->run_to_completion; /* * Make sure there is some delay in the poll loop so we can * drive time forward and timeout things. */ udelay(10); if (!run_to_completion) spin_lock_irqsave(&smi_info->si_lock, flags); smi_event_handler(smi_info, 10); if (!run_to_completion) spin_unlock_irqrestore(&smi_info->si_lock, flags); } static void request_events(void *send_info) { struct smi_info *smi_info = send_info; if (!smi_info->has_event_buffer) return; atomic_set(&smi_info->req_events, 1); } static void set_need_watch(void *send_info, bool enable) { struct smi_info *smi_info = send_info; unsigned long flags; atomic_set(&smi_info->need_watch, enable); spin_lock_irqsave(&smi_info->si_lock, flags); check_start_timer_thread(smi_info); spin_unlock_irqrestore(&smi_info->si_lock, flags); } static int initialized; static void smi_timeout(unsigned long data) { struct smi_info *smi_info = (struct smi_info *) data; enum si_sm_result smi_result; unsigned long flags; unsigned long jiffies_now; long time_diff; long timeout; spin_lock_irqsave(&(smi_info->si_lock), flags); debug_timestamp("Timer"); jiffies_now = jiffies; time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) * SI_USEC_PER_JIFFY); smi_result = smi_event_handler(smi_info, time_diff); if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { /* Running with interrupts, only do long timeouts. */ timeout = jiffies + SI_TIMEOUT_JIFFIES; smi_inc_stat(smi_info, long_timeouts); goto do_mod_timer; } /* * If the state machine asks for a short delay, then shorten * the timer timeout. */ if (smi_result == SI_SM_CALL_WITH_DELAY) { smi_inc_stat(smi_info, short_timeouts); timeout = jiffies + 1; } else { smi_inc_stat(smi_info, long_timeouts); timeout = jiffies + SI_TIMEOUT_JIFFIES; } do_mod_timer: if (smi_result != SI_SM_IDLE) smi_mod_timer(smi_info, timeout); else smi_info->timer_running = false; spin_unlock_irqrestore(&(smi_info->si_lock), flags); } static irqreturn_t si_irq_handler(int irq, void *data) { struct smi_info *smi_info = data; unsigned long flags; spin_lock_irqsave(&(smi_info->si_lock), flags); smi_inc_stat(smi_info, interrupts); debug_timestamp("Interrupt"); smi_event_handler(smi_info, 0); spin_unlock_irqrestore(&(smi_info->si_lock), flags); return IRQ_HANDLED; } static irqreturn_t si_bt_irq_handler(int irq, void *data) { struct smi_info *smi_info = data; /* We need to clear the IRQ flag for the BT interface. */ smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, IPMI_BT_INTMASK_CLEAR_IRQ_BIT | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); return si_irq_handler(irq, data); } static int smi_start_processing(void *send_info, ipmi_smi_t intf) { struct smi_info *new_smi = send_info; int enable = 0; new_smi->intf = intf; /* Set up the timer that drives the interface. */ setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); new_smi->timer_can_start = true; smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES); /* Try to claim any interrupts. */ if (new_smi->irq_setup) new_smi->irq_setup(new_smi); /* * Check if the user forcefully enabled the daemon. */ if (new_smi->intf_num < num_force_kipmid) enable = force_kipmid[new_smi->intf_num]; /* * The BT interface is efficient enough to not need a thread, * and there is no need for a thread if we have interrupts. */ else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) enable = 1; if (enable) { new_smi->thread = kthread_run(ipmi_thread, new_smi, "kipmi%d", new_smi->intf_num); if (IS_ERR(new_smi->thread)) { dev_notice(new_smi->dev, "Could not start" " kernel thread due to error %ld, only using" " timers to drive the interface\n", PTR_ERR(new_smi->thread)); new_smi->thread = NULL; } } return 0; } static int get_smi_info(void *send_info, struct ipmi_smi_info *data) { struct smi_info *smi = send_info; data->addr_src = smi->addr_source; data->dev = smi->dev; data->addr_info = smi->addr_info; get_device(smi->dev); return 0; } static void set_maintenance_mode(void *send_info, bool enable) { struct smi_info *smi_info = send_info; if (!enable) atomic_set(&smi_info->req_events, 0); smi_info->in_maintenance_mode = enable; } static const struct ipmi_smi_handlers handlers = { .owner = THIS_MODULE, .start_processing = smi_start_processing, .get_smi_info = get_smi_info, .sender = sender, .request_events = request_events, .set_need_watch = set_need_watch, .set_maintenance_mode = set_maintenance_mode, .set_run_to_completion = set_run_to_completion, .flush_messages = flush_messages, .poll = poll, }; /* * There can be 4 IO ports passed in (with or without IRQs), 4 addresses, * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS. */ static LIST_HEAD(smi_infos); static DEFINE_MUTEX(smi_infos_lock); static int smi_num; /* Used to sequence the SMIs */ #define DEFAULT_REGSPACING 1 #define DEFAULT_REGSIZE 1 #ifdef CONFIG_ACPI static bool si_tryacpi = true; #endif #ifdef CONFIG_DMI static bool si_trydmi = true; #endif static bool si_tryplatform = true; #ifdef CONFIG_PCI static bool si_trypci = true; #endif static bool si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS); static char *si_type[SI_MAX_PARMS]; #define MAX_SI_TYPE_STR 30 static char si_type_str[MAX_SI_TYPE_STR]; static unsigned long addrs[SI_MAX_PARMS]; static unsigned int num_addrs; static unsigned int ports[SI_MAX_PARMS]; static unsigned int num_ports; static int irqs[SI_MAX_PARMS]; static unsigned int num_irqs; static int regspacings[SI_MAX_PARMS]; static unsigned int num_regspacings; static int regsizes[SI_MAX_PARMS]; static unsigned int num_regsizes; static int regshifts[SI_MAX_PARMS]; static unsigned int num_regshifts; static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */ static unsigned int num_slave_addrs; #define IPMI_IO_ADDR_SPACE 0 #define IPMI_MEM_ADDR_SPACE 1 static char *addr_space_to_str[] = { "i/o", "mem" }; static int hotmod_handler(const char *val, struct kernel_param *kp); module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" " Documentation/IPMI.txt in the kernel sources for the" " gory details."); #ifdef CONFIG_ACPI module_param_named(tryacpi, si_tryacpi, bool, 0); MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" " default scan of the interfaces identified via ACPI"); #endif #ifdef CONFIG_DMI module_param_named(trydmi, si_trydmi, bool, 0); MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the" " default scan of the interfaces identified via DMI"); #endif module_param_named(tryplatform, si_tryplatform, bool, 0); MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" " default scan of the interfaces identified via platform" " interfaces like openfirmware"); #ifdef CONFIG_PCI module_param_named(trypci, si_trypci, bool, 0); MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" " default scan of the interfaces identified via pci"); #endif module_param_named(trydefaults, si_trydefaults, bool, 0); MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" " default scan of the KCS and SMIC interface at the standard" " address"); module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); MODULE_PARM_DESC(type, "Defines the type of each interface, each" " interface separated by commas. The types are 'kcs'," " 'smic', and 'bt'. For example si_type=kcs,bt will set" " the first interface to kcs and the second to bt"); module_param_array(addrs, ulong, &num_addrs, 0); MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" " addresses separated by commas. Only use if an interface" " is in memory. Otherwise, set it to zero or leave" " it blank."); module_param_array(ports, uint, &num_ports, 0); MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" " addresses separated by commas. Only use if an interface" " is a port. Otherwise, set it to zero or leave" " it blank."); module_param_array(irqs, int, &num_irqs, 0); MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" " addresses separated by commas. Only use if an interface" " has an interrupt. Otherwise, set it to zero or leave" " it blank."); module_param_array(regspacings, int, &num_regspacings, 0); MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" " and each successive register used by the interface. For" " instance, if the start address is 0xca2 and the spacing" " is 2, then the second address is at 0xca4. Defaults" " to 1."); module_param_array(regsizes, int, &num_regsizes, 0); MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." " This should generally be 1, 2, 4, or 8 for an 8-bit," " 16-bit, 32-bit, or 64-bit register. Use this if you" " the 8-bit IPMI register has to be read from a larger" " register."); module_param_array(regshifts, int, &num_regshifts, 0); MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." " IPMI register, in bits. For instance, if the data" " is read from a 32-bit word and the IPMI data is in" " bit 8-15, then the shift would be 8"); module_param_array(slave_addrs, int, &num_slave_addrs, 0); MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" " the controller. Normally this is 0x20, but can be" " overridden by this parm. This is an array indexed" " by interface number."); module_param_array(force_kipmid, int, &num_force_kipmid, 0); MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" " disabled(0). Normally the IPMI driver auto-detects" " this, but the value may be overridden by this parm."); module_param(unload_when_empty, bool, 0); MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" " specified or found, default is 1. Setting to 0" " is useful for hot add of devices using hotmod."); module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); MODULE_PARM_DESC(kipmid_max_busy_us, "Max time (in microseconds) to busy-wait for IPMI data before" " sleeping. 0 (default) means to wait forever. Set to 100-500" " if kipmid is using up a lot of CPU time."); static void std_irq_cleanup(struct smi_info *info) { if (info->si_type == SI_BT) /* Disable the interrupt in the BT interface. */ info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); free_irq(info->irq, info); } static int std_irq_setup(struct smi_info *info) { int rv; if (!info->irq) return 0; if (info->si_type == SI_BT) { rv = request_irq(info->irq, si_bt_irq_handler, IRQF_SHARED, DEVICE_NAME, info); if (!rv) /* Enable the interrupt in the BT interface. */ info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, IPMI_BT_INTMASK_ENABLE_IRQ_BIT); } else rv = request_irq(info->irq, si_irq_handler, IRQF_SHARED, DEVICE_NAME, info); if (rv) { dev_warn(info->dev, "%s unable to claim interrupt %d," " running polled\n", DEVICE_NAME, info->irq); info->irq = 0; } else { info->irq_cleanup = std_irq_cleanup; dev_info(info->dev, "Using irq %d\n", info->irq); } return rv; } static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset) { unsigned int addr = io->addr_data; return inb(addr + (offset * io->regspacing)); } static void port_outb(const struct si_sm_io *io, unsigned int offset, unsigned char b) { unsigned int addr = io->addr_data; outb(b, addr + (offset * io->regspacing)); } static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset) { unsigned int addr = io->addr_data; return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; } static void port_outw(const struct si_sm_io *io, unsigned int offset, unsigned char b) { unsigned int addr = io->addr_data; outw(b << io->regshift, addr + (offset * io->regspacing)); } static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset) { unsigned int addr = io->addr_data; return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; } static void port_outl(const struct si_sm_io *io, unsigned int offset, unsigned char b) { unsigned int addr = io->addr_data; outl(b << io->regshift, addr+(offset * io->regspacing)); } static void port_cleanup(struct smi_info *info) { unsigned int addr = info->io.addr_data; int idx; if (addr) { for (idx = 0; idx < info->io_size; idx++) release_region(addr + idx * info->io.regspacing, info->io.regsize); } } static int port_setup(struct smi_info *info) { unsigned int addr = info->io.addr_data; int idx; if (!addr) return -ENODEV; info->io_cleanup = port_cleanup; /* * Figure out the actual inb/inw/inl/etc routine to use based * upon the register size. */ switch (info->io.regsize) { case 1: info->io.inputb = port_inb; info->io.outputb = port_outb; break; case 2: info->io.inputb = port_inw; info->io.outputb = port_outw; break; case 4: info->io.inputb = port_inl; info->io.outputb = port_outl; break; default: dev_warn(info->dev, "Invalid register size: %d\n", info->io.regsize); return -EINVAL; } /* * Some BIOSes reserve disjoint I/O regions in their ACPI * tables. This causes problems when trying to register the * entire I/O region. Therefore we must register each I/O * port separately. */ for (idx = 0; idx < info->io_size; idx++) { if (request_region(addr + idx * info->io.regspacing, info->io.regsize, DEVICE_NAME) == NULL) { /* Undo allocations */ while (idx--) { release_region(addr + idx * info->io.regspacing, info->io.regsize); } return -EIO; } } return 0; } static unsigned char intf_mem_inb(const struct si_sm_io *io, unsigned int offset) { return readb((io->addr)+(offset * io->regspacing)); } static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset, unsigned char b) { writeb(b, (io->addr)+(offset * io->regspacing)); } static unsigned char intf_mem_inw(const struct si_sm_io *io, unsigned int offset) { return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) & 0xff; } static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset, unsigned char b) { writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); } static unsigned char intf_mem_inl(const struct si_sm_io *io, unsigned int offset) { return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) & 0xff; } static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset, unsigned char b) { writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); } #ifdef readq static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset) { return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) & 0xff; } static void mem_outq(const struct si_sm_io *io, unsigned int offset, unsigned char b) { writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); } #endif static void mem_cleanup(struct smi_info *info) { unsigned long addr = info->io.addr_data; int mapsize; if (info->io.addr) { iounmap(info->io.addr); mapsize = ((info->io_size * info->io.regspacing) - (info->io.regspacing - info->io.regsize)); release_mem_region(addr, mapsize); } } static int mem_setup(struct smi_info *info) { unsigned long addr = info->io.addr_data; int mapsize; if (!addr) return -ENODEV; info->io_cleanup = mem_cleanup; /* * Figure out the actual readb/readw/readl/etc routine to use based * upon the register size. */ switch (info->io.regsize) { case 1: info->io.inputb = intf_mem_inb; info->io.outputb = intf_mem_outb; break; case 2: info->io.inputb = intf_mem_inw; info->io.outputb = intf_mem_outw; break; case 4: info->io.inputb = intf_mem_inl; info->io.outputb = intf_mem_outl; break; #ifdef readq case 8: info->io.inputb = mem_inq; info->io.outputb = mem_outq; break; #endif default: dev_warn(info->dev, "Invalid register size: %d\n", info->io.regsize); return -EINVAL; } /* * Calculate the total amount of memory to claim. This is an * unusual looking calculation, but it avoids claiming any * more memory than it has to. It will claim everything * between the first address to the end of the last full * register. */ mapsize = ((info->io_size * info->io.regspacing) - (info->io.regspacing - info->io.regsize)); if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL) return -EIO; info->io.addr = ioremap(addr, mapsize); if (info->io.addr == NULL) { release_mem_region(addr, mapsize); return -EIO; } return 0; } /* * Parms come in as [:op2[:op3...]]. ops are: * add|remove,kcs|bt|smic,mem|i/o,
[,[,[,...]]] * Options are: * rsp= * rsi= * rsh= * irq= * ipmb= */ enum hotmod_op { HM_ADD, HM_REMOVE }; struct hotmod_vals { char *name; int val; }; static struct hotmod_vals hotmod_ops[] = { { "add", HM_ADD }, { "remove", HM_REMOVE }, { NULL } }; static struct hotmod_vals hotmod_si[] = { { "kcs", SI_KCS }, { "smic", SI_SMIC }, { "bt", SI_BT }, { NULL } }; static struct hotmod_vals hotmod_as[] = { { "mem", IPMI_MEM_ADDR_SPACE }, { "i/o", IPMI_IO_ADDR_SPACE }, { NULL } }; static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr) { char *s; int i; s = strchr(*curr, ','); if (!s) { printk(KERN_WARNING PFX "No hotmod %s given.\n", name); return -EINVAL; } *s = '\0'; s++; for (i = 0; v[i].name; i++) { if (strcmp(*curr, v[i].name) == 0) { *val = v[i].val; *curr = s; return 0; } } printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr); return -EINVAL; } static int check_hotmod_int_op(const char *curr, const char *option, const char *name, int *val) { char *n; if (strcmp(curr, name) == 0) { if (!option) { printk(KERN_WARNING PFX "No option given for '%s'\n", curr); return -EINVAL; } *val = simple_strtoul(option, &n, 0); if ((*n != '\0') || (*option == '\0')) { printk(KERN_WARNING PFX "Bad option given for '%s'\n", curr); return -EINVAL; } return 1; } return 0; } static struct smi_info *smi_info_alloc(void) { struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL); if (info) spin_lock_init(&info->si_lock); return info; } static int hotmod_handler(const char *val, struct kernel_param *kp) { char *str = kstrdup(val, GFP_KERNEL); int rv; char *next, *curr, *s, *n, *o; enum hotmod_op op; enum si_type si_type; int addr_space; unsigned long addr; int regspacing; int regsize; int regshift; int irq; int ipmb; int ival; int len; struct smi_info *info; if (!str) return -ENOMEM; /* Kill any trailing spaces, as we can get a "\n" from echo. */ len = strlen(str); ival = len - 1; while ((ival >= 0) && isspace(str[ival])) { str[ival] = '\0'; ival--; } for (curr = str; curr; curr = next) { regspacing = 1; regsize = 1; regshift = 0; irq = 0; ipmb = 0; /* Choose the default if not specified */ next = strchr(curr, ':'); if (next) { *next = '\0'; next++; } rv = parse_str(hotmod_ops, &ival, "operation", &curr); if (rv) break; op = ival; rv = parse_str(hotmod_si, &ival, "interface type", &curr); if (rv) break; si_type = ival; rv = parse_str(hotmod_as, &addr_space, "address space", &curr); if (rv) break; s = strchr(curr, ','); if (s) { *s = '\0'; s++; } addr = simple_strtoul(curr, &n, 0); if ((*n != '\0') || (*curr == '\0')) { printk(KERN_WARNING PFX "Invalid hotmod address" " '%s'\n", curr); break; } while (s) { curr = s; s = strchr(curr, ','); if (s) { *s = '\0'; s++; } o = strchr(curr, '='); if (o) { *o = '\0'; o++; } rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); if (rv < 0) goto out; else if (rv) continue; rv = check_hotmod_int_op(curr, o, "rsi", ®size); if (rv < 0) goto out; else if (rv) continue; rv = check_hotmod_int_op(curr, o, "rsh", ®shift); if (rv < 0) goto out; else if (rv) continue; rv = check_hotmod_int_op(curr, o, "irq", &irq); if (rv < 0) goto out; else if (rv) continue; rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); if (rv < 0) goto out; else if (rv) continue; rv = -EINVAL; printk(KERN_WARNING PFX "Invalid hotmod option '%s'\n", curr); goto out; } if (op == HM_ADD) { info = smi_info_alloc(); if (!info) { rv = -ENOMEM; goto out; } info->addr_source = SI_HOTMOD; info->si_type = si_type; info->io.addr_data = addr; info->io.addr_type = addr_space; if (addr_space == IPMI_MEM_ADDR_SPACE) info->io_setup = mem_setup; else info->io_setup = port_setup; info->io.addr = NULL; info->io.regspacing = regspacing; if (!info->io.regspacing) info->io.regspacing = DEFAULT_REGSPACING; info->io.regsize = regsize; if (!info->io.regsize) info->io.regsize = DEFAULT_REGSPACING; info->io.regshift = regshift; info->irq = irq; if (info->irq) info->irq_setup = std_irq_setup; info->slave_addr = ipmb; rv = add_smi(info); if (rv) { kfree(info); goto out; } rv = try_smi_init(info); if (rv) { cleanup_one_si(info); goto out; } } else { /* remove */ struct smi_info *e, *tmp_e; mutex_lock(&smi_infos_lock); list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { if (e->io.addr_type != addr_space) continue; if (e->si_type != si_type) continue; if (e->io.addr_data == addr) cleanup_one_si(e); } mutex_unlock(&smi_infos_lock); } } rv = len; out: kfree(str); return rv; } static int hardcode_find_bmc(void) { int ret = -ENODEV; int i; struct smi_info *info; for (i = 0; i < SI_MAX_PARMS; i++) { if (!ports[i] && !addrs[i]) continue; info = smi_info_alloc(); if (!info) return -ENOMEM; info->addr_source = SI_HARDCODED; printk(KERN_INFO PFX "probing via hardcoded address\n"); if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { info->si_type = SI_KCS; } else if (strcmp(si_type[i], "smic") == 0) { info->si_type = SI_SMIC; } else if (strcmp(si_type[i], "bt") == 0) { info->si_type = SI_BT; } else { printk(KERN_WARNING PFX "Interface type specified " "for interface %d, was invalid: %s\n", i, si_type[i]); kfree(info); continue; } if (ports[i]) { /* An I/O port */ info->io_setup = port_setup; info->io.addr_data = ports[i]; info->io.addr_type = IPMI_IO_ADDR_SPACE; } else if (addrs[i]) { /* A memory port */ info->io_setup = mem_setup; info->io.addr_data = addrs[i]; info->io.addr_type = IPMI_MEM_ADDR_SPACE; } else { printk(KERN_WARNING PFX "Interface type specified " "for interface %d, but port and address were " "not set or set to zero.\n", i); kfree(info); continue; } info->io.addr = NULL; info->io.regspacing = regspacings[i]; if (!info->io.regspacing) info->io.regspacing = DEFAULT_REGSPACING; info->io.regsize = regsizes[i]; if (!info->io.regsize) info->io.regsize = DEFAULT_REGSPACING; info->io.regshift = regshifts[i]; info->irq = irqs[i]; if (info->irq) info->irq_setup = std_irq_setup; info->slave_addr = slave_addrs[i]; if (!add_smi(info)) { if (try_smi_init(info)) cleanup_one_si(info); ret = 0; } else { kfree(info); } } return ret; } #ifdef CONFIG_ACPI #include /* * Once we get an ACPI failure, we don't try any more, because we go * through the tables sequentially. Once we don't find a table, there * are no more. */ static int acpi_failure; /* For GPE-type interrupts. */ static u32 ipmi_acpi_gpe(acpi_handle gpe_device, u32 gpe_number, void *context) { struct smi_info *smi_info = context; unsigned long flags; spin_lock_irqsave(&(smi_info->si_lock), flags); smi_inc_stat(smi_info, interrupts); debug_timestamp("ACPI_GPE"); smi_event_handler(smi_info, 0); spin_unlock_irqrestore(&(smi_info->si_lock), flags); return ACPI_INTERRUPT_HANDLED; } static void acpi_gpe_irq_cleanup(struct smi_info *info) { if (!info->irq) return; acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); } static int acpi_gpe_irq_setup(struct smi_info *info) { acpi_status status; if (!info->irq) return 0; status = acpi_install_gpe_handler(NULL, info->irq, ACPI_GPE_LEVEL_TRIGGERED, &ipmi_acpi_gpe, info); if (status != AE_OK) { dev_warn(info->dev, "%s unable to claim ACPI GPE %d," " running polled\n", DEVICE_NAME, info->irq); info->irq = 0; return -EINVAL; } else { info->irq_cleanup = acpi_gpe_irq_cleanup; dev_info(info->dev, "Using ACPI GPE %d\n", info->irq); return 0; } } /* * Defined at * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf */ struct SPMITable { s8 Signature[4]; u32 Length; u8 Revision; u8 Checksum; s8 OEMID[6]; s8 OEMTableID[8]; s8 OEMRevision[4]; s8 CreatorID[4]; s8 CreatorRevision[4]; u8 InterfaceType; u8 IPMIlegacy; s16 SpecificationRevision; /* * Bit 0 - SCI interrupt supported * Bit 1 - I/O APIC/SAPIC */ u8 InterruptType; /* * If bit 0 of InterruptType is set, then this is the SCI * interrupt in the GPEx_STS register. */ u8 GPE; s16 Reserved; /* * If bit 1 of InterruptType is set, then this is the I/O * APIC/SAPIC interrupt. */ u32 GlobalSystemInterrupt; /* The actual register address. */ struct acpi_generic_address addr; u8 UID[4]; s8 spmi_id[1]; /* A '\0' terminated array starts here. */ }; static int try_init_spmi(struct SPMITable *spmi) { struct smi_info *info; int rv; if (spmi->IPMIlegacy != 1) { printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy); return -ENODEV; } info = smi_info_alloc(); if (!info) { printk(KERN_ERR PFX "Could not allocate SI data (3)\n"); return -ENOMEM; } info->addr_source = SI_SPMI; printk(KERN_INFO PFX "probing via SPMI\n"); /* Figure out the interface type. */ switch (spmi->InterfaceType) { case 1: /* KCS */ info->si_type = SI_KCS; break; case 2: /* SMIC */ info->si_type = SI_SMIC; break; case 3: /* BT */ info->si_type = SI_BT; break; case 4: /* SSIF, just ignore */ kfree(info); return -EIO; default: printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n", spmi->InterfaceType); kfree(info); return -EIO; } if (spmi->InterruptType & 1) { /* We've got a GPE interrupt. */ info->irq = spmi->GPE; info->irq_setup = acpi_gpe_irq_setup; } else if (spmi->InterruptType & 2) { /* We've got an APIC/SAPIC interrupt. */ info->irq = spmi->GlobalSystemInterrupt; info->irq_setup = std_irq_setup; } else { /* Use the default interrupt setting. */ info->irq = 0; info->irq_setup = NULL; } if (spmi->addr.bit_width) { /* A (hopefully) properly formed register bit width. */ info->io.regspacing = spmi->addr.bit_width / 8; } else { info->io.regspacing = DEFAULT_REGSPACING; } info->io.regsize = info->io.regspacing; info->io.regshift = spmi->addr.bit_offset; if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { info->io_setup = mem_setup; info->io.addr_type = IPMI_MEM_ADDR_SPACE; } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { info->io_setup = port_setup; info->io.addr_type = IPMI_IO_ADDR_SPACE; } else { kfree(info); printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n"); return -EIO; } info->io.addr_data = spmi->addr.address; pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n", (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", info->io.addr_data, info->io.regsize, info->io.regspacing, info->irq); rv = add_smi(info); if (rv) kfree(info); return rv; } static void spmi_find_bmc(void) { acpi_status status; struct SPMITable *spmi; int i; if (acpi_disabled) return; if (acpi_failure) return; for (i = 0; ; i++) { status = acpi_get_table(ACPI_SIG_SPMI, i+1, (struct acpi_table_header **)&spmi); if (status != AE_OK) return; try_init_spmi(spmi); } } #endif #ifdef CONFIG_DMI struct dmi_ipmi_data { u8 type; u8 addr_space; unsigned long base_addr; u8 irq; u8 offset; u8 slave_addr; }; static int decode_dmi(const struct dmi_header *dm, struct dmi_ipmi_data *dmi) { const u8 *data = (const u8 *)dm; unsigned long base_addr; u8 reg_spacing; u8 len = dm->length; dmi->type = data[4]; memcpy(&base_addr, data+8, sizeof(unsigned long)); if (len >= 0x11) { if (base_addr & 1) { /* I/O */ base_addr &= 0xFFFE; dmi->addr_space = IPMI_IO_ADDR_SPACE; } else /* Memory */ dmi->addr_space = IPMI_MEM_ADDR_SPACE; /* If bit 4 of byte 0x10 is set, then the lsb for the address is odd. */ dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); dmi->irq = data[0x11]; /* The top two bits of byte 0x10 hold the register spacing. */ reg_spacing = (data[0x10] & 0xC0) >> 6; switch (reg_spacing) { case 0x00: /* Byte boundaries */ dmi->offset = 1; break; case 0x01: /* 32-bit boundaries */ dmi->offset = 4; break; case 0x02: /* 16-byte boundaries */ dmi->offset = 16; break; default: /* Some other interface, just ignore it. */ return -EIO; } } else { /* Old DMI spec. */ /* * Note that technically, the lower bit of the base * address should be 1 if the address is I/O and 0 if * the address is in memory. So many systems get that * wrong (and all that I have seen are I/O) so we just * ignore that bit and assume I/O. Systems that use * memory should use the newer spec, anyway. */ dmi->base_addr = base_addr & 0xfffe; dmi->addr_space = IPMI_IO_ADDR_SPACE; dmi->offset = 1; } dmi->slave_addr = data[6]; return 0; } static void try_init_dmi(struct dmi_ipmi_data *ipmi_data) { struct smi_info *info; info = smi_info_alloc(); if (!info) { printk(KERN_ERR PFX "Could not allocate SI data\n"); return; } info->addr_source = SI_SMBIOS; printk(KERN_INFO PFX "probing via SMBIOS\n"); switch (ipmi_data->type) { case 0x01: /* KCS */ info->si_type = SI_KCS; break; case 0x02: /* SMIC */ info->si_type = SI_SMIC; break; case 0x03: /* BT */ info->si_type = SI_BT; break; default: kfree(info); return; } switch (ipmi_data->addr_space) { case IPMI_MEM_ADDR_SPACE: info->io_setup = mem_setup; info->io.addr_type = IPMI_MEM_ADDR_SPACE; break; case IPMI_IO_ADDR_SPACE: info->io_setup = port_setup; info->io.addr_type = IPMI_IO_ADDR_SPACE; break; default: kfree(info); printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n", ipmi_data->addr_space); return; } info->io.addr_data = ipmi_data->base_addr; info->io.regspacing = ipmi_data->offset; if (!info->io.regspacing) info->io.regspacing = DEFAULT_REGSPACING; info->io.regsize = DEFAULT_REGSPACING; info->io.regshift = 0; info->slave_addr = ipmi_data->slave_addr; info->irq = ipmi_data->irq; if (info->irq) info->irq_setup = std_irq_setup; pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n", (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", info->io.addr_data, info->io.regsize, info->io.regspacing, info->irq); if (add_smi(info)) kfree(info); } static void dmi_find_bmc(void) { const struct dmi_device *dev = NULL; struct dmi_ipmi_data data; int rv; while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { memset(&data, 0, sizeof(data)); rv = decode_dmi((const struct dmi_header *) dev->device_data, &data); if (!rv) try_init_dmi(&data); } } #endif /* CONFIG_DMI */ #ifdef CONFIG_PCI #define PCI_ERMC_CLASSCODE 0x0C0700 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 #define PCI_HP_VENDOR_ID 0x103C #define PCI_MMC_DEVICE_ID 0x121A #define PCI_MMC_ADDR_CW 0x10 static void ipmi_pci_cleanup(struct smi_info *info) { struct pci_dev *pdev = info->addr_source_data; pci_disable_device(pdev); } static int ipmi_pci_probe_regspacing(struct smi_info *info) { if (info->si_type == SI_KCS) { unsigned char status; int regspacing; info->io.regsize = DEFAULT_REGSIZE; info->io.regshift = 0; info->io_size = 2; info->handlers = &kcs_smi_handlers; /* detect 1, 4, 16byte spacing */ for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) { info->io.regspacing = regspacing; if (info->io_setup(info)) { dev_err(info->dev, "Could not setup I/O space\n"); return DEFAULT_REGSPACING; } /* write invalid cmd */ info->io.outputb(&info->io, 1, 0x10); /* read status back */ status = info->io.inputb(&info->io, 1); info->io_cleanup(info); if (status) return regspacing; regspacing *= 4; } } return DEFAULT_REGSPACING; } static int ipmi_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { int rv; int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; struct smi_info *info; info = smi_info_alloc(); if (!info) return -ENOMEM; info->addr_source = SI_PCI; dev_info(&pdev->dev, "probing via PCI"); switch (class_type) { case PCI_ERMC_CLASSCODE_TYPE_SMIC: info->si_type = SI_SMIC; break; case PCI_ERMC_CLASSCODE_TYPE_KCS: info->si_type = SI_KCS; break; case PCI_ERMC_CLASSCODE_TYPE_BT: info->si_type = SI_BT; break; default: kfree(info); dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type); return -ENOMEM; } rv = pci_enable_device(pdev); if (rv) { dev_err(&pdev->dev, "couldn't enable PCI device\n"); kfree(info); return rv; } info->addr_source_cleanup = ipmi_pci_cleanup; info->addr_source_data = pdev; if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { info->io_setup = port_setup; info->io.addr_type = IPMI_IO_ADDR_SPACE; } else { info->io_setup = mem_setup; info->io.addr_type = IPMI_MEM_ADDR_SPACE; } info->io.addr_data = pci_resource_start(pdev, 0); info->io.regspacing = ipmi_pci_probe_regspacing(info); info->io.regsize = DEFAULT_REGSIZE; info->io.regshift = 0; info->irq = pdev->irq; if (info->irq) info->irq_setup = std_irq_setup; info->dev = &pdev->dev; pci_set_drvdata(pdev, info); dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n", &pdev->resource[0], info->io.regsize, info->io.regspacing, info->irq); rv = add_smi(info); if (rv) { kfree(info); pci_disable_device(pdev); } return rv; } static void ipmi_pci_remove(struct pci_dev *pdev) { struct smi_info *info = pci_get_drvdata(pdev); cleanup_one_si(info); pci_disable_device(pdev); } static const struct pci_device_id ipmi_pci_devices[] = { { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }, { 0, } }; MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); static struct pci_driver ipmi_pci_driver = { .name = DEVICE_NAME, .id_table = ipmi_pci_devices, .probe = ipmi_pci_probe, .remove = ipmi_pci_remove, }; #endif /* CONFIG_PCI */ #ifdef CONFIG_OF static const struct of_device_id of_ipmi_match[] = { { .type = "ipmi", .compatible = "ipmi-kcs", .data = (void *)(unsigned long) SI_KCS }, { .type = "ipmi", .compatible = "ipmi-smic", .data = (void *)(unsigned long) SI_SMIC }, { .type = "ipmi", .compatible = "ipmi-bt", .data = (void *)(unsigned long) SI_BT }, {}, }; MODULE_DEVICE_TABLE(of, of_ipmi_match); static int of_ipmi_probe(struct platform_device *dev) { const struct of_device_id *match; struct smi_info *info; struct resource resource; const __be32 *regsize, *regspacing, *regshift; struct device_node *np = dev->dev.of_node; int ret; int proplen; dev_info(&dev->dev, "probing via device tree\n"); match = of_match_device(of_ipmi_match, &dev->dev); if (!match) return -ENODEV; if (!of_device_is_available(np)) return -EINVAL; ret = of_address_to_resource(np, 0, &resource); if (ret) { dev_warn(&dev->dev, PFX "invalid address from OF\n"); return ret; } regsize = of_get_property(np, "reg-size", &proplen); if (regsize && proplen != 4) { dev_warn(&dev->dev, PFX "invalid regsize from OF\n"); return -EINVAL; } regspacing = of_get_property(np, "reg-spacing", &proplen); if (regspacing && proplen != 4) { dev_warn(&dev->dev, PFX "invalid regspacing from OF\n"); return -EINVAL; } regshift = of_get_property(np, "reg-shift", &proplen); if (regshift && proplen != 4) { dev_warn(&dev->dev, PFX "invalid regshift from OF\n"); return -EINVAL; } info = smi_info_alloc(); if (!info) { dev_err(&dev->dev, "could not allocate memory for OF probe\n"); return -ENOMEM; } info->si_type = (enum si_type) match->data; info->addr_source = SI_DEVICETREE; info->irq_setup = std_irq_setup; if (resource.flags & IORESOURCE_IO) { info->io_setup = port_setup; info->io.addr_type = IPMI_IO_ADDR_SPACE; } else { info->io_setup = mem_setup; info->io.addr_type = IPMI_MEM_ADDR_SPACE; } info->io.addr_data = resource.start; info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE; info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING; info->io.regshift = regshift ? be32_to_cpup(regshift) : 0; info->irq = irq_of_parse_and_map(dev->dev.of_node, 0); info->dev = &dev->dev; dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n", info->io.addr_data, info->io.regsize, info->io.regspacing, info->irq); dev_set_drvdata(&dev->dev, info); ret = add_smi(info); if (ret) { kfree(info); return ret; } return 0; } #else #define of_ipmi_match NULL static int of_ipmi_probe(struct platform_device *dev) { return -ENODEV; } #endif #ifdef CONFIG_ACPI static int acpi_ipmi_probe(struct platform_device *dev) { struct smi_info *info; struct resource *res, *res_second; acpi_handle handle; acpi_status status; unsigned long long tmp; int rv = -EINVAL; handle = ACPI_HANDLE(&dev->dev); if (!handle) return -ENODEV; info = smi_info_alloc(); if (!info) return -ENOMEM; info->addr_source = SI_ACPI; dev_info(&dev->dev, PFX "probing via ACPI\n"); info->addr_info.acpi_info.acpi_handle = handle; /* _IFT tells us the interface type: KCS, BT, etc */ status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp); if (ACPI_FAILURE(status)) { dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n"); goto err_free; } switch (tmp) { case 1: info->si_type = SI_KCS; break; case 2: info->si_type = SI_SMIC; break; case 3: info->si_type = SI_BT; break; case 4: /* SSIF, just ignore */ rv = -ENODEV; goto err_free; default: dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp); goto err_free; } res = platform_get_resource(dev, IORESOURCE_IO, 0); if (res) { info->io_setup = port_setup; info->io.addr_type = IPMI_IO_ADDR_SPACE; } else { res = platform_get_resource(dev, IORESOURCE_MEM, 0); if (res) { info->io_setup = mem_setup; info->io.addr_type = IPMI_MEM_ADDR_SPACE; } } if (!res) { dev_err(&dev->dev, "no I/O or memory address\n"); goto err_free; } info->io.addr_data = res->start; info->io.regspacing = DEFAULT_REGSPACING; res_second = platform_get_resource(dev, (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? IORESOURCE_IO : IORESOURCE_MEM, 1); if (res_second) { if (res_second->start > info->io.addr_data) info->io.regspacing = res_second->start - info->io.addr_data; } info->io.regsize = DEFAULT_REGSPACING; info->io.regshift = 0; /* If _GPE exists, use it; otherwise use standard interrupts */ status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); if (ACPI_SUCCESS(status)) { info->irq = tmp; info->irq_setup = acpi_gpe_irq_setup; } else { int irq = platform_get_irq(dev, 0); if (irq > 0) { info->irq = irq; info->irq_setup = std_irq_setup; } } info->dev = &dev->dev; platform_set_drvdata(dev, info); dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n", res, info->io.regsize, info->io.regspacing, info->irq); rv = add_smi(info); if (rv) kfree(info); return rv; err_free: kfree(info); return rv; } static const struct acpi_device_id acpi_ipmi_match[] = { { "IPI0001", 0 }, { }, }; MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match); #else static int acpi_ipmi_probe(struct platform_device *dev) { return -ENODEV; } #endif static int ipmi_probe(struct platform_device *dev) { if (of_ipmi_probe(dev) == 0) return 0; return acpi_ipmi_probe(dev); } static int ipmi_remove(struct platform_device *dev) { struct smi_info *info = dev_get_drvdata(&dev->dev); cleanup_one_si(info); return 0; } static struct platform_driver ipmi_driver = { .driver = { .name = DEVICE_NAME, .of_match_table = of_ipmi_match, .acpi_match_table = ACPI_PTR(acpi_ipmi_match), }, .probe = ipmi_probe, .remove = ipmi_remove, }; #ifdef CONFIG_PARISC static int ipmi_parisc_probe(struct parisc_device *dev) { struct smi_info *info; int rv; info = smi_info_alloc(); if (!info) { dev_err(&dev->dev, "could not allocate memory for PARISC probe\n"); return -ENOMEM; } info->si_type = SI_KCS; info->addr_source = SI_DEVICETREE; info->io_setup = mem_setup; info->io.addr_type = IPMI_MEM_ADDR_SPACE; info->io.addr_data = dev->hpa.start; info->io.regsize = 1; info->io.regspacing = 1; info->io.regshift = 0; info->irq = 0; /* no interrupt */ info->irq_setup = NULL; info->dev = &dev->dev; dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data); dev_set_drvdata(&dev->dev, info); rv = add_smi(info); if (rv) { kfree(info); return rv; } return 0; } static int ipmi_parisc_remove(struct parisc_device *dev) { cleanup_one_si(dev_get_drvdata(&dev->dev)); return 0; } static struct parisc_device_id ipmi_parisc_tbl[] = { { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 }, { 0, } }; static struct parisc_driver ipmi_parisc_driver = { .name = "ipmi", .id_table = ipmi_parisc_tbl, .probe = ipmi_parisc_probe, .remove = ipmi_parisc_remove, }; #endif /* CONFIG_PARISC */ static int wait_for_msg_done(struct smi_info *smi_info) { enum si_sm_result smi_result; smi_result = smi_info->handlers->event(smi_info->si_sm, 0); for (;;) { if (smi_result == SI_SM_CALL_WITH_DELAY || smi_result == SI_SM_CALL_WITH_TICK_DELAY) { schedule_timeout_uninterruptible(1); smi_result = smi_info->handlers->event( smi_info->si_sm, jiffies_to_usecs(1)); } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { smi_result = smi_info->handlers->event( smi_info->si_sm, 0); } else break; } if (smi_result == SI_SM_HOSED) /* * We couldn't get the state machine to run, so whatever's at * the port is probably not an IPMI SMI interface. */ return -ENODEV; return 0; } static int try_get_dev_id(struct smi_info *smi_info) { unsigned char msg[2]; unsigned char *resp; unsigned long resp_len; int rv = 0; resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); if (!resp) return -ENOMEM; /* * Do a Get Device ID command, since it comes back with some * useful info. */ msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[1] = IPMI_GET_DEVICE_ID_CMD; smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); rv = wait_for_msg_done(smi_info); if (rv) goto out; resp_len = smi_info->handlers->get_result(smi_info->si_sm, resp, IPMI_MAX_MSG_LENGTH); /* Check and record info from the get device id, in case we need it. */ rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id); out: kfree(resp); return rv; } static int get_global_enables(struct smi_info *smi_info, u8 *enables) { unsigned char msg[3]; unsigned char *resp; unsigned long resp_len; int rv; resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); if (!resp) return -ENOMEM; msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); rv = wait_for_msg_done(smi_info); if (rv) { dev_warn(smi_info->dev, "Error getting response from get global enables command: %d\n", rv); goto out; } resp_len = smi_info->handlers->get_result(smi_info->si_sm, resp, IPMI_MAX_MSG_LENGTH); if (resp_len < 4 || resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || resp[2] != 0) { dev_warn(smi_info->dev, "Invalid return from get global enables command: %ld %x %x %x\n", resp_len, resp[0], resp[1], resp[2]); rv = -EINVAL; goto out; } else { *enables = resp[3]; } out: kfree(resp); return rv; } /* * Returns 1 if it gets an error from the command. */ static int set_global_enables(struct smi_info *smi_info, u8 enables) { unsigned char msg[3]; unsigned char *resp; unsigned long resp_len; int rv; resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); if (!resp) return -ENOMEM; msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; msg[2] = enables; smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); rv = wait_for_msg_done(smi_info); if (rv) { dev_warn(smi_info->dev, "Error getting response from set global enables command: %d\n", rv); goto out; } resp_len = smi_info->handlers->get_result(smi_info->si_sm, resp, IPMI_MAX_MSG_LENGTH); if (resp_len < 3 || resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { dev_warn(smi_info->dev, "Invalid return from set global enables command: %ld %x %x\n", resp_len, resp[0], resp[1]); rv = -EINVAL; goto out; } if (resp[2] != 0) rv = 1; out: kfree(resp); return rv; } /* * Some BMCs do not support clearing the receive irq bit in the global * enables (even if they don't support interrupts on the BMC). Check * for this and handle it properly. */ static void check_clr_rcv_irq(struct smi_info *smi_info) { u8 enables = 0; int rv; rv = get_global_enables(smi_info, &enables); if (!rv) { if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0) /* Already clear, should work ok. */ return; enables &= ~IPMI_BMC_RCV_MSG_INTR; rv = set_global_enables(smi_info, enables); } if (rv < 0) { dev_err(smi_info->dev, "Cannot check clearing the rcv irq: %d\n", rv); return; } if (rv) { /* * An error when setting the event buffer bit means * clearing the bit is not supported. */ dev_warn(smi_info->dev, "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n"); smi_info->cannot_disable_irq = true; } } /* * Some BMCs do not support setting the interrupt bits in the global * enables even if they support interrupts. Clearly bad, but we can * compensate. */ static void check_set_rcv_irq(struct smi_info *smi_info) { u8 enables = 0; int rv; if (!smi_info->irq) return; rv = get_global_enables(smi_info, &enables); if (!rv) { enables |= IPMI_BMC_RCV_MSG_INTR; rv = set_global_enables(smi_info, enables); } if (rv < 0) { dev_err(smi_info->dev, "Cannot check setting the rcv irq: %d\n", rv); return; } if (rv) { /* * An error when setting the event buffer bit means * setting the bit is not supported. */ dev_warn(smi_info->dev, "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n"); smi_info->cannot_disable_irq = true; smi_info->irq_enable_broken = true; } } static int try_enable_event_buffer(struct smi_info *smi_info) { unsigned char msg[3]; unsigned char *resp; unsigned long resp_len; int rv = 0; resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); if (!resp) return -ENOMEM; msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); rv = wait_for_msg_done(smi_info); if (rv) { printk(KERN_WARNING PFX "Error getting response from get" " global enables command, the event buffer is not" " enabled.\n"); goto out; } resp_len = smi_info->handlers->get_result(smi_info->si_sm, resp, IPMI_MAX_MSG_LENGTH); if (resp_len < 4 || resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || resp[2] != 0) { printk(KERN_WARNING PFX "Invalid return from get global" " enables command, cannot enable the event buffer.\n"); rv = -EINVAL; goto out; } if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) { /* buffer is already enabled, nothing to do. */ smi_info->supports_event_msg_buff = true; goto out; } msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); rv = wait_for_msg_done(smi_info); if (rv) { printk(KERN_WARNING PFX "Error getting response from set" " global, enables command, the event buffer is not" " enabled.\n"); goto out; } resp_len = smi_info->handlers->get_result(smi_info->si_sm, resp, IPMI_MAX_MSG_LENGTH); if (resp_len < 3 || resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { printk(KERN_WARNING PFX "Invalid return from get global," "enables command, not enable the event buffer.\n"); rv = -EINVAL; goto out; } if (resp[2] != 0) /* * An error when setting the event buffer bit means * that the event buffer is not supported. */ rv = -ENOENT; else smi_info->supports_event_msg_buff = true; out: kfree(resp); return rv; } static int smi_type_proc_show(struct seq_file *m, void *v) { struct smi_info *smi = m->private; seq_printf(m, "%s\n", si_to_str[smi->si_type]); return 0; } static int smi_type_proc_open(struct inode *inode, struct file *file) { return single_open(file, smi_type_proc_show, PDE_DATA(inode)); } static const struct file_operations smi_type_proc_ops = { .open = smi_type_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int smi_si_stats_proc_show(struct seq_file *m, void *v) { struct smi_info *smi = m->private; seq_printf(m, "interrupts_enabled: %d\n", smi->irq && !smi->interrupt_disabled); seq_printf(m, "short_timeouts: %u\n", smi_get_stat(smi, short_timeouts)); seq_printf(m, "long_timeouts: %u\n", smi_get_stat(smi, long_timeouts)); seq_printf(m, "idles: %u\n", smi_get_stat(smi, idles)); seq_printf(m, "interrupts: %u\n", smi_get_stat(smi, interrupts)); seq_printf(m, "attentions: %u\n", smi_get_stat(smi, attentions)); seq_printf(m, "flag_fetches: %u\n", smi_get_stat(smi, flag_fetches)); seq_printf(m, "hosed_count: %u\n", smi_get_stat(smi, hosed_count)); seq_printf(m, "complete_transactions: %u\n", smi_get_stat(smi, complete_transactions)); seq_printf(m, "events: %u\n", smi_get_stat(smi, events)); seq_printf(m, "watchdog_pretimeouts: %u\n", smi_get_stat(smi, watchdog_pretimeouts)); seq_printf(m, "incoming_messages: %u\n", smi_get_stat(smi, incoming_messages)); return 0; } static int smi_si_stats_proc_open(struct inode *inode, struct file *file) { return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode)); } static const struct file_operations smi_si_stats_proc_ops = { .open = smi_si_stats_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int smi_params_proc_show(struct seq_file *m, void *v) { struct smi_info *smi = m->private; seq_printf(m, "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", si_to_str[smi->si_type], addr_space_to_str[smi->io.addr_type], smi->io.addr_data, smi->io.regspacing, smi->io.regsize, smi->io.regshift, smi->irq, smi->slave_addr); return 0; } static int smi_params_proc_open(struct inode *inode, struct file *file) { return single_open(file, smi_params_proc_show, PDE_DATA(inode)); } static const struct file_operations smi_params_proc_ops = { .open = smi_params_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; /* * oem_data_avail_to_receive_msg_avail * @info - smi_info structure with msg_flags set * * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL * Returns 1 indicating need to re-run handle_flags(). */ static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) { smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | RECEIVE_MSG_AVAIL); return 1; } /* * setup_dell_poweredge_oem_data_handler * @info - smi_info.device_id must be populated * * Systems that match, but have firmware version < 1.40 may assert * OEM0_DATA_AVAIL on their own, without being told via Set Flags that * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags * as RECEIVE_MSG_AVAIL instead. * * As Dell has no plans to release IPMI 1.5 firmware that *ever* * assert the OEM[012] bits, and if it did, the driver would have to * change to handle that properly, we don't actually check for the * firmware version. * Device ID = 0x20 BMC on PowerEdge 8G servers * Device Revision = 0x80 * Firmware Revision1 = 0x01 BMC version 1.40 * Firmware Revision2 = 0x40 BCD encoded * IPMI Version = 0x51 IPMI 1.5 * Manufacturer ID = A2 02 00 Dell IANA * * Additionally, PowerEdge systems with IPMI < 1.5 may also assert * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. * */ #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 #define DELL_IANA_MFR_ID 0x0002a2 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) { struct ipmi_device_id *id = &smi_info->device_id; if (id->manufacturer_id == DELL_IANA_MFR_ID) { if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { smi_info->oem_data_avail_handler = oem_data_avail_to_receive_msg_avail; } else if (ipmi_version_major(id) < 1 || (ipmi_version_major(id) == 1 && ipmi_version_minor(id) < 5)) { smi_info->oem_data_avail_handler = oem_data_avail_to_receive_msg_avail; } } } #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA static void return_hosed_msg_badsize(struct smi_info *smi_info) { struct ipmi_smi_msg *msg = smi_info->curr_msg; /* Make it a response */ msg->rsp[0] = msg->data[0] | 4; msg->rsp[1] = msg->data[1]; msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; msg->rsp_size = 3; smi_info->curr_msg = NULL; deliver_recv_msg(smi_info, msg); } /* * dell_poweredge_bt_xaction_handler * @info - smi_info.device_id must be populated * * Dell PowerEdge servers with the BT interface (x6xx and 1750) will * not respond to a Get SDR command if the length of the data * requested is exactly 0x3A, which leads to command timeouts and no * data returned. This intercepts such commands, and causes userspace * callers to try again with a different-sized buffer, which succeeds. */ #define STORAGE_NETFN 0x0A #define STORAGE_CMD_GET_SDR 0x23 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, unsigned long unused, void *in) { struct smi_info *smi_info = in; unsigned char *data = smi_info->curr_msg->data; unsigned int size = smi_info->curr_msg->data_size; if (size >= 8 && (data[0]>>2) == STORAGE_NETFN && data[1] == STORAGE_CMD_GET_SDR && data[7] == 0x3A) { return_hosed_msg_badsize(smi_info); return NOTIFY_STOP; } return NOTIFY_DONE; } static struct notifier_block dell_poweredge_bt_xaction_notifier = { .notifier_call = dell_poweredge_bt_xaction_handler, }; /* * setup_dell_poweredge_bt_xaction_handler * @info - smi_info.device_id must be filled in already * * Fills in smi_info.device_id.start_transaction_pre_hook * when we know what function to use there. */ static void setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) { struct ipmi_device_id *id = &smi_info->device_id; if (id->manufacturer_id == DELL_IANA_MFR_ID && smi_info->si_type == SI_BT) register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); } /* * setup_oem_data_handler * @info - smi_info.device_id must be filled in already * * Fills in smi_info.device_id.oem_data_available_handler * when we know what function to use there. */ static void setup_oem_data_handler(struct smi_info *smi_info) { setup_dell_poweredge_oem_data_handler(smi_info); } static void setup_xaction_handlers(struct smi_info *smi_info) { setup_dell_poweredge_bt_xaction_handler(smi_info); } static void check_for_broken_irqs(struct smi_info *smi_info) { check_clr_rcv_irq(smi_info); check_set_rcv_irq(smi_info); } static inline void stop_timer_and_thread(struct smi_info *smi_info) { if (smi_info->thread != NULL) kthread_stop(smi_info->thread); smi_info->timer_can_start = false; if (smi_info->timer_running) del_timer_sync(&smi_info->si_timer); } static const struct ipmi_default_vals { int type; int port; } ipmi_defaults[] = { { .type = SI_KCS, .port = 0xca2 }, { .type = SI_SMIC, .port = 0xca9 }, { .type = SI_BT, .port = 0xe4 }, { .port = 0 } }; static void default_find_bmc(void) { struct smi_info *info; int i; for (i = 0; ; i++) { if (!ipmi_defaults[i].port) break; #ifdef CONFIG_PPC if (check_legacy_ioport(ipmi_defaults[i].port)) continue; #endif info = smi_info_alloc(); if (!info) return; info->addr_source = SI_DEFAULT; info->si_type = ipmi_defaults[i].type; info->io_setup = port_setup; info->io.addr_data = ipmi_defaults[i].port; info->io.addr_type = IPMI_IO_ADDR_SPACE; info->io.addr = NULL; info->io.regspacing = DEFAULT_REGSPACING; info->io.regsize = DEFAULT_REGSPACING; info->io.regshift = 0; if (add_smi(info) == 0) { if ((try_smi_init(info)) == 0) { /* Found one... */ printk(KERN_INFO PFX "Found default %s" " state machine at %s address 0x%lx\n", si_to_str[info->si_type], addr_space_to_str[info->io.addr_type], info->io.addr_data); } else cleanup_one_si(info); } else { kfree(info); } } } static int is_new_interface(struct smi_info *info) { struct smi_info *e; list_for_each_entry(e, &smi_infos, link) { if (e->io.addr_type != info->io.addr_type) continue; if (e->io.addr_data == info->io.addr_data) return 0; } return 1; } static int add_smi(struct smi_info *new_smi) { int rv = 0; printk(KERN_INFO PFX "Adding %s-specified %s state machine", ipmi_addr_src_to_str(new_smi->addr_source), si_to_str[new_smi->si_type]); mutex_lock(&smi_infos_lock); if (!is_new_interface(new_smi)) { printk(KERN_CONT " duplicate interface\n"); rv = -EBUSY; goto out_err; } printk(KERN_CONT "\n"); /* So we know not to free it unless we have allocated one. */ new_smi->intf = NULL; new_smi->si_sm = NULL; new_smi->handlers = NULL; list_add_tail(&new_smi->link, &smi_infos); out_err: mutex_unlock(&smi_infos_lock); return rv; } static int try_smi_init(struct smi_info *new_smi) { int rv = 0; int i; printk(KERN_INFO PFX "Trying %s-specified %s state" " machine at %s address 0x%lx, slave address 0x%x," " irq %d\n", ipmi_addr_src_to_str(new_smi->addr_source), si_to_str[new_smi->si_type], addr_space_to_str[new_smi->io.addr_type], new_smi->io.addr_data, new_smi->slave_addr, new_smi->irq); switch (new_smi->si_type) { case SI_KCS: new_smi->handlers = &kcs_smi_handlers; break; case SI_SMIC: new_smi->handlers = &smic_smi_handlers; break; case SI_BT: new_smi->handlers = &bt_smi_handlers; break; default: /* No support for anything else yet. */ rv = -EIO; goto out_err; } /* Allocate the state machine's data and initialize it. */ new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); if (!new_smi->si_sm) { printk(KERN_ERR PFX "Could not allocate state machine memory\n"); rv = -ENOMEM; goto out_err; } new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, &new_smi->io); /* Now that we know the I/O size, we can set up the I/O. */ rv = new_smi->io_setup(new_smi); if (rv) { printk(KERN_ERR PFX "Could not set up I/O space\n"); goto out_err; } /* Do low-level detection first. */ if (new_smi->handlers->detect(new_smi->si_sm)) { if (new_smi->addr_source) printk(KERN_INFO PFX "Interface detection failed\n"); rv = -ENODEV; goto out_err; } /* * Attempt a get device id command. If it fails, we probably * don't have a BMC here. */ rv = try_get_dev_id(new_smi); if (rv) { if (new_smi->addr_source) printk(KERN_INFO PFX "There appears to be no BMC" " at this location\n"); goto out_err; } setup_oem_data_handler(new_smi); setup_xaction_handlers(new_smi); check_for_broken_irqs(new_smi); new_smi->waiting_msg = NULL; new_smi->curr_msg = NULL; atomic_set(&new_smi->req_events, 0); new_smi->run_to_completion = false; for (i = 0; i < SI_NUM_STATS; i++) atomic_set(&new_smi->stats[i], 0); new_smi->interrupt_disabled = true; atomic_set(&new_smi->need_watch, 0); new_smi->intf_num = smi_num; smi_num++; rv = try_enable_event_buffer(new_smi); if (rv == 0) new_smi->has_event_buffer = true; /* * Start clearing the flags before we enable interrupts or the * timer to avoid racing with the timer. */ start_clear_flags(new_smi); /* * IRQ is defined to be set when non-zero. req_events will * cause a global flags check that will enable interrupts. */ if (new_smi->irq) { new_smi->interrupt_disabled = false; atomic_set(&new_smi->req_events, 1); } if (!new_smi->dev) { /* * If we don't already have a device from something * else (like PCI), then register a new one. */ new_smi->pdev = platform_device_alloc("ipmi_si", new_smi->intf_num); if (!new_smi->pdev) { printk(KERN_ERR PFX "Unable to allocate platform device\n"); goto out_err; } new_smi->dev = &new_smi->pdev->dev; new_smi->dev->driver = &ipmi_driver.driver; rv = platform_device_add(new_smi->pdev); if (rv) { printk(KERN_ERR PFX "Unable to register system interface device:" " %d\n", rv); goto out_err; } new_smi->dev_registered = true; } rv = ipmi_register_smi(&handlers, new_smi, &new_smi->device_id, new_smi->dev, new_smi->slave_addr); if (rv) { dev_err(new_smi->dev, "Unable to register device: error %d\n", rv); goto out_err_stop_timer; } rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", &smi_type_proc_ops, new_smi); if (rv) { dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); goto out_err_stop_timer; } rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", &smi_si_stats_proc_ops, new_smi); if (rv) { dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); goto out_err_stop_timer; } rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", &smi_params_proc_ops, new_smi); if (rv) { dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); goto out_err_stop_timer; } dev_info(new_smi->dev, "IPMI %s interface initialized\n", si_to_str[new_smi->si_type]); return 0; out_err_stop_timer: stop_timer_and_thread(new_smi); out_err: new_smi->interrupt_disabled = true; if (new_smi->intf) { ipmi_smi_t intf = new_smi->intf; new_smi->intf = NULL; ipmi_unregister_smi(intf); } if (new_smi->irq_cleanup) { new_smi->irq_cleanup(new_smi); new_smi->irq_cleanup = NULL; } /* * Wait until we know that we are out of any interrupt * handlers might have been running before we freed the * interrupt. */ synchronize_sched(); if (new_smi->si_sm) { if (new_smi->handlers) new_smi->handlers->cleanup(new_smi->si_sm); kfree(new_smi->si_sm); new_smi->si_sm = NULL; } if (new_smi->addr_source_cleanup) { new_smi->addr_source_cleanup(new_smi); new_smi->addr_source_cleanup = NULL; } if (new_smi->io_cleanup) { new_smi->io_cleanup(new_smi); new_smi->io_cleanup = NULL; } if (new_smi->dev_registered) { platform_device_unregister(new_smi->pdev); new_smi->dev_registered = false; } return rv; } static int init_ipmi_si(void) { int i; char *str; int rv; struct smi_info *e; enum ipmi_addr_src type = SI_INVALID; if (initialized) return 0; initialized = 1; if (si_tryplatform) { rv = platform_driver_register(&ipmi_driver); if (rv) { printk(KERN_ERR PFX "Unable to register " "driver: %d\n", rv); return rv; } } /* Parse out the si_type string into its components. */ str = si_type_str; if (*str != '\0') { for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { si_type[i] = str; str = strchr(str, ','); if (str) { *str = '\0'; str++; } else { break; } } } printk(KERN_INFO "IPMI System Interface driver.\n"); /* If the user gave us a device, they presumably want us to use it */ if (!hardcode_find_bmc()) return 0; #ifdef CONFIG_PCI if (si_trypci) { rv = pci_register_driver(&ipmi_pci_driver); if (rv) printk(KERN_ERR PFX "Unable to register " "PCI driver: %d\n", rv); else pci_registered = true; } #endif #ifdef CONFIG_DMI if (si_trydmi) dmi_find_bmc(); #endif #ifdef CONFIG_ACPI if (si_tryacpi) spmi_find_bmc(); #endif #ifdef CONFIG_PARISC register_parisc_driver(&ipmi_parisc_driver); parisc_registered = true; /* poking PC IO addresses will crash machine, don't do it */ si_trydefaults = 0; #endif /* We prefer devices with interrupts, but in the case of a machine with multiple BMCs we assume that there will be several instances of a given type so if we succeed in registering a type then also try to register everything else of the same type */ mutex_lock(&smi_infos_lock); list_for_each_entry(e, &smi_infos, link) { /* Try to register a device if it has an IRQ and we either haven't successfully registered a device yet or this device has the same type as one we successfully registered */ if (e->irq && (!type || e->addr_source == type)) { if (!try_smi_init(e)) { type = e->addr_source; } } } /* type will only have been set if we successfully registered an si */ if (type) { mutex_unlock(&smi_infos_lock); return 0; } /* Fall back to the preferred device */ list_for_each_entry(e, &smi_infos, link) { if (!e->irq && (!type || e->addr_source == type)) { if (!try_smi_init(e)) { type = e->addr_source; } } } mutex_unlock(&smi_infos_lock); if (type) return 0; if (si_trydefaults) { mutex_lock(&smi_infos_lock); if (list_empty(&smi_infos)) { /* No BMC was found, try defaults. */ mutex_unlock(&smi_infos_lock); default_find_bmc(); } else mutex_unlock(&smi_infos_lock); } mutex_lock(&smi_infos_lock); if (unload_when_empty && list_empty(&smi_infos)) { mutex_unlock(&smi_infos_lock); cleanup_ipmi_si(); printk(KERN_WARNING PFX "Unable to find any System Interface(s)\n"); return -ENODEV; } else { mutex_unlock(&smi_infos_lock); return 0; } } module_init(init_ipmi_si); static void cleanup_one_si(struct smi_info *to_clean) { int rv = 0; if (!to_clean) return; if (to_clean->intf) { ipmi_smi_t intf = to_clean->intf; to_clean->intf = NULL; rv = ipmi_unregister_smi(intf); if (rv) { pr_err(PFX "Unable to unregister device: errno=%d\n", rv); } } if (to_clean->dev) dev_set_drvdata(to_clean->dev, NULL); list_del(&to_clean->link); /* * Make sure that interrupts, the timer and the thread are * stopped and will not run again. */ if (to_clean->irq_cleanup) to_clean->irq_cleanup(to_clean); stop_timer_and_thread(to_clean); /* * Timeouts are stopped, now make sure the interrupts are off * in the BMC. Note that timers and CPU interrupts are off, * so no need for locks. */ while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { poll(to_clean); schedule_timeout_uninterruptible(1); } disable_si_irq(to_clean); while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { poll(to_clean); schedule_timeout_uninterruptible(1); } if (to_clean->handlers) to_clean->handlers->cleanup(to_clean->si_sm); kfree(to_clean->si_sm); if (to_clean->addr_source_cleanup) to_clean->addr_source_cleanup(to_clean); if (to_clean->io_cleanup) to_clean->io_cleanup(to_clean); if (to_clean->dev_registered) platform_device_unregister(to_clean->pdev); kfree(to_clean); } static void cleanup_ipmi_si(void) { struct smi_info *e, *tmp_e; if (!initialized) return; #ifdef CONFIG_PCI if (pci_registered) pci_unregister_driver(&ipmi_pci_driver); #endif #ifdef CONFIG_PARISC if (parisc_registered) unregister_parisc_driver(&ipmi_parisc_driver); #endif platform_driver_unregister(&ipmi_driver); mutex_lock(&smi_infos_lock); list_for_each_entry_safe(e, tmp_e, &smi_infos, link) cleanup_one_si(e); mutex_unlock(&smi_infos_lock); } module_exit(cleanup_ipmi_si); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Corey Minyard "); MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" " system interfaces.");