/* * Copyright (c) 2015, The Linux Foundation. All rights reserved. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include "clk-alpha-pll.h" #include "common.h" # define PLL_OUTCTRL BIT(0) # define PLL_BYPASSNL BIT(1) # define PLL_RESET_N BIT(2) # define PLL_OFFLINE_REQ BIT(7) # define PLL_LOCK_COUNT_SHIFT 8 # define PLL_LOCK_COUNT_MASK 0x3f # define PLL_BIAS_COUNT_SHIFT 14 # define PLL_BIAS_COUNT_MASK 0x3f # define PLL_VOTE_FSM_ENA BIT(20) # define PLL_FSM_ENA BIT(20) # define PLL_VOTE_FSM_RESET BIT(21) # define PLL_UPDATE BIT(22) # define PLL_UPDATE_BYPASS BIT(23) # define PLL_OFFLINE_ACK BIT(28) # define ALPHA_PLL_ACK_LATCH BIT(29) # define PLL_ACTIVE_FLAG BIT(30) # define PLL_LOCK_DET BIT(31) # define PLL_POST_DIV_SHIFT 8 # define PLL_ALPHA_EN BIT(24) # define PLL_ALPHA_MODE BIT(25) # define PLL_VCO_SHIFT 20 # define PLL_VCO_MASK 0x3 # define PLL_STATUS_REG_SHIFT 8 #define PLL_HUAYRA_M_WIDTH 8 #define PLL_HUAYRA_M_SHIFT 8 #define PLL_HUAYRA_M_MASK 0xff #define PLL_HUAYRA_N_SHIFT 0 #define PLL_HUAYRA_N_MASK 0xff #define PLL_HUAYRA_ALPHA_WIDTH 16 /* * Even though 40 bits are present, use only 32 for ease of calculation. */ #define ALPHA_REG_BITWIDTH 40 #define ALPHA_REG_16BIT_WIDTH 16 #define ALPHA_BITWIDTH 32 #define PLL_MODE_REG(pll) (pll->offset + \ pll->regs_offsets[ALPHA_PLL_MODE]) #define PLL_L_REG(pll) (pll->offset + \ pll->regs_offsets[ALPHA_PLL_L_VAL]) #define PLL_ALPHA_REG(pll) (pll->offset + \ pll->regs_offsets[ALPHA_PLL_ALPHA_VAL]) #define PLL_ALPHA_U_REG(pll) (pll->offset + \ pll->regs_offsets[ALPHA_PLL_ALPHA_VAL_U]) #define PLL_USER_CTL_REG(pll) (pll->offset + \ pll->regs_offsets[ALPHA_PLL_USER_CTL]) #define PLL_USER_CTL_U_REG(pll) (pll->offset + \ pll->regs_offsets[ALPHA_PLL_USER_CTL_U]) #define PLL_CONFIG_CTL_REG(pll) (pll->offset + \ pll->regs_offsets[ALPHA_PLL_CONFIG_CTL]) #define PLL_TEST_CTL_REG(pll) (pll->offset + \ pll->regs_offsets[ALPHA_PLL_TEST_CTL]) #define PLL_TEST_CTL_U_REG(pll) (pll->offset + \ pll->regs_offsets[ALPHA_PLL_TEST_CTL_U]) #define PLL_STATUS_REG(pll) (pll->offset + \ pll->regs_offsets[ALPHA_PLL_STATUS]) #define PLL_CONFIG_CTL_U_REG(pll) (pll->offset + \ pll->regs_offsets[ALPHA_PLL_CONFIG_CTL_U]) #define to_clk_alpha_pll(_hw) container_of(to_clk_regmap(_hw), \ struct clk_alpha_pll, clkr) #define to_clk_alpha_pll_postdiv(_hw) container_of(to_clk_regmap(_hw), \ struct clk_alpha_pll_postdiv, clkr) static int wait_for_pll(struct clk_alpha_pll *pll, u32 mask, bool inverse, const char *action) { u32 val; int count; int ret; const char *name = clk_hw_get_name(&pll->clkr.hw); ret = regmap_read(pll->clkr.regmap, PLL_MODE_REG(pll), &val); if (ret) return ret; for (count = 100; count > 0; count--) { ret = regmap_read(pll->clkr.regmap, PLL_MODE_REG(pll), &val); if (ret) return ret; if (inverse && !(val & mask)) return 0; else if ((val & mask) == mask) return 0; udelay(1); } WARN(1, "%s failed to %s!\n", name, action); return -ETIMEDOUT; } #define wait_for_pll_enable_active(pll) \ wait_for_pll(pll, PLL_ACTIVE_FLAG, 0, "enable") #define wait_for_pll_enable_lock(pll) \ wait_for_pll(pll, PLL_LOCK_DET, 0, "enable") #define wait_for_pll_disable(pll) \ wait_for_pll(pll, PLL_ACTIVE_FLAG, 1, "disable") #define wait_for_pll_offline(pll) \ wait_for_pll(pll, PLL_OFFLINE_ACK, 0, "offline") #define wait_for_pll_update(pll) \ wait_for_pll(pll, PLL_UPDATE, 1, "update") #define wait_for_pll_update_ack_set(pll) \ wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 0, "update_ack_set") #define wait_for_pll_update_ack_clear(pll) \ wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 1, "update_ack_clear") void clk_alpha_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap, const struct alpha_pll_config *config) { u32 val, val_u, mask, mask_u; regmap_write(regmap, PLL_L_REG(pll), config->l); regmap_write(regmap, PLL_ALPHA_REG(pll), config->alpha); regmap_write(regmap, PLL_CONFIG_CTL_REG(pll), config->config_ctl_val); if (pll->flags & SUPPORTS_64BIT_CTL) regmap_write(regmap, PLL_CONFIG_CTL_U_REG(pll), config->config_ctl_hi_val); if (!(pll->flags & SUPPORTS_16BIT_ALPHA)) regmap_write(regmap, PLL_ALPHA_U_REG(pll), config->alpha_hi); val = config->main_output_mask; val |= config->aux_output_mask; val |= config->aux2_output_mask; val |= config->early_output_mask; val |= config->pre_div_val; val |= config->post_div_val; val |= config->vco_val; val |= config->alpha_en_mask; val |= config->alpha_mode_mask; mask = config->main_output_mask; mask |= config->aux_output_mask; mask |= config->aux2_output_mask; mask |= config->early_output_mask; mask |= config->pre_div_mask; mask |= config->post_div_mask; mask |= config->vco_mask; mask |= config->alpha_en_mask; mask |= config->alpha_mode_mask; regmap_update_bits(regmap, PLL_USER_CTL_REG(pll), mask, val); /* Stromer APSS PLL does not enable LOCK_DET by default, so enable it */ val_u = config->status_reg_val << PLL_STATUS_REG_SHIFT; val_u |= config->lock_det; mask_u = config->status_reg_mask; mask_u |= config->lock_det; if (val_u != 0) regmap_update_bits(regmap, PLL_USER_CTL_U_REG(pll), mask_u, val_u); if (config->test_ctl_val != 0) regmap_write(regmap, PLL_TEST_CTL_REG(pll), config->test_ctl_val); if (config->test_ctl_hi_val != 0) regmap_write(regmap, PLL_TEST_CTL_U_REG(pll), config->test_ctl_hi_val); if (pll->flags & SUPPORTS_FSM_MODE) qcom_pll_set_fsm_mode(regmap, PLL_MODE_REG(pll), 6, 0); } static int clk_alpha_pll_hwfsm_enable(struct clk_hw *hw) { int ret; u32 val; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); ret = regmap_read(pll->clkr.regmap, PLL_MODE_REG(pll), &val); if (ret) return ret; val |= PLL_FSM_ENA; if (pll->flags & SUPPORTS_OFFLINE_REQ) val &= ~PLL_OFFLINE_REQ; ret = regmap_write(pll->clkr.regmap, PLL_MODE_REG(pll), val); if (ret) return ret; /* Make sure enable request goes through before waiting for update */ mb(); return wait_for_pll_enable_active(pll); } static void clk_alpha_pll_hwfsm_disable(struct clk_hw *hw) { int ret; u32 val, off; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); off = pll->offset; ret = regmap_read(pll->clkr.regmap, PLL_MODE_REG(pll), &val); if (ret) return; if (pll->flags & SUPPORTS_OFFLINE_REQ) { ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE_REG(pll), PLL_OFFLINE_REQ, PLL_OFFLINE_REQ); if (ret) return; ret = wait_for_pll_offline(pll); if (ret) return; } /* Disable hwfsm */ ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE_REG(pll), PLL_FSM_ENA, 0); if (ret) return; wait_for_pll_disable(pll); } static int pll_is_enabled(struct clk_hw *hw, u32 mask) { int ret; u32 val; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); ret = regmap_read(pll->clkr.regmap, PLL_MODE_REG(pll), &val); if (ret) return ret; return !!(val & mask); } static int clk_alpha_pll_hwfsm_is_enabled(struct clk_hw *hw) { return pll_is_enabled(hw, PLL_ACTIVE_FLAG); } static int clk_alpha_pll_is_enabled(struct clk_hw *hw) { return pll_is_enabled(hw, PLL_LOCK_DET); } static int clk_alpha_pll_enable(struct clk_hw *hw) { int ret; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 val, mask; mask = PLL_OUTCTRL | PLL_RESET_N | PLL_BYPASSNL; ret = regmap_read(pll->clkr.regmap, PLL_MODE_REG(pll), &val); if (ret) return ret; /* If in FSM mode, just vote for it */ if (val & PLL_VOTE_FSM_ENA) { ret = clk_enable_regmap(hw); if (ret) return ret; return wait_for_pll_enable_active(pll); } /* Skip if already enabled */ if ((val & mask) == mask) return 0; ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE_REG(pll), PLL_BYPASSNL, PLL_BYPASSNL); if (ret) return ret; /* * H/W requires a 5us delay between disabling the bypass and * de-asserting the reset. */ mb(); udelay(5); ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE_REG(pll), PLL_RESET_N, PLL_RESET_N); if (ret) return ret; ret = wait_for_pll_enable_lock(pll); if (ret) return ret; ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE_REG(pll), PLL_OUTCTRL, PLL_OUTCTRL); /* Ensure that the write above goes through before returning. */ mb(); return ret; } static void clk_alpha_pll_disable(struct clk_hw *hw) { int ret; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 val, mask; ret = regmap_read(pll->clkr.regmap, PLL_MODE_REG(pll), &val); if (ret) return; /* If in FSM mode, just unvote it */ if (val & PLL_VOTE_FSM_ENA) { clk_disable_regmap(hw); return; } mask = PLL_OUTCTRL; regmap_update_bits(pll->clkr.regmap, PLL_MODE_REG(pll), mask, 0); /* Delay of 2 output clock ticks required until output is disabled */ mb(); udelay(1); mask = PLL_RESET_N | PLL_BYPASSNL; regmap_update_bits(pll->clkr.regmap, PLL_MODE_REG(pll), mask, 0); } static unsigned long alpha_pll_calc_rate(u64 prate, u32 l, u32 a, u32 alpha_width) { return (prate * l) + ((prate * a) >> (alpha_width > ALPHA_BITWIDTH ? ALPHA_BITWIDTH : alpha_width)); } static unsigned long alpha_pll_round_rate(unsigned long rate, unsigned long prate, u32 *l, u64 *a, u32 alpha_width) { u64 remainder; u64 quotient; quotient = rate; remainder = do_div(quotient, prate); *l = quotient; if (!remainder) { *a = 0; return rate; } /* Upper ALPHA_BITWIDTH bits of Alpha */ quotient = remainder << (alpha_width > ALPHA_BITWIDTH ? ALPHA_BITWIDTH : alpha_width); remainder = do_div(quotient, prate); if (remainder) quotient++; *a = quotient; return alpha_pll_calc_rate(prate, *l, *a, alpha_width); } static const struct pll_vco * alpha_pll_find_vco(const struct clk_alpha_pll *pll, unsigned long rate) { const struct pll_vco *v = pll->vco_table; const struct pll_vco *end = v + pll->num_vco; for (; v < end; v++) if (rate >= v->min_freq && rate <= v->max_freq) return v; return NULL; } static unsigned long clk_alpha_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { u32 l, low, high, ctl, alpha_width; u64 a = 0, prate = parent_rate; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); regmap_read(pll->clkr.regmap, PLL_L_REG(pll), &l); alpha_width = pll->flags & SUPPORTS_16BIT_ALPHA ? ALPHA_REG_16BIT_WIDTH : ALPHA_REG_BITWIDTH; regmap_read(pll->clkr.regmap, PLL_USER_CTL_REG(pll), &ctl); if (ctl & PLL_ALPHA_EN) { regmap_read(pll->clkr.regmap, PLL_ALPHA_REG(pll), &low); if (alpha_width > ALPHA_BITWIDTH) { regmap_read(pll->clkr.regmap, PLL_ALPHA_U_REG(pll), &high); a = (u64)high << ALPHA_BITWIDTH | low; a >>= alpha_width - ALPHA_BITWIDTH; } else { a = low; } } return alpha_pll_calc_rate(prate, l, a, alpha_width); } static int clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long prate) { struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); const struct pll_vco *vco; u32 l, alpha_width; u64 a; alpha_width = pll->flags & SUPPORTS_16BIT_ALPHA ? ALPHA_REG_16BIT_WIDTH : ALPHA_REG_BITWIDTH; rate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width); vco = alpha_pll_find_vco(pll, rate); if (!vco) { pr_err("alpha pll not in a valid vco range\n"); return -EINVAL; } regmap_write(pll->clkr.regmap, PLL_L_REG(pll), l); if (alpha_width > ALPHA_BITWIDTH) { a <<= (alpha_width - ALPHA_BITWIDTH); regmap_update_bits(pll->clkr.regmap, PLL_ALPHA_U_REG(pll), GENMASK(0, alpha_width - ALPHA_BITWIDTH - 1), a >> ALPHA_BITWIDTH); } regmap_update_bits(pll->clkr.regmap, PLL_ALPHA_REG(pll), GENMASK(0, alpha_width - 1), a); regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL_REG(pll), PLL_VCO_MASK << PLL_VCO_SHIFT, vco->val << PLL_VCO_SHIFT); regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL_REG(pll), PLL_ALPHA_EN, PLL_ALPHA_EN); return 0; } static int clk_alpha_pll_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); unsigned long rate = req->rate; u32 l, alpha_width; u64 a; unsigned long min_freq, max_freq; alpha_width = pll->flags & SUPPORTS_16BIT_ALPHA ? ALPHA_REG_16BIT_WIDTH : ALPHA_REG_BITWIDTH; rate = alpha_pll_round_rate(rate, req->best_parent_rate, &l, &a, alpha_width); if (alpha_pll_find_vco(pll, rate)) { req->rate = rate; return 0; } min_freq = pll->vco_table[0].min_freq; max_freq = pll->vco_table[pll->num_vco - 1].max_freq; req->rate = clamp(rate, min_freq, max_freq); return 0; } static int clk_alpha_pll_brammo_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 l, alpha_width; u64 a; alpha_width = pll->flags & SUPPORTS_16BIT_ALPHA ? ALPHA_REG_16BIT_WIDTH : ALPHA_REG_BITWIDTH; req->rate = alpha_pll_round_rate(req->rate, req->best_parent_rate, &l, &a, alpha_width); return 0; } static unsigned long alpha_pll_huayra_calc_rate(u64 prate, u32 l, u32 a) { /* * a contains 16 bit alpha_val in two’s compliment number in the range * of [-0.5, 0.5). */ if (a >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1)) return (prate * l) - (prate * (BIT(PLL_HUAYRA_ALPHA_WIDTH) - a) >> PLL_HUAYRA_ALPHA_WIDTH); else return (prate * l) + (prate * a >> PLL_HUAYRA_ALPHA_WIDTH); } static unsigned long alpha_pll_huayra_round_rate(unsigned long rate, unsigned long prate, u32 *l, u32 *a) { volatile unsigned long remainder; volatile unsigned long long quotient; quotient = rate; remainder = do_div(quotient, prate); *l = quotient; if (!remainder) { *a = 0; return rate; } quotient = (unsigned long long)remainder << PLL_HUAYRA_ALPHA_WIDTH; remainder = do_div(quotient, prate); if (remainder) quotient++; /* * alpha_val should be in two’s compliment number in the range * of [-0.5, 0.5) so if quotient >= 0.5 then increment the l value * specify the alpha value to be subtracted. */ if (quotient >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1)) { *l += 1; quotient = BIT(PLL_HUAYRA_ALPHA_WIDTH) - quotient; } *a = quotient; return alpha_pll_huayra_calc_rate(prate, *l, *a); } static unsigned long clk_alpha_pll_huayra_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { u32 l, alpha = 0, ctl, alpha_m, alpha_n; u64 rate = parent_rate, tmp; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); regmap_read(pll->clkr.regmap, PLL_L_REG(pll), &l); regmap_read(pll->clkr.regmap, PLL_USER_CTL_REG(pll), &ctl); if (ctl & PLL_ALPHA_EN) { regmap_read(pll->clkr.regmap, PLL_ALPHA_REG(pll), &alpha); /* * Depending upon alpha_mode, it can be treated as M/N value or * as a two’s compliment number. When * alpha_mode=1 pll_alpha_val<15:8>=M & pll_apla_val<7:0>=N * Fout=FIN*(L+(M/N)) * M is a signed number (-128 to 127) and N is unsigned * (0 to 255). M/N has to be within +/-0.5. * * alpha_mode=0, it is a two’s compliment number in the range * of [-0.5, 0.5). * Fout=FIN*(L+(alpha_val)/2^16),where alpha_val is * two’s compliment number. */ if (ctl & PLL_ALPHA_MODE) { alpha_m = alpha >> PLL_HUAYRA_M_SHIFT & PLL_HUAYRA_M_MASK; alpha_n = alpha >> PLL_HUAYRA_N_SHIFT & PLL_HUAYRA_N_MASK; rate *= l; tmp = parent_rate; if (alpha_m >= BIT(PLL_HUAYRA_M_WIDTH - 1)) { alpha_m = BIT(PLL_HUAYRA_M_WIDTH) - alpha_m; tmp *= alpha_m; do_div(tmp, alpha_n); rate -= tmp; } else { tmp *= alpha_m; do_div(tmp, alpha_n); rate += tmp; } return rate; } else { return alpha_pll_huayra_calc_rate(rate, l, alpha); } } return alpha_pll_huayra_calc_rate(rate, l, alpha); } static int clk_alpha_pll_huayra_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long prate) { struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 l, a, ctl, cur_alpha = 0; rate = alpha_pll_huayra_round_rate(rate, prate, &l, &a); regmap_read(pll->clkr.regmap, PLL_USER_CTL_REG(pll), &ctl); if (ctl & PLL_ALPHA_EN) regmap_read(pll->clkr.regmap, PLL_ALPHA_REG(pll), &cur_alpha); /* * Huayra PLL supports PLL dynamic programming. User can change L_VAL, * without having to go through the power on sequence. */ if (clk_hw_is_enabled(hw)) { if (cur_alpha != a) { pr_err("clock needs to be gated %s\n", clk_hw_get_name(hw)); return -EBUSY; } regmap_write(pll->clkr.regmap, PLL_L_REG(pll), l); /* Ensure that the write above goes to detect L val change. */ mb(); return wait_for_pll_enable_lock(pll); } regmap_write(pll->clkr.regmap, PLL_L_REG(pll), l); regmap_write(pll->clkr.regmap, PLL_ALPHA_REG(pll), a); if (a == 0) regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL_REG(pll), PLL_ALPHA_EN, 0x0); else regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL_REG(pll), PLL_ALPHA_EN | PLL_ALPHA_MODE, PLL_ALPHA_EN); return 0; } static int clk_alpha_pll_huayra_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { u32 l, a; req->rate = alpha_pll_huayra_round_rate(req->rate, req->best_parent_rate, &l, &a); return 0; } static int clk_alpha_pll_brammo_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long prate) { struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 l, mode; int ret; u64 a; rate = alpha_pll_round_rate(rate, prate, &l, &a, ALPHA_REG_BITWIDTH); regmap_read(pll->clkr.regmap, PLL_MODE_REG(pll), &mode); regmap_write(pll->clkr.regmap, PLL_L_REG(pll), l); a <<= ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH; regmap_write(pll->clkr.regmap, PLL_ALPHA_REG(pll), a); regmap_write(pll->clkr.regmap, PLL_ALPHA_U_REG(pll), a >> 32); regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL_REG(pll), PLL_ALPHA_EN, PLL_ALPHA_EN); if (!clk_hw_is_enabled(hw)) return 0; regmap_update_bits(pll->clkr.regmap, PLL_MODE_REG(pll), PLL_UPDATE, PLL_UPDATE); /* Make sure PLL_UPDATE request goes through*/ mb(); /* * PLL will latch the new L, Alpha and freq control word. * PLL will respond by raising PLL_ACK_LATCH output when new programming * has been latched in and PLL is being updated. When * UPDATE_LOGIC_BYPASS bit is not set, PLL_UPDATE will be cleared * automatically by hardware when PLL_ACK_LATCH is asserted by PLL. */ if (!(mode & PLL_UPDATE_BYPASS)) return wait_for_pll_update(pll); ret = wait_for_pll_update_ack_set(pll); if (ret) return ret; regmap_update_bits(pll->clkr.regmap, PLL_MODE_REG(pll), PLL_UPDATE, 0); /* Make sure PLL_UPDATE request goes through*/ mb(); ret = wait_for_pll_update_ack_clear(pll); if (ret) return ret; return 0; } static unsigned long alpha_pll_stromer_calc_rate(u64 prate, u32 l, u64 a) { return (prate * l) + ((prate * a) >> ALPHA_REG_BITWIDTH); } static unsigned long alpha_pll_stromer_round_rate(unsigned long rate, unsigned long prate, u32 *l, u64 *a) { u64 remainder; u64 quotient; quotient = rate; remainder = do_div(quotient, prate); *l = quotient; if (!remainder) { *a = 0; return rate; } quotient = remainder << ALPHA_REG_BITWIDTH; remainder = do_div(quotient, prate); if (remainder) quotient++; *a = quotient; return alpha_pll_stromer_calc_rate(prate, *l, *a); } static unsigned long clk_alpha_pll_stromer_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { u32 l, low, high, ctl; u64 a = 0, prate = parent_rate; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); regmap_read(pll->clkr.regmap, PLL_L_REG(pll), &l); regmap_read(pll->clkr.regmap, PLL_USER_CTL_REG(pll), &ctl); if (ctl & PLL_ALPHA_EN) { regmap_read(pll->clkr.regmap, PLL_ALPHA_REG(pll), &low); regmap_read(pll->clkr.regmap, PLL_ALPHA_U_REG(pll), &high); a = (u64)high << ALPHA_BITWIDTH | low; } return alpha_pll_stromer_calc_rate(prate, l, a); } static int clk_alpha_pll_stromer_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { unsigned long rate = req->rate; u32 l; u64 a; rate = alpha_pll_stromer_round_rate(rate, req->best_parent_rate, &l, &a); return 0; } static int clk_alpha_pll_stromer_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long prate) { struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 l; int ret; u64 a; rate = alpha_pll_stromer_round_rate(rate, prate, &l, &a); /* Write desired values to registers */ regmap_write(pll->clkr.regmap, PLL_L_REG(pll), l); regmap_write(pll->clkr.regmap, PLL_ALPHA_REG(pll), a); regmap_write(pll->clkr.regmap, PLL_ALPHA_U_REG(pll), a >> ALPHA_BITWIDTH); regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL_REG(pll), PLL_ALPHA_EN, PLL_ALPHA_EN); if (!clk_hw_is_enabled(hw)) return 0; /* Stromer PLL supports Dynamic programming. * It allows the PLL frequency to be changed on-the-fly without first * execution of a shutdown procedure followed by a bring up procedure. */ regmap_update_bits(pll->clkr.regmap, PLL_MODE_REG(pll), PLL_UPDATE, PLL_UPDATE); /* Make sure PLL_UPDATE request goes through */ mb(); /* Wait for PLL_UPDATE to be cleared */ ret = wait_for_pll_update(pll); if (ret) return ret; /* Wait 11or more PLL clk_ref ticks[to be explored more on wait] */ /* Poll LOCK_DET for one */ ret = wait_for_pll_enable_lock(pll); if (ret) return ret; return 0; } const struct clk_ops clk_alpha_pll_ops = { .enable = clk_alpha_pll_enable, .disable = clk_alpha_pll_disable, .is_enabled = clk_alpha_pll_is_enabled, .recalc_rate = clk_alpha_pll_recalc_rate, .determine_rate = clk_alpha_pll_determine_rate, .set_rate = clk_alpha_pll_set_rate, }; EXPORT_SYMBOL_GPL(clk_alpha_pll_ops); const struct clk_ops clk_alpha_pll_hwfsm_ops = { .enable = clk_alpha_pll_hwfsm_enable, .disable = clk_alpha_pll_hwfsm_disable, .is_enabled = clk_alpha_pll_hwfsm_is_enabled, .recalc_rate = clk_alpha_pll_recalc_rate, .determine_rate = clk_alpha_pll_determine_rate, .set_rate = clk_alpha_pll_set_rate, }; EXPORT_SYMBOL_GPL(clk_alpha_pll_hwfsm_ops); const struct clk_ops clk_alpha_pll_huayra_ops = { .enable = clk_alpha_pll_enable, .disable = clk_alpha_pll_disable, .is_enabled = clk_alpha_pll_is_enabled, .recalc_rate = clk_alpha_pll_huayra_recalc_rate, .determine_rate = clk_alpha_pll_huayra_determine_rate, .set_rate = clk_alpha_pll_huayra_set_rate, }; EXPORT_SYMBOL_GPL(clk_alpha_pll_huayra_ops); const struct clk_ops clk_alpha_pll_brammo_ops = { .enable = clk_alpha_pll_enable, .disable = clk_alpha_pll_disable, .is_enabled = clk_alpha_pll_is_enabled, .recalc_rate = clk_alpha_pll_recalc_rate, .determine_rate = clk_alpha_pll_brammo_determine_rate, .set_rate = clk_alpha_pll_brammo_set_rate, }; EXPORT_SYMBOL_GPL(clk_alpha_pll_brammo_ops); const struct clk_ops clk_alpha_pll_stromer_ops = { .enable = clk_alpha_pll_enable, .disable = clk_alpha_pll_disable, .is_enabled = clk_alpha_pll_is_enabled, .recalc_rate = clk_alpha_pll_stromer_recalc_rate, .determine_rate = clk_alpha_pll_stromer_determine_rate, .set_rate = clk_alpha_pll_stromer_set_rate, }; EXPORT_SYMBOL_GPL(clk_alpha_pll_stromer_ops); static unsigned long clk_alpha_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); u32 ctl; regmap_read(pll->clkr.regmap, PLL_USER_CTL_REG(pll), &ctl); ctl >>= PLL_POST_DIV_SHIFT; ctl &= BIT(pll->width) - 1; return parent_rate >> fls(ctl); } static const struct clk_div_table clk_alpha_div_table[] = { { 0x0, 1 }, { 0x1, 2 }, { 0x3, 4 }, { 0x7, 8 }, { 0xf, 16 }, { } }; static const struct clk_div_table clk_alpha_div_table_2bit[] = { { 0x0, 1 }, { 0x1, 2 }, { 0x3, 4 }, { } }; static int clk_alpha_pll_postdiv_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); unsigned long rate = req->rate; if (pll->width == 2) req->rate = divider_round_rate(hw, rate, &req->best_parent_rate, clk_alpha_div_table_2bit, pll->width, CLK_DIVIDER_POWER_OF_TWO); else req->rate = divider_round_rate(hw, rate, &req->best_parent_rate, clk_alpha_div_table, pll->width, CLK_DIVIDER_POWER_OF_TWO); return 0; } static int clk_alpha_pll_postdiv_determine_ro_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); u32 ctl, div; regmap_read(pll->clkr.regmap, PLL_USER_CTL_REG(pll), &ctl); ctl >>= PLL_POST_DIV_SHIFT; ctl &= BIT(pll->width) - 1; div = 1 << fls(ctl); if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) req->best_parent_rate = clk_hw_round_rate(clk_hw_get_parent(hw), div * req->rate); req->rate = DIV_ROUND_UP_ULL((u64)req->best_parent_rate, div); return 0; } static int clk_alpha_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); int div; /* 16 -> 0xf, 8 -> 0x7, 4 -> 0x3, 2 -> 0x1, 1 -> 0x0 */ div = DIV_ROUND_UP_ULL((u64)parent_rate, rate) - 1; return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL_REG(pll), (BIT(pll->width) - 1) << PLL_POST_DIV_SHIFT, div << PLL_POST_DIV_SHIFT); } const struct clk_ops clk_alpha_pll_postdiv_ops = { .recalc_rate = clk_alpha_pll_postdiv_recalc_rate, .determine_rate = clk_alpha_pll_postdiv_determine_rate, .set_rate = clk_alpha_pll_postdiv_set_rate, }; EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ops); const struct clk_ops clk_alpha_pll_postdiv_ro_ops = { .determine_rate = clk_alpha_pll_postdiv_determine_ro_rate, .recalc_rate = clk_alpha_pll_postdiv_recalc_rate, }; EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ro_ops);