/* * Copyright © 2013 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Brad Volkin * */ #include "i915_drv.h" /** * DOC: batch buffer command parser * * Motivation: * Certain OpenGL features (e.g. transform feedback, performance monitoring) * require userspace code to submit batches containing commands such as * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some * generations of the hardware will noop these commands in "unsecure" batches * (which includes all userspace batches submitted via i915) even though the * commands may be safe and represent the intended programming model of the * device. * * The software command parser is similar in operation to the command parsing * done in hardware for unsecure batches. However, the software parser allows * some operations that would be noop'd by hardware, if the parser determines * the operation is safe, and submits the batch as "secure" to prevent hardware * parsing. * * Threats: * At a high level, the hardware (and software) checks attempt to prevent * granting userspace undue privileges. There are three categories of privilege. * * First, commands which are explicitly defined as privileged or which should * only be used by the kernel driver. The parser rejects such commands * * Second, commands which access registers. To support correct/enhanced * userspace functionality, particularly certain OpenGL extensions, the parser * provides a whitelist of registers which userspace may safely access * * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc). * The parser always rejects such commands. * * The majority of the problematic commands fall in the MI_* range, with only a * few specific commands on each ring (e.g. PIPE_CONTROL and MI_FLUSH_DW). * * Implementation: * Each ring maintains tables of commands and registers which the parser uses in * scanning batch buffers submitted to that ring. * * Since the set of commands that the parser must check for is significantly * smaller than the number of commands supported, the parser tables contain only * those commands required by the parser. This generally works because command * opcode ranges have standard command length encodings. So for commands that * the parser does not need to check, it can easily skip them. This is * implemented via a per-ring length decoding vfunc. * * Unfortunately, there are a number of commands that do not follow the standard * length encoding for their opcode range, primarily amongst the MI_* commands. * To handle this, the parser provides a way to define explicit "skip" entries * in the per-ring command tables. * * Other command table entries map fairly directly to high level categories * mentioned above: rejected, register whitelist. The parser implements a number * of checks, including the privileged memory checks, via a general bitmasking * mechanism. */ #define STD_MI_OPCODE_MASK 0xFF800000 #define STD_3D_OPCODE_MASK 0xFFFF0000 #define STD_2D_OPCODE_MASK 0xFFC00000 #define STD_MFX_OPCODE_MASK 0xFFFF0000 #define CMD(op, opm, f, lm, fl, ...) \ { \ .flags = (fl) | ((f) ? CMD_DESC_FIXED : 0), \ .cmd = { (op) & (opm), (opm) }, \ .length = { (lm) }, \ __VA_ARGS__ \ } /* Convenience macros to compress the tables */ #define SMI STD_MI_OPCODE_MASK #define S3D STD_3D_OPCODE_MASK #define S2D STD_2D_OPCODE_MASK #define SMFX STD_MFX_OPCODE_MASK #define F true #define S CMD_DESC_SKIP #define R CMD_DESC_REJECT #define W CMD_DESC_REGISTER #define B CMD_DESC_BITMASK /* Command Mask Fixed Len Action ---------------------------------------------------------- */ static const struct drm_i915_cmd_descriptor gen7_common_cmds[] = { CMD( MI_NOOP, SMI, F, 1, S ), CMD( MI_USER_INTERRUPT, SMI, F, 1, R ), CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, R ), CMD( MI_ARB_CHECK, SMI, F, 1, S ), CMD( MI_REPORT_HEAD, SMI, F, 1, S ), CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ), CMD( MI_SEMAPHORE_MBOX, SMI, !F, 0xFF, R ), CMD( MI_STORE_DWORD_INDEX, SMI, !F, 0xFF, R ), CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W, .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ), CMD( MI_STORE_REGISTER_MEM, SMI, F, 3, W | B, .reg = { .offset = 1, .mask = 0x007FFFFC }, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), CMD( MI_LOAD_REGISTER_MEM, SMI, F, 3, W | B, .reg = { .offset = 1, .mask = 0x007FFFFC }, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), /* * MI_BATCH_BUFFER_START requires some special handling. It's not * really a 'skip' action but it doesn't seem like it's worth adding * a new action. See i915_parse_cmds(). */ CMD( MI_BATCH_BUFFER_START, SMI, !F, 0xFF, S ), }; static const struct drm_i915_cmd_descriptor gen7_render_cmds[] = { CMD( MI_FLUSH, SMI, F, 1, S ), CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), CMD( MI_PREDICATE, SMI, F, 1, S ), CMD( MI_TOPOLOGY_FILTER, SMI, F, 1, S ), CMD( MI_SET_APPID, SMI, F, 1, S ), CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ), CMD( MI_SET_CONTEXT, SMI, !F, 0xFF, R ), CMD( MI_URB_CLEAR, SMI, !F, 0xFF, S ), CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3F, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), CMD( MI_UPDATE_GTT, SMI, !F, 0xFF, R ), CMD( MI_CLFLUSH, SMI, !F, 0x3FF, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), CMD( MI_REPORT_PERF_COUNT, SMI, !F, 0x3F, B, .bits = {{ .offset = 1, .mask = MI_REPORT_PERF_COUNT_GGTT, .expected = 0, }}, ), CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), CMD( GFX_OP_3DSTATE_VF_STATISTICS, S3D, F, 1, S ), CMD( PIPELINE_SELECT, S3D, F, 1, S ), CMD( MEDIA_VFE_STATE, S3D, !F, 0xFFFF, B, .bits = {{ .offset = 2, .mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK, .expected = 0, }}, ), CMD( GPGPU_OBJECT, S3D, !F, 0xFF, S ), CMD( GPGPU_WALKER, S3D, !F, 0xFF, S ), CMD( GFX_OP_3DSTATE_SO_DECL_LIST, S3D, !F, 0x1FF, S ), CMD( GFX_OP_PIPE_CONTROL(5), S3D, !F, 0xFF, B, .bits = {{ .offset = 1, .mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY), .expected = 0, }, { .offset = 1, .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_STORE_DATA_INDEX), .expected = 0, .condition_offset = 1, .condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK, }}, ), }; static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = { CMD( MI_SET_PREDICATE, SMI, F, 1, S ), CMD( MI_RS_CONTROL, SMI, F, 1, S ), CMD( MI_URB_ATOMIC_ALLOC, SMI, F, 1, S ), CMD( MI_SET_APPID, SMI, F, 1, S ), CMD( MI_RS_CONTEXT, SMI, F, 1, S ), CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ), CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ), CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, R ), CMD( MI_RS_STORE_DATA_IMM, SMI, !F, 0xFF, S ), CMD( MI_LOAD_URB_MEM, SMI, !F, 0xFF, S ), CMD( MI_STORE_URB_MEM, SMI, !F, 0xFF, S ), CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_VS, S3D, !F, 0x7FF, S ), CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_PS, S3D, !F, 0x7FF, S ), CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS, S3D, !F, 0x1FF, S ), CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS, S3D, !F, 0x1FF, S ), CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS, S3D, !F, 0x1FF, S ), CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS, S3D, !F, 0x1FF, S ), CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS, S3D, !F, 0x1FF, S ), }; static const struct drm_i915_cmd_descriptor gen7_video_cmds[] = { CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), CMD( MI_SET_APPID, SMI, F, 1, S ), CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, .bits = {{ .offset = 0, .mask = MI_FLUSH_DW_NOTIFY, .expected = 0, }, { .offset = 1, .mask = MI_FLUSH_DW_USE_GTT, .expected = 0, .condition_offset = 0, .condition_mask = MI_FLUSH_DW_OP_MASK, }, { .offset = 0, .mask = MI_FLUSH_DW_STORE_INDEX, .expected = 0, .condition_offset = 0, .condition_mask = MI_FLUSH_DW_OP_MASK, }}, ), CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), /* * MFX_WAIT doesn't fit the way we handle length for most commands. * It has a length field but it uses a non-standard length bias. * It is always 1 dword though, so just treat it as fixed length. */ CMD( MFX_WAIT, SMFX, F, 1, S ), }; static const struct drm_i915_cmd_descriptor gen7_vecs_cmds[] = { CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), CMD( MI_SET_APPID, SMI, F, 1, S ), CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, .bits = {{ .offset = 0, .mask = MI_FLUSH_DW_NOTIFY, .expected = 0, }, { .offset = 1, .mask = MI_FLUSH_DW_USE_GTT, .expected = 0, .condition_offset = 0, .condition_mask = MI_FLUSH_DW_OP_MASK, }, { .offset = 0, .mask = MI_FLUSH_DW_STORE_INDEX, .expected = 0, .condition_offset = 0, .condition_mask = MI_FLUSH_DW_OP_MASK, }}, ), CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), }; static const struct drm_i915_cmd_descriptor gen7_blt_cmds[] = { CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ), CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, .bits = {{ .offset = 0, .mask = MI_FLUSH_DW_NOTIFY, .expected = 0, }, { .offset = 1, .mask = MI_FLUSH_DW_USE_GTT, .expected = 0, .condition_offset = 0, .condition_mask = MI_FLUSH_DW_OP_MASK, }, { .offset = 0, .mask = MI_FLUSH_DW_STORE_INDEX, .expected = 0, .condition_offset = 0, .condition_mask = MI_FLUSH_DW_OP_MASK, }}, ), CMD( COLOR_BLT, S2D, !F, 0x3F, S ), CMD( SRC_COPY_BLT, S2D, !F, 0x3F, S ), }; static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = { CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ), CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ), }; /* * For Gen9 we can still rely on the h/w to enforce cmd security, and only * need to re-enforce the register access checks. We therefore only need to * teach the cmdparser how to find the end of each command, and identify * register accesses. The table doesn't need to reject any commands, and so * the only commands listed here are: * 1) Those that touch registers * 2) Those that do not have the default 8-bit length * * Note that the default MI length mask chosen for this table is 0xFF, not * the 0x3F used on older devices. This is because the vast majority of MI * cmds on Gen9 use a standard 8-bit Length field. * All the Gen9 blitter instructions are standard 0xFF length mask, and * none allow access to non-general registers, so in fact no BLT cmds are * included in the table at all. * */ static const struct drm_i915_cmd_descriptor gen9_blt_cmds[] = { CMD( MI_NOOP, SMI, F, 1, S ), CMD( MI_USER_INTERRUPT, SMI, F, 1, S ), CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, S ), CMD( MI_FLUSH, SMI, F, 1, S ), CMD( MI_ARB_CHECK, SMI, F, 1, S ), CMD( MI_REPORT_HEAD, SMI, F, 1, S ), CMD( MI_ARB_ON_OFF, SMI, F, 1, S ), CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ), CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, S ), CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, S ), CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, S ), CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W, .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ), CMD( MI_UPDATE_GTT, SMI, !F, 0x3FF, S ), CMD( MI_STORE_REGISTER_MEM_GEN8, SMI, F, 4, W, .reg = { .offset = 1, .mask = 0x007FFFFC } ), CMD( MI_FLUSH_DW, SMI, !F, 0x3F, S ), CMD( MI_LOAD_REGISTER_MEM_GEN8, SMI, F, 4, W, .reg = { .offset = 1, .mask = 0x007FFFFC } ), CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W, .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ), /* * We allow BB_START but apply further checks. We just sanitize the * basic fields here. */ CMD( MI_BATCH_BUFFER_START_GEN8, SMI, !F, 0xFF, B, .bits = {{ .offset = 0, .mask = ~SMI, .expected = (MI_BATCH_PPGTT_HSW | 1), }}, ), }; #undef CMD #undef SMI #undef S3D #undef S2D #undef SMFX #undef F #undef S #undef R #undef W #undef B static const struct drm_i915_cmd_table gen7_render_cmd_table[] = { { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) }, }; static const struct drm_i915_cmd_table hsw_render_ring_cmd_table[] = { { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) }, { hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) }, }; static const struct drm_i915_cmd_table gen7_video_cmd_table[] = { { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, { gen7_video_cmds, ARRAY_SIZE(gen7_video_cmds) }, }; static const struct drm_i915_cmd_table hsw_vebox_cmd_table[] = { { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, { gen7_vecs_cmds, ARRAY_SIZE(gen7_vecs_cmds) }, }; static const struct drm_i915_cmd_table gen7_blt_cmd_table[] = { { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) }, }; static const struct drm_i915_cmd_table hsw_blt_ring_cmd_table[] = { { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) }, { hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) }, }; static const struct drm_i915_cmd_table gen9_blt_cmd_table[] = { { gen9_blt_cmds, ARRAY_SIZE(gen9_blt_cmds) }, }; /* * Register whitelists, sorted by increasing register offset. */ /* * An individual whitelist entry granting access to register addr. If * mask is non-zero the argument of immediate register writes will be * AND-ed with mask, and the command will be rejected if the result * doesn't match value. * * Registers with non-zero mask are only allowed to be written using * LRI. */ struct drm_i915_reg_descriptor { u32 addr; u32 mask; u32 value; }; /* Convenience macro for adding 32-bit registers. */ #define REG32(address, ...) \ { .addr = address, __VA_ARGS__ } /* * Convenience macro for adding 64-bit registers. * * Some registers that userspace accesses are 64 bits. The register * access commands only allow 32-bit accesses. Hence, we have to include * entries for both halves of the 64-bit registers. */ #define REG64(addr) \ REG32(addr), REG32(addr + sizeof(u32)) #define REG64_IDX(_reg, idx) \ { .addr = _reg(idx) }, \ { .addr = _reg ## _UDW(idx) } static const struct drm_i915_reg_descriptor gen7_render_regs[] = { REG64(GPGPU_THREADS_DISPATCHED), REG64(HS_INVOCATION_COUNT), REG64(DS_INVOCATION_COUNT), REG64(IA_VERTICES_COUNT), REG64(IA_PRIMITIVES_COUNT), REG64(VS_INVOCATION_COUNT), REG64(GS_INVOCATION_COUNT), REG64(GS_PRIMITIVES_COUNT), REG64(CL_INVOCATION_COUNT), REG64(CL_PRIMITIVES_COUNT), REG64(PS_INVOCATION_COUNT), REG64(PS_DEPTH_COUNT), REG32(OACONTROL), /* Only allowed for LRI and SRM. See below. */ REG64(MI_PREDICATE_SRC0), REG64(MI_PREDICATE_SRC1), REG32(GEN7_3DPRIM_END_OFFSET), REG32(GEN7_3DPRIM_START_VERTEX), REG32(GEN7_3DPRIM_VERTEX_COUNT), REG32(GEN7_3DPRIM_INSTANCE_COUNT), REG32(GEN7_3DPRIM_START_INSTANCE), REG32(GEN7_3DPRIM_BASE_VERTEX), REG32(GEN7_GPGPU_DISPATCHDIMX), REG32(GEN7_GPGPU_DISPATCHDIMY), REG32(GEN7_GPGPU_DISPATCHDIMZ), REG64(GEN7_SO_NUM_PRIMS_WRITTEN(0)), REG64(GEN7_SO_NUM_PRIMS_WRITTEN(1)), REG64(GEN7_SO_NUM_PRIMS_WRITTEN(2)), REG64(GEN7_SO_NUM_PRIMS_WRITTEN(3)), REG64(GEN7_SO_PRIM_STORAGE_NEEDED(0)), REG64(GEN7_SO_PRIM_STORAGE_NEEDED(1)), REG64(GEN7_SO_PRIM_STORAGE_NEEDED(2)), REG64(GEN7_SO_PRIM_STORAGE_NEEDED(3)), REG32(GEN7_SO_WRITE_OFFSET(0)), REG32(GEN7_SO_WRITE_OFFSET(1)), REG32(GEN7_SO_WRITE_OFFSET(2)), REG32(GEN7_SO_WRITE_OFFSET(3)), REG32(GEN7_L3SQCREG1), REG32(GEN7_L3CNTLREG2), REG32(GEN7_L3CNTLREG3), REG32(HSW_SCRATCH1, .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE, .value = 0), REG32(HSW_ROW_CHICKEN3, .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 | HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE), .value = 0), }; static const struct drm_i915_reg_descriptor gen7_blt_regs[] = { REG32(BCS_SWCTRL), }; static const struct drm_i915_reg_descriptor gen9_blt_regs[] = { REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE), REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE), REG32(BCS_SWCTRL), REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE), REG64_IDX(BCS_GPR, 0), REG64_IDX(BCS_GPR, 1), REG64_IDX(BCS_GPR, 2), REG64_IDX(BCS_GPR, 3), REG64_IDX(BCS_GPR, 4), REG64_IDX(BCS_GPR, 5), REG64_IDX(BCS_GPR, 6), REG64_IDX(BCS_GPR, 7), REG64_IDX(BCS_GPR, 8), REG64_IDX(BCS_GPR, 9), REG64_IDX(BCS_GPR, 10), REG64_IDX(BCS_GPR, 11), REG64_IDX(BCS_GPR, 12), REG64_IDX(BCS_GPR, 13), REG64_IDX(BCS_GPR, 14), REG64_IDX(BCS_GPR, 15), }; #undef REG64 #undef REG32 static u32 gen7_render_get_cmd_length_mask(u32 cmd_header) { u32 client = (cmd_header & INSTR_CLIENT_MASK) >> INSTR_CLIENT_SHIFT; u32 subclient = (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT; if (client == INSTR_MI_CLIENT) return 0x3F; else if (client == INSTR_RC_CLIENT) { if (subclient == INSTR_MEDIA_SUBCLIENT) return 0xFFFF; else return 0xFF; } DRM_DEBUG_DRIVER("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header); return 0; } static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header) { u32 client = (cmd_header & INSTR_CLIENT_MASK) >> INSTR_CLIENT_SHIFT; u32 subclient = (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT; u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT; if (client == INSTR_MI_CLIENT) return 0x3F; else if (client == INSTR_RC_CLIENT) { if (subclient == INSTR_MEDIA_SUBCLIENT) { if (op == 6) return 0xFFFF; else return 0xFFF; } else return 0xFF; } DRM_DEBUG_DRIVER("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header); return 0; } static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header) { u32 client = (cmd_header & INSTR_CLIENT_MASK) >> INSTR_CLIENT_SHIFT; if (client == INSTR_MI_CLIENT) return 0x3F; else if (client == INSTR_BC_CLIENT) return 0xFF; DRM_DEBUG_DRIVER("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header); return 0; } static u32 gen9_blt_get_cmd_length_mask(u32 cmd_header) { u32 client = (cmd_header & INSTR_CLIENT_MASK) >> INSTR_CLIENT_SHIFT; if (client == INSTR_MI_CLIENT || client == INSTR_BC_CLIENT) return 0xFF; DRM_DEBUG_DRIVER("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header); return 0; } static bool validate_cmds_sorted(struct intel_engine_cs *ring, const struct drm_i915_cmd_table *cmd_tables, int cmd_table_count) { int i; bool ret = true; if (!cmd_tables || cmd_table_count == 0) return true; for (i = 0; i < cmd_table_count; i++) { const struct drm_i915_cmd_table *table = &cmd_tables[i]; u32 previous = 0; int j; for (j = 0; j < table->count; j++) { const struct drm_i915_cmd_descriptor *desc = &table->table[j]; u32 curr = desc->cmd.value & desc->cmd.mask; if (curr < previous) { DRM_ERROR("CMD: table not sorted ring=%d table=%d entry=%d cmd=0x%08X prev=0x%08X\n", ring->id, i, j, curr, previous); ret = false; } previous = curr; } } return ret; } static bool check_sorted(int ring_id, const struct drm_i915_reg_descriptor *reg_table, int reg_count) { int i; u32 previous = 0; bool ret = true; for (i = 0; i < reg_count; i++) { u32 curr = reg_table[i].addr; if (curr < previous) { DRM_ERROR("CMD: table not sorted ring=%d entry=%d reg=0x%08X prev=0x%08X\n", ring_id, i, curr, previous); ret = false; } previous = curr; } return ret; } static bool validate_regs_sorted(struct intel_engine_cs *ring) { return check_sorted(ring->id, ring->reg_table, ring->reg_count); } struct cmd_node { const struct drm_i915_cmd_descriptor *desc; struct hlist_node node; }; /* * Different command ranges have different numbers of bits for the opcode. For * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The * problem is that, for example, MI commands use bits 22:16 for other fields * such as GGTT vs PPGTT bits. If we include those bits in the mask then when * we mask a command from a batch it could hash to the wrong bucket due to * non-opcode bits being set. But if we don't include those bits, some 3D * commands may hash to the same bucket due to not including opcode bits that * make the command unique. For now, we will risk hashing to the same bucket. * * If we attempt to generate a perfect hash, we should be able to look at bits * 31:29 of a command from a batch buffer and use the full mask for that * client. The existing INSTR_CLIENT_MASK/SHIFT defines can be used for this. */ #define CMD_HASH_MASK STD_MI_OPCODE_MASK static int init_hash_table(struct intel_engine_cs *ring, const struct drm_i915_cmd_table *cmd_tables, int cmd_table_count) { int i, j; hash_init(ring->cmd_hash); for (i = 0; i < cmd_table_count; i++) { const struct drm_i915_cmd_table *table = &cmd_tables[i]; for (j = 0; j < table->count; j++) { const struct drm_i915_cmd_descriptor *desc = &table->table[j]; struct cmd_node *desc_node = kmalloc(sizeof(*desc_node), GFP_KERNEL); if (!desc_node) return -ENOMEM; desc_node->desc = desc; hash_add(ring->cmd_hash, &desc_node->node, desc->cmd.value & CMD_HASH_MASK); } } return 0; } static void fini_hash_table(struct intel_engine_cs *ring) { struct hlist_node *tmp; struct cmd_node *desc_node; int i; hash_for_each_safe(ring->cmd_hash, i, tmp, desc_node, node) { hash_del(&desc_node->node); kfree(desc_node); } } /** * i915_cmd_parser_init_ring() - set cmd parser related fields for a ringbuffer * @ring: the ringbuffer to initialize * * Optionally initializes fields related to batch buffer command parsing in the * struct intel_engine_cs based on whether the platform requires software * command parsing. * * Return: non-zero if initialization fails */ int i915_cmd_parser_init_ring(struct intel_engine_cs *ring) { const struct drm_i915_cmd_table *cmd_tables; int cmd_table_count; int ret; if (!IS_GEN7(ring->dev) && !(IS_GEN9(ring->dev) && ring->id == BCS)) return 0; switch (ring->id) { case RCS: if (IS_HASWELL(ring->dev)) { cmd_tables = hsw_render_ring_cmd_table; cmd_table_count = ARRAY_SIZE(hsw_render_ring_cmd_table); } else { cmd_tables = gen7_render_cmd_table; cmd_table_count = ARRAY_SIZE(gen7_render_cmd_table); } ring->reg_table = gen7_render_regs; ring->reg_count = ARRAY_SIZE(gen7_render_regs); ring->get_cmd_length_mask = gen7_render_get_cmd_length_mask; break; case VCS: cmd_tables = gen7_video_cmd_table; cmd_table_count = ARRAY_SIZE(gen7_video_cmd_table); ring->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask; break; case BCS: ring->get_cmd_length_mask = gen7_blt_get_cmd_length_mask; if (IS_GEN9(ring->dev)) { cmd_tables = gen9_blt_cmd_table; cmd_table_count = ARRAY_SIZE(gen9_blt_cmd_table); ring->get_cmd_length_mask = gen9_blt_get_cmd_length_mask; /* BCS Engine unsafe without parser */ ring->requires_cmd_parser = 1; } else if (IS_HASWELL(ring->dev)) { cmd_tables = hsw_blt_ring_cmd_table; cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmd_table); } else { cmd_tables = gen7_blt_cmd_table; cmd_table_count = ARRAY_SIZE(gen7_blt_cmd_table); } if (IS_GEN9(ring->dev)) { ring->reg_table = gen9_blt_regs; ring->reg_count = ARRAY_SIZE(gen9_blt_regs); } else { ring->reg_table = gen7_blt_regs; ring->reg_count = ARRAY_SIZE(gen7_blt_regs); } break; case VECS: cmd_tables = hsw_vebox_cmd_table; cmd_table_count = ARRAY_SIZE(hsw_vebox_cmd_table); /* VECS can use the same length_mask function as VCS */ ring->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask; break; default: DRM_ERROR("CMD: cmd_parser_init with unknown ring: %d\n", ring->id); BUG(); } BUG_ON(!validate_cmds_sorted(ring, cmd_tables, cmd_table_count)); BUG_ON(!validate_regs_sorted(ring)); WARN_ON(!hash_empty(ring->cmd_hash)); ret = init_hash_table(ring, cmd_tables, cmd_table_count); if (ret) { DRM_ERROR("CMD: cmd_parser_init failed!\n"); fini_hash_table(ring); return ret; } ring->using_cmd_parser = true; return 0; } /** * i915_cmd_parser_fini_ring() - clean up cmd parser related fields * @ring: the ringbuffer to clean up * * Releases any resources related to command parsing that may have been * initialized for the specified ring. */ void i915_cmd_parser_fini_ring(struct intel_engine_cs *ring) { if (!ring->using_cmd_parser) return; fini_hash_table(ring); } static const struct drm_i915_cmd_descriptor* find_cmd_in_table(struct intel_engine_cs *ring, u32 cmd_header) { struct cmd_node *desc_node; hash_for_each_possible(ring->cmd_hash, desc_node, node, cmd_header & CMD_HASH_MASK) { const struct drm_i915_cmd_descriptor *desc = desc_node->desc; u32 masked_cmd = desc->cmd.mask & cmd_header; u32 masked_value = desc->cmd.value & desc->cmd.mask; if (masked_cmd == masked_value) return desc; } return NULL; } /* * Returns a pointer to a descriptor for the command specified by cmd_header. * * The caller must supply space for a default descriptor via the default_desc * parameter. If no descriptor for the specified command exists in the ring's * command parser tables, this function fills in default_desc based on the * ring's default length encoding and returns default_desc. */ static const struct drm_i915_cmd_descriptor* find_cmd(struct intel_engine_cs *ring, u32 cmd_header, struct drm_i915_cmd_descriptor *default_desc) { const struct drm_i915_cmd_descriptor *desc; u32 mask; desc = find_cmd_in_table(ring, cmd_header); if (desc) return desc; mask = ring->get_cmd_length_mask(cmd_header); if (!mask) return NULL; BUG_ON(!default_desc); default_desc->flags = CMD_DESC_SKIP; default_desc->length.mask = mask; return default_desc; } static const struct drm_i915_reg_descriptor * find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr) { if (table) { int i; for (i = 0; i < count; i++) { if (table[i].addr == addr) return &table[i]; } } return NULL; } static u32 *vmap_batch(struct drm_i915_gem_object *obj, unsigned start, unsigned len) { int i; void *addr = NULL; struct sg_page_iter sg_iter; int first_page = start >> PAGE_SHIFT; int last_page = (len + start + 4095) >> PAGE_SHIFT; int npages = last_page - first_page; struct page **pages; pages = drm_malloc_ab(npages, sizeof(*pages)); if (pages == NULL) { DRM_DEBUG_DRIVER("Failed to get space for pages\n"); goto finish; } i = 0; for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, first_page) { pages[i++] = sg_page_iter_page(&sg_iter); if (i == npages) break; } addr = vmap(pages, i, 0, PAGE_KERNEL); if (addr == NULL) { DRM_DEBUG_DRIVER("Failed to vmap pages\n"); goto finish; } finish: if (pages) drm_free_large(pages); return (u32*)addr; } /* Returns a vmap'd pointer to dest_obj, which the caller must unmap */ static u32 *copy_batch(struct drm_i915_gem_object *dest_obj, struct drm_i915_gem_object *src_obj, u32 batch_start_offset, u32 batch_len) { int needs_clflush = 0; void *src_base, *src; void *dst = NULL; int ret; if (batch_len > dest_obj->base.size || batch_len + batch_start_offset > src_obj->base.size) return ERR_PTR(-E2BIG); if (WARN_ON(dest_obj->pages_pin_count == 0)) return ERR_PTR(-ENODEV); ret = i915_gem_obj_prepare_shmem_read(src_obj, &needs_clflush); if (ret) { DRM_DEBUG_DRIVER("CMD: failed to prepare shadow batch\n"); return ERR_PTR(ret); } src_base = vmap_batch(src_obj, batch_start_offset, batch_len); if (!src_base) { DRM_DEBUG_DRIVER("CMD: Failed to vmap batch\n"); ret = -ENOMEM; goto unpin_src; } ret = i915_gem_object_set_to_cpu_domain(dest_obj, true); if (ret) { DRM_DEBUG_DRIVER("CMD: Failed to set shadow batch to CPU\n"); goto unmap_src; } dst = vmap_batch(dest_obj, 0, batch_len); if (!dst) { DRM_DEBUG_DRIVER("CMD: Failed to vmap shadow batch\n"); ret = -ENOMEM; goto unmap_src; } src = src_base + offset_in_page(batch_start_offset); if (needs_clflush) drm_clflush_virt_range(src, batch_len); memcpy(dst, src, batch_len); unmap_src: vunmap(src_base); unpin_src: i915_gem_object_unpin_pages(src_obj); return ret ? ERR_PTR(ret) : dst; } static int check_cmd(const struct intel_engine_cs *ring, const struct drm_i915_cmd_descriptor *desc, const u32 *cmd, u32 length, bool *oacontrol_set) { if (desc->flags & CMD_DESC_REJECT) { DRM_DEBUG_DRIVER("CMD: Rejected command: 0x%08X\n", *cmd); return false; } if (desc->flags & CMD_DESC_REGISTER) { /* * Get the distance between individual register offset * fields if the command can perform more than one * access at a time. */ const u32 step = desc->reg.step ? desc->reg.step : length; u32 offset; for (offset = desc->reg.offset; offset < length; offset += step) { const u32 reg_addr = cmd[offset] & desc->reg.mask; const struct drm_i915_reg_descriptor *reg = find_reg(ring->reg_table, ring->reg_count, reg_addr); if (!reg) { DRM_DEBUG_DRIVER("CMD: Rejected register 0x%08X in command: 0x%08X (ring=%d)\n", reg_addr, *cmd, ring->id); return false; } /* * OACONTROL requires some special handling for * writes. We want to make sure that any batch which * enables OA also disables it before the end of the * batch. The goal is to prevent one process from * snooping on the perf data from another process. To do * that, we need to check the value that will be written * to the register. Hence, limit OACONTROL writes to * only MI_LOAD_REGISTER_IMM commands. */ if (reg_addr == OACONTROL) { if (desc->cmd.value == MI_LOAD_REGISTER_MEM) { DRM_DEBUG_DRIVER("CMD: Rejected LRM to OACONTROL\n"); return false; } if (desc->cmd.value == MI_LOAD_REGISTER_IMM(1)) *oacontrol_set = (cmd[offset + 1] != 0); } /* * Check the value written to the register against the * allowed mask/value pair given in the whitelist entry. */ if (reg->mask) { if (desc->cmd.value == MI_LOAD_REGISTER_MEM) { DRM_DEBUG_DRIVER("CMD: Rejected LRM to masked register 0x%08X\n", reg_addr); return false; } if (desc->cmd.value == MI_LOAD_REGISTER_IMM(1) && (offset + 2 > length || (cmd[offset + 1] & reg->mask) != reg->value)) { DRM_DEBUG_DRIVER("CMD: Rejected LRI to masked register 0x%08X\n", reg_addr); return false; } } } } if (desc->flags & CMD_DESC_BITMASK) { int i; for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) { u32 dword; if (desc->bits[i].mask == 0) break; if (desc->bits[i].condition_mask != 0) { u32 offset = desc->bits[i].condition_offset; u32 condition = cmd[offset] & desc->bits[i].condition_mask; if (condition == 0) continue; } dword = cmd[desc->bits[i].offset] & desc->bits[i].mask; if (dword != desc->bits[i].expected) { DRM_DEBUG_DRIVER("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (ring=%d)\n", *cmd, desc->bits[i].mask, desc->bits[i].expected, dword, ring->id); return false; } } } return true; } static int check_bbstart(struct intel_context *ctx, u32 *cmd, u64 offset, u32 length, u32 batch_len, u64 batch_start, u64 shadow_batch_start) { u64 jump_offset, jump_target; u32 target_cmd_offset, target_cmd_index; /* For igt compatibility on older platforms */ if (CMDPARSER_USES_GGTT(ctx->i915)) { DRM_DEBUG("CMD: Rejecting BB_START for ggtt based submission\n"); return -EACCES; } if (length != 3) { DRM_DEBUG("CMD: Recursive BB_START with bad length(%u)\n", length); return -EINVAL; } jump_target = *(u64*)(cmd+1); jump_offset = jump_target - batch_start; /* * Any underflow of jump_target is guaranteed to be outside the range * of a u32, so >= test catches both too large and too small */ if (jump_offset >= batch_len) { DRM_DEBUG("CMD: BB_START to 0x%llx jumps out of BB\n", jump_target); return -EINVAL; } /* * This cannot overflow a u32 because we already checked jump_offset * is within the BB, and the batch_len is a u32 */ target_cmd_offset = lower_32_bits(jump_offset); target_cmd_index = target_cmd_offset / sizeof(u32); *(u64*)(cmd + 1) = shadow_batch_start + target_cmd_offset; if (target_cmd_index == offset) return 0; if (ctx->jump_whitelist_cmds <= target_cmd_index) { DRM_DEBUG("CMD: Rejecting BB_START - truncated whitelist array\n"); return -EINVAL; } else if (!test_bit(target_cmd_index, ctx->jump_whitelist)) { DRM_DEBUG("CMD: BB_START to 0x%llx not a previously executed cmd\n", jump_target); return -EINVAL; } return 0; } static void init_whitelist(struct intel_context *ctx, u32 batch_len) { const u32 batch_cmds = DIV_ROUND_UP(batch_len, sizeof(u32)); const u32 exact_size = BITS_TO_LONGS(batch_cmds); u32 next_size = BITS_TO_LONGS(roundup_pow_of_two(batch_cmds)); unsigned long *next_whitelist; if (CMDPARSER_USES_GGTT(ctx->i915)) return; if (batch_cmds <= ctx->jump_whitelist_cmds) { bitmap_zero(ctx->jump_whitelist, batch_cmds); return; } again: next_whitelist = kcalloc(next_size, sizeof(long), GFP_KERNEL); if (next_whitelist) { kfree(ctx->jump_whitelist); ctx->jump_whitelist = next_whitelist; ctx->jump_whitelist_cmds = next_size * BITS_PER_BYTE * sizeof(long); return; } if (next_size > exact_size) { next_size = exact_size; goto again; } DRM_DEBUG("CMD: Failed to extend whitelist. BB_START may be disallowed\n"); bitmap_zero(ctx->jump_whitelist, ctx->jump_whitelist_cmds); return; } #define LENGTH_BIAS 2 /** * i915_parse_cmds() - parse a submitted batch buffer for privilege violations * @ctx: the context in which the batch is to execute * @ring: the ring on which the batch is to execute * @batch_obj: the batch buffer in question * @user_batch_start: Canonical base address of original user batch * @batch_start_offset: byte offset in the batch at which execution starts * @batch_len: length of the commands in batch_obj * @shadow_batch_obj: copy of the batch buffer in question * @shadow_batch_start: Canonical base address of shadow_batch_obj * * Parses the specified batch buffer looking for privilege violations as * described in the overview. * * Return: non-zero if the parser finds violations or otherwise fails; -EACCES * if the batch appears legal but should use hardware parsing */ int i915_parse_cmds(struct intel_context *ctx, struct intel_engine_cs *ring, struct drm_i915_gem_object *batch_obj, u64 user_batch_start, u32 batch_start_offset, u32 batch_len, struct drm_i915_gem_object *shadow_batch_obj, u64 shadow_batch_start) { u32 *cmd, *batch_base, *batch_end, offset = 0; struct drm_i915_cmd_descriptor default_desc = { 0 }; bool oacontrol_set = false; /* OACONTROL tracking. See check_cmd() */ int ret = 0; batch_base = copy_batch(shadow_batch_obj, batch_obj, batch_start_offset, batch_len); if (IS_ERR(batch_base)) { DRM_DEBUG_DRIVER("CMD: Failed to copy batch\n"); return PTR_ERR(batch_base); } init_whitelist(ctx, batch_len); /* * We use the batch length as size because the shadow object is as * large or larger and copy_batch() will write MI_NOPs to the extra * space. Parsing should be faster in some cases this way. */ batch_end = batch_base + (batch_len / sizeof(*batch_end)); cmd = batch_base; while (cmd < batch_end) { const struct drm_i915_cmd_descriptor *desc; u32 length; if (*cmd == MI_BATCH_BUFFER_END) break; desc = find_cmd(ring, *cmd, &default_desc); if (!desc) { DRM_DEBUG_DRIVER("CMD: Unrecognized command: 0x%08X\n", *cmd); ret = -EINVAL; break; } if (desc->flags & CMD_DESC_FIXED) length = desc->length.fixed; else length = ((*cmd & desc->length.mask) + LENGTH_BIAS); if ((batch_end - cmd) < length) { DRM_DEBUG_DRIVER("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n", *cmd, length, batch_end - cmd); ret = -EINVAL; break; } if (!check_cmd(ring, desc, cmd, length, &oacontrol_set)) { ret = CMDPARSER_USES_GGTT(ring->dev) ? -EINVAL : -EACCES; break; } if (desc->cmd.value == MI_BATCH_BUFFER_START) { ret = check_bbstart(ctx, cmd, offset, length, batch_len, user_batch_start, shadow_batch_start); break; } if (ctx->jump_whitelist_cmds > offset) set_bit(offset, ctx->jump_whitelist); cmd += length; offset += length; } if (oacontrol_set) { DRM_DEBUG_DRIVER("CMD: batch set OACONTROL but did not clear it\n"); ret = -EINVAL; } if (cmd >= batch_end) { DRM_DEBUG_DRIVER("CMD: Got to the end of the buffer w/o a BBE cmd!\n"); ret = -EINVAL; } vunmap(batch_base); return ret; } /** * i915_cmd_parser_get_version() - get the cmd parser version number * * The cmd parser maintains a simple increasing integer version number suitable * for passing to userspace clients to determine what operations are permitted. * * Return: the current version number of the cmd parser */ int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv) { /* * Command parser version history * * 1. Initial version. Checks batches and reports violations, but leaves * hardware parsing enabled (so does not allow new use cases). * 2. Allow access to the MI_PREDICATE_SRC0 and * MI_PREDICATE_SRC1 registers. * 3. Allow access to the GPGPU_THREADS_DISPATCHED register. * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3. * 5. GPGPU dispatch compute indirect registers. * 10. Gen9 only - Supports the new ppgtt based BLIT parser */ return CMDPARSER_USES_GGTT(dev_priv) ? 5 : 10; }