/* * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #define gk20a_volt(p) container_of((p), struct gk20a_volt, base) #include "priv.h" #include <core/tegra.h> struct cvb_coef { int c0; int c1; int c2; int c3; int c4; int c5; }; struct gk20a_volt { struct nvkm_volt base; struct regulator *vdd; }; const struct cvb_coef gk20a_cvb_coef[] = { /* MHz, c0, c1, c2, c3, c4, c5 */ /* 72 */ { 1209886, -36468, 515, 417, -13123, 203}, /* 108 */ { 1130804, -27659, 296, 298, -10834, 221}, /* 180 */ { 1162871, -27110, 247, 238, -10681, 268}, /* 252 */ { 1220458, -28654, 247, 179, -10376, 298}, /* 324 */ { 1280953, -30204, 247, 119, -9766, 304}, /* 396 */ { 1344547, -31777, 247, 119, -8545, 292}, /* 468 */ { 1420168, -34227, 269, 60, -7172, 256}, /* 540 */ { 1490757, -35955, 274, 60, -5188, 197}, /* 612 */ { 1599112, -42583, 398, 0, -1831, 119}, /* 648 */ { 1366986, -16459, -274, 0, -3204, 72}, /* 684 */ { 1391884, -17078, -274, -60, -1526, 30}, /* 708 */ { 1415522, -17497, -274, -60, -458, 0}, /* 756 */ { 1464061, -18331, -274, -119, 1831, -72}, /* 804 */ { 1524225, -20064, -254, -119, 4272, -155}, /* 852 */ { 1608418, -21643, -269, 0, 763, -48}, }; /** * cvb_mv = ((c2 * speedo / s_scale + c1) * speedo / s_scale + c0) */ static inline int gk20a_volt_get_cvb_voltage(int speedo, int s_scale, const struct cvb_coef *coef) { int mv; mv = DIV_ROUND_CLOSEST(coef->c2 * speedo, s_scale); mv = DIV_ROUND_CLOSEST((mv + coef->c1) * speedo, s_scale) + coef->c0; return mv; } /** * cvb_t_mv = * ((c2 * speedo / s_scale + c1) * speedo / s_scale + c0) + * ((c3 * speedo / s_scale + c4 + c5 * T / t_scale) * T / t_scale) */ static inline int gk20a_volt_get_cvb_t_voltage(int speedo, int temp, int s_scale, int t_scale, const struct cvb_coef *coef) { int cvb_mv, mv; cvb_mv = gk20a_volt_get_cvb_voltage(speedo, s_scale, coef); mv = DIV_ROUND_CLOSEST(coef->c3 * speedo, s_scale) + coef->c4 + DIV_ROUND_CLOSEST(coef->c5 * temp, t_scale); mv = DIV_ROUND_CLOSEST(mv * temp, t_scale) + cvb_mv; return mv; } static int gk20a_volt_calc_voltage(const struct cvb_coef *coef, int speedo) { int mv; mv = gk20a_volt_get_cvb_t_voltage(speedo, -10, 100, 10, coef); mv = DIV_ROUND_UP(mv, 1000); return mv * 1000; } static int gk20a_volt_vid_get(struct nvkm_volt *base) { struct gk20a_volt *volt = gk20a_volt(base); int i, uv; uv = regulator_get_voltage(volt->vdd); for (i = 0; i < volt->base.vid_nr; i++) if (volt->base.vid[i].uv >= uv) return i; return -EINVAL; } static int gk20a_volt_vid_set(struct nvkm_volt *base, u8 vid) { struct gk20a_volt *volt = gk20a_volt(base); struct nvkm_subdev *subdev = &volt->base.subdev; nvkm_debug(subdev, "set voltage as %duv\n", volt->base.vid[vid].uv); return regulator_set_voltage(volt->vdd, volt->base.vid[vid].uv, 1200000); } static int gk20a_volt_set_id(struct nvkm_volt *base, u8 id, int condition) { struct gk20a_volt *volt = gk20a_volt(base); struct nvkm_subdev *subdev = &volt->base.subdev; int prev_uv = regulator_get_voltage(volt->vdd); int target_uv = volt->base.vid[id].uv; int ret; nvkm_debug(subdev, "prev=%d, target=%d, condition=%d\n", prev_uv, target_uv, condition); if (!condition || (condition < 0 && target_uv < prev_uv) || (condition > 0 && target_uv > prev_uv)) { ret = gk20a_volt_vid_set(&volt->base, volt->base.vid[id].vid); } else { ret = 0; } return ret; } static const struct nvkm_volt_func gk20a_volt = { .vid_get = gk20a_volt_vid_get, .vid_set = gk20a_volt_vid_set, .set_id = gk20a_volt_set_id, }; int gk20a_volt_new(struct nvkm_device *device, int index, struct nvkm_volt **pvolt) { struct nvkm_device_tegra *tdev = device->func->tegra(device); struct gk20a_volt *volt; int i, uv; if (!(volt = kzalloc(sizeof(*volt), GFP_KERNEL))) return -ENOMEM; nvkm_volt_ctor(&gk20a_volt, device, index, &volt->base); *pvolt = &volt->base; uv = regulator_get_voltage(tdev->vdd); nvkm_info(&volt->base.subdev, "The default voltage is %duV\n", uv); volt->vdd = tdev->vdd; volt->base.vid_nr = ARRAY_SIZE(gk20a_cvb_coef); nvkm_debug(&volt->base.subdev, "%s - vid_nr = %d\n", __func__, volt->base.vid_nr); for (i = 0; i < volt->base.vid_nr; i++) { volt->base.vid[i].vid = i; volt->base.vid[i].uv = gk20a_volt_calc_voltage(&gk20a_cvb_coef[i], tdev->gpu_speedo); nvkm_debug(&volt->base.subdev, "%2d: vid=%d, uv=%d\n", i, volt->base.vid[i].vid, volt->base.vid[i].uv); } return 0; }