/* * drivers/mmc/host/sdhci-msm.c - Qualcomm MSM SDHCI Platform * driver source file * * Copyright (c) 2012-2016, 2020 The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sdhci-msm-ice.h" #include "sdhci-msm.h" #ifdef CONFIG_MMC_CQ_HCI #include "cmdq_hci.h" #endif #define QOS_REMOVE_DELAY_MS 10 #define CORE_POWER 0x0 #define CORE_SW_RST (1 << 7) #define SDHCI_VER_100 0x2B #define CORE_VERSION_STEP_MASK 0x0000FFFF #define CORE_VERSION_MINOR_MASK 0x0FFF0000 #define CORE_VERSION_MINOR_SHIFT 16 #define CORE_VERSION_MAJOR_MASK 0xF0000000 #define CORE_VERSION_MAJOR_SHIFT 28 #define CORE_VERSION_TARGET_MASK 0x000000FF #define SDHCI_MSM_VER_420 0x49 #define SWITCHABLE_SIGNALLING_VOL (1 << 29) #define CORE_HC_MODE 0x78 #define HC_MODE_EN 0x1 #define FF_CLK_SW_RST_DIS (1 << 13) #define CORE_PWRCTL_BUS_OFF 0x01 #define CORE_PWRCTL_BUS_ON (1 << 1) #define CORE_PWRCTL_IO_LOW (1 << 2) #define CORE_PWRCTL_IO_HIGH (1 << 3) #define CORE_PWRCTL_BUS_SUCCESS 0x01 #define CORE_PWRCTL_BUS_FAIL (1 << 1) #define CORE_PWRCTL_IO_SUCCESS (1 << 2) #define CORE_PWRCTL_IO_FAIL (1 << 3) #define INT_MASK 0xF #define MAX_PHASES 16 #define CORE_CMD_DAT_TRACK_SEL (1 << 0) #define CORE_DLL_EN (1 << 16) #define CORE_CDR_EN (1 << 17) #define CORE_CK_OUT_EN (1 << 18) #define CORE_CDR_EXT_EN (1 << 19) #define CORE_DLL_PDN (1 << 29) #define CORE_DLL_RST (1 << 30) #define CORE_DLL_LOCK (1 << 7) #define CORE_DDR_DLL_LOCK (1 << 11) #define CORE_CLK_PWRSAVE (1 << 1) #define CORE_HC_MCLK_SEL_DFLT (2 << 8) #define CORE_HC_MCLK_SEL_HS400 (3 << 8) #define CORE_HC_MCLK_SEL_MASK (3 << 8) #define CORE_HC_AUTO_CMD21_EN (1 << 6) #define CORE_IO_PAD_PWR_SWITCH_EN (1 << 15) #define CORE_IO_PAD_PWR_SWITCH (1 << 16) #define CORE_HC_SELECT_IN_EN (1 << 18) #define CORE_HC_SELECT_IN_HS400 (6 << 19) #define CORE_HC_SELECT_IN_MASK (7 << 19) #define CORE_VENDOR_SPEC_POR_VAL 0xA1C #define HC_SW_RST_WAIT_IDLE_DIS (1 << 20) #define HC_SW_RST_REQ (1 << 21) #define CORE_ONE_MID_EN (1 << 25) #define CORE_8_BIT_SUPPORT (1 << 18) #define CORE_3_3V_SUPPORT (1 << 24) #define CORE_3_0V_SUPPORT (1 << 25) #define CORE_1_8V_SUPPORT (1 << 26) #define CORE_SYS_BUS_SUPPORT_64_BIT BIT(28) #define CORE_CSR_CDC_CTLR_CFG0 0x130 #define CORE_SW_TRIG_FULL_CALIB (1 << 16) #define CORE_HW_AUTOCAL_ENA (1 << 17) #define CORE_CSR_CDC_CTLR_CFG1 0x134 #define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138 #define CORE_TIMER_ENA (1 << 16) #define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C #define CORE_CSR_CDC_REFCOUNT_CFG 0x140 #define CORE_CSR_CDC_COARSE_CAL_CFG 0x144 #define CORE_CDC_OFFSET_CFG 0x14C #define CORE_CSR_CDC_DELAY_CFG 0x150 #define CORE_CDC_SLAVE_DDA_CFG 0x160 #define CORE_CSR_CDC_STATUS0 0x164 #define CORE_CALIBRATION_DONE (1 << 0) #define CORE_CDC_ERROR_CODE_MASK 0x7000000 #define CQ_CMD_DBG_RAM 0x110 #define CQ_CMD_DBG_RAM_WA 0x150 #define CQ_CMD_DBG_RAM_OL 0x154 #define CORE_CSR_CDC_GEN_CFG 0x178 #define CORE_CDC_SWITCH_BYPASS_OFF (1 << 0) #define CORE_CDC_SWITCH_RC_EN (1 << 1) #define CORE_CDC_T4_DLY_SEL (1 << 0) #define CORE_CMDIN_RCLK_EN (1 << 1) #define CORE_START_CDC_TRAFFIC (1 << 6) #define CORE_PWRSAVE_DLL (1 << 3) #define CORE_CMDEN_HS400_INPUT_MASK_CNT (1 << 13) #define CORE_DDR_CAL_EN (1 << 0) #define CORE_FLL_CYCLE_CNT (1 << 18) #define CORE_DLL_CLOCK_DISABLE (1 << 21) #define DDR_CONFIG_POR_VAL 0x80040853 #define DDR_CONFIG_PRG_RCLK_DLY_MASK 0x1FF #define DDR_CONFIG_PRG_RCLK_DLY 115 #define DDR_CONFIG_2_POR_VAL 0x80040873 /* 512 descriptors */ #define SDHCI_MSM_MAX_SEGMENTS (1 << 9) #define SDHCI_MSM_MMC_CLK_GATE_DELAY 200 /* msecs */ #define CORE_FREQ_100MHZ (100 * 1000 * 1000) #define TCXO_FREQ 19200000 #define INVALID_TUNING_PHASE -1 #define sdhci_is_valid_gpio_wakeup_int(_h) ((_h)->pdata->sdiowakeup_irq >= 0) #define NUM_TUNING_PHASES 16 #define MAX_DRV_TYPES_SUPPORTED_HS200 4 #define MSM_AUTOSUSPEND_DELAY_MS 100 #define SDHCI_ASYNC_INT_SUPPORT BIT(29) #define SDHCI_MAX_BLK_LENGTH BIT(16) #define SDHCI_BASE_SDCLK_FREQ 0xc800 #define SDHCI_TIMEOUT_CLK_FREQ 0xb2 #define SDHC_EMU_MAX_CLOCKS 5 struct sdhci_msm_offset { u32 CORE_MCI_DATA_CNT; u32 CORE_MCI_STATUS; u32 CORE_MCI_FIFO_CNT; u32 CORE_MCI_VERSION; u32 CORE_GENERICS; u32 CORE_TESTBUS_CONFIG; u32 CORE_TESTBUS_SEL2_BIT; u32 CORE_TESTBUS_ENA; u32 CORE_TESTBUS_SEL2; u32 CORE_PWRCTL_STATUS; u32 CORE_PWRCTL_MASK; u32 CORE_PWRCTL_CLEAR; u32 CORE_PWRCTL_CTL; u32 CORE_SDCC_DEBUG_REG; u32 CORE_DLL_CONFIG; u32 CORE_DLL_STATUS; u32 CORE_VENDOR_SPEC; u32 CORE_VENDOR_SPEC_ADMA_ERR_ADDR0; u32 CORE_VENDOR_SPEC_ADMA_ERR_ADDR1; u32 CORE_VENDOR_SPEC_FUNC2; u32 CORE_VENDOR_SPEC_CAPABILITIES0; u32 CORE_DDR_200_CFG; u32 CORE_VENDOR_SPEC3; u32 CORE_DLL_CONFIG_2; u32 CORE_DDR_CONFIG; u32 CORE_DDR_CONFIG_2; }; struct sdhci_msm_offset sdhci_msm_offset_mci_removed = { .CORE_MCI_DATA_CNT = 0x35C, .CORE_MCI_STATUS = 0x324, .CORE_MCI_FIFO_CNT = 0x308, .CORE_MCI_VERSION = 0x318, .CORE_GENERICS = 0x320, .CORE_TESTBUS_CONFIG = 0x32C, .CORE_TESTBUS_SEL2_BIT = 3, .CORE_TESTBUS_ENA = (1 << 31), .CORE_TESTBUS_SEL2 = (1 << 3), .CORE_PWRCTL_STATUS = 0x240, .CORE_PWRCTL_MASK = 0x244, .CORE_PWRCTL_CLEAR = 0x248, .CORE_PWRCTL_CTL = 0x24C, .CORE_SDCC_DEBUG_REG = 0x358, .CORE_DLL_CONFIG = 0x200, .CORE_DLL_STATUS = 0x208, .CORE_VENDOR_SPEC = 0x20C, .CORE_VENDOR_SPEC_ADMA_ERR_ADDR0 = 0x214, .CORE_VENDOR_SPEC_ADMA_ERR_ADDR1 = 0x218, .CORE_VENDOR_SPEC_FUNC2 = 0x210, .CORE_VENDOR_SPEC_CAPABILITIES0 = 0x21C, .CORE_DDR_200_CFG = 0x224, .CORE_VENDOR_SPEC3 = 0x250, .CORE_DLL_CONFIG_2 = 0x254, .CORE_DDR_CONFIG = 0x258, .CORE_DDR_CONFIG_2 = 0x25C, }; struct sdhci_msm_offset sdhci_msm_offset_mci_present = { .CORE_MCI_DATA_CNT = 0x30, .CORE_MCI_STATUS = 0x34, .CORE_MCI_FIFO_CNT = 0x44, .CORE_MCI_VERSION = 0x050, .CORE_GENERICS = 0x70, .CORE_TESTBUS_CONFIG = 0x0CC, .CORE_TESTBUS_SEL2_BIT = 4, .CORE_TESTBUS_ENA = (1 << 3), .CORE_TESTBUS_SEL2 = (1 << 4), .CORE_PWRCTL_STATUS = 0xDC, .CORE_PWRCTL_MASK = 0xE0, .CORE_PWRCTL_CLEAR = 0xE4, .CORE_PWRCTL_CTL = 0xE8, .CORE_SDCC_DEBUG_REG = 0x124, .CORE_DLL_CONFIG = 0x100, .CORE_DLL_STATUS = 0x108, .CORE_VENDOR_SPEC = 0x10C, .CORE_VENDOR_SPEC_ADMA_ERR_ADDR0 = 0x114, .CORE_VENDOR_SPEC_ADMA_ERR_ADDR1 = 0x118, .CORE_VENDOR_SPEC_FUNC2 = 0x110, .CORE_VENDOR_SPEC_CAPABILITIES0 = 0x11C, .CORE_DDR_200_CFG = 0x184, .CORE_VENDOR_SPEC3 = 0x1B0, .CORE_DLL_CONFIG_2 = 0x1B4, .CORE_DDR_CONFIG = 0x1B8, .CORE_DDR_CONFIG_2 = 0x1BC, }; u8 sdhci_msm_readb_relaxed(struct sdhci_host *host, u32 offset) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; void __iomem *base_addr; if (msm_host->mci_removed) base_addr = host->ioaddr; else base_addr = msm_host->core_mem; return readb_relaxed(base_addr + offset); } u32 sdhci_msm_readl_relaxed(struct sdhci_host *host, u32 offset) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; void __iomem *base_addr; if (msm_host->mci_removed) base_addr = host->ioaddr; else base_addr = msm_host->core_mem; return readl_relaxed(base_addr + offset); } void sdhci_msm_writeb_relaxed(u8 val, struct sdhci_host *host, u32 offset) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; void __iomem *base_addr; if (msm_host->mci_removed) base_addr = host->ioaddr; else base_addr = msm_host->core_mem; writeb_relaxed(val, base_addr + offset); } void sdhci_msm_writel_relaxed(u32 val, struct sdhci_host *host, u32 offset) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; void __iomem *base_addr; if (msm_host->mci_removed) base_addr = host->ioaddr; else base_addr = msm_host->core_mem; writel_relaxed(val, base_addr + offset); } static const u32 tuning_block_64[] = { 0x00FF0FFF, 0xCCC3CCFF, 0xFFCC3CC3, 0xEFFEFFFE, 0xDDFFDFFF, 0xFBFFFBFF, 0xFF7FFFBF, 0xEFBDF777, 0xF0FFF0FF, 0x3CCCFC0F, 0xCFCC33CC, 0xEEFFEFFF, 0xFDFFFDFF, 0xFFBFFFDF, 0xFFF7FFBB, 0xDE7B7FF7 }; static const u32 tuning_block_128[] = { 0xFF00FFFF, 0x0000FFFF, 0xCCCCFFFF, 0xCCCC33CC, 0xCC3333CC, 0xFFFFCCCC, 0xFFFFEEFF, 0xFFEEEEFF, 0xFFDDFFFF, 0xDDDDFFFF, 0xBBFFFFFF, 0xBBFFFFFF, 0xFFFFFFBB, 0xFFFFFF77, 0x77FF7777, 0xFFEEDDBB, 0x00FFFFFF, 0x00FFFFFF, 0xCCFFFF00, 0xCC33CCCC, 0x3333CCCC, 0xFFCCCCCC, 0xFFEEFFFF, 0xEEEEFFFF, 0xDDFFFFFF, 0xDDFFFFFF, 0xFFFFFFDD, 0xFFFFFFBB, 0xFFFFBBBB, 0xFFFF77FF, 0xFF7777FF, 0xEEDDBB77 }; /* global to hold each slot instance for debug */ static struct sdhci_msm_host *sdhci_slot[2]; static int disable_slots; /* root can write, others read */ module_param(disable_slots, int, S_IRUGO|S_IWUSR); enum vdd_io_level { /* set vdd_io_data->low_vol_level */ VDD_IO_LOW, /* set vdd_io_data->high_vol_level */ VDD_IO_HIGH, /* * set whatever there in voltage_level (third argument) of * sdhci_msm_set_vdd_io_vol() function. */ VDD_IO_SET_LEVEL, }; /* MSM platform specific tuning */ static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll) { int rc = 0; u32 wait_cnt = 50; u8 ck_out_en = 0; struct mmc_host *mmc = host->mmc; struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; const struct sdhci_msm_offset *msm_host_offset = msm_host->offset; /* poll for CK_OUT_EN bit. max. poll time = 50us */ ck_out_en = !!(readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG) & CORE_CK_OUT_EN); while (ck_out_en != poll) { if (--wait_cnt == 0) { pr_err("%s: %s: CK_OUT_EN bit is not %d\n", mmc_hostname(mmc), __func__, poll); rc = -ETIMEDOUT; goto out; } udelay(1); ck_out_en = !!(readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG) & CORE_CK_OUT_EN); } out: return rc; } static ssize_t store_auto_cmd21(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sdhci_host *host = dev_get_drvdata(dev); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; u32 tmp; unsigned long flags; if (!kstrtou32(buf, 0, &tmp)) { spin_lock_irqsave(&host->lock, flags); msm_host->en_auto_cmd21 = !!tmp; spin_unlock_irqrestore(&host->lock, flags); } return count; } static ssize_t show_auto_cmd21(struct device *dev, struct device_attribute *attr, char *buf) { struct sdhci_host *host = dev_get_drvdata(dev); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; return snprintf(buf, PAGE_SIZE, "%d\n", msm_host->en_auto_cmd21); } static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase) { int rc = 0; struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; const struct sdhci_msm_offset *msm_host_offset = msm_host->offset; u8 grey_coded_phase_table[] = {0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4, 0xC, 0xD, 0xF, 0xE, 0xA, 0xB, 0x9, 0x8}; unsigned long flags; u32 config; struct mmc_host *mmc = host->mmc; pr_debug("%s: Enter %s\n", mmc_hostname(mmc), __func__); spin_lock_irqsave(&host->lock, flags); config = readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG); config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN); config |= (CORE_CDR_EXT_EN | CORE_DLL_EN); writel_relaxed(config, host->ioaddr + msm_host_offset->CORE_DLL_CONFIG); /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */ rc = msm_dll_poll_ck_out_en(host, 0); if (rc) goto err_out; /* * Write the selected DLL clock output phase (0 ... 15) * to CDR_SELEXT bit field of DLL_CONFIG register. */ writel_relaxed(((readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG) & ~(0xF << 20)) | (grey_coded_phase_table[phase] << 20)), host->ioaddr + msm_host_offset->CORE_DLL_CONFIG); /* Set CK_OUT_EN bit of DLL_CONFIG register to 1. */ writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG) | CORE_CK_OUT_EN), host->ioaddr + msm_host_offset->CORE_DLL_CONFIG); /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */ rc = msm_dll_poll_ck_out_en(host, 1); if (rc) goto err_out; config = readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG); config |= CORE_CDR_EN; config &= ~CORE_CDR_EXT_EN; writel_relaxed(config, host->ioaddr + msm_host_offset->CORE_DLL_CONFIG); goto out; err_out: pr_err("%s: %s: Failed to set DLL phase: %d\n", mmc_hostname(mmc), __func__, phase); out: spin_unlock_irqrestore(&host->lock, flags); pr_debug("%s: Exit %s\n", mmc_hostname(mmc), __func__); return rc; } /* * Find out the greatest range of consecuitive selected * DLL clock output phases that can be used as sampling * setting for SD3.0 UHS-I card read operation (in SDR104 * timing mode) or for eMMC4.5 card read operation (in * HS400/HS200 timing mode). * Select the 3/4 of the range and configure the DLL with the * selected DLL clock output phase. */ static int msm_find_most_appropriate_phase(struct sdhci_host *host, u8 *phase_table, u8 total_phases) { int ret; u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} }; u8 phases_per_row[MAX_PHASES] = {0}; int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0; int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0; bool phase_0_found = false, phase_15_found = false; struct mmc_host *mmc = host->mmc; pr_debug("%s: Enter %s\n", mmc_hostname(mmc), __func__); if (!total_phases || (total_phases > MAX_PHASES)) { pr_err("%s: %s: invalid argument: total_phases=%d\n", mmc_hostname(mmc), __func__, total_phases); return -EINVAL; } for (cnt = 0; cnt < total_phases; cnt++) { ranges[row_index][col_index] = phase_table[cnt]; phases_per_row[row_index] += 1; col_index++; if ((cnt + 1) == total_phases) { continue; /* check if next phase in phase_table is consecutive or not */ } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) { row_index++; col_index = 0; } } if (row_index >= MAX_PHASES) return -EINVAL; /* Check if phase-0 is present in first valid window? */ if (!ranges[0][0]) { phase_0_found = true; phase_0_raw_index = 0; /* Check if cycle exist between 2 valid windows */ for (cnt = 1; cnt <= row_index; cnt++) { if (phases_per_row[cnt]) { for (i = 0; i < phases_per_row[cnt]; i++) { if (ranges[cnt][i] == 15) { phase_15_found = true; phase_15_raw_index = cnt; break; } } } } } /* If 2 valid windows form cycle then merge them as single window */ if (phase_0_found && phase_15_found) { /* number of phases in raw where phase 0 is present */ u8 phases_0 = phases_per_row[phase_0_raw_index]; /* number of phases in raw where phase 15 is present */ u8 phases_15 = phases_per_row[phase_15_raw_index]; if (phases_0 + phases_15 >= MAX_PHASES) /* * If there are more than 1 phase windows then total * number of phases in both the windows should not be * more than or equal to MAX_PHASES. */ return -EINVAL; /* Merge 2 cyclic windows */ i = phases_15; for (cnt = 0; cnt < phases_0; cnt++) { ranges[phase_15_raw_index][i] = ranges[phase_0_raw_index][cnt]; if (++i >= MAX_PHASES) break; } phases_per_row[phase_0_raw_index] = 0; phases_per_row[phase_15_raw_index] = phases_15 + phases_0; } for (cnt = 0; cnt <= row_index; cnt++) { if (phases_per_row[cnt] > curr_max) { curr_max = phases_per_row[cnt]; selected_row_index = cnt; } } i = ((curr_max * 3) / 4); if (i) i--; ret = (int)ranges[selected_row_index][i]; if (ret >= MAX_PHASES) { ret = -EINVAL; pr_err("%s: %s: invalid phase selected=%d\n", mmc_hostname(mmc), __func__, ret); } pr_debug("%s: Exit %s\n", mmc_hostname(mmc), __func__); return ret; } static inline void msm_cm_dll_set_freq(struct sdhci_host *host) { u32 mclk_freq = 0; struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; const struct sdhci_msm_offset *msm_host_offset = msm_host->offset; /* Program the MCLK value to MCLK_FREQ bit field */ if (host->clock <= 112000000) mclk_freq = 0; else if (host->clock <= 125000000) mclk_freq = 1; else if (host->clock <= 137000000) mclk_freq = 2; else if (host->clock <= 150000000) mclk_freq = 3; else if (host->clock <= 162000000) mclk_freq = 4; else if (host->clock <= 175000000) mclk_freq = 5; else if (host->clock <= 187000000) mclk_freq = 6; else mclk_freq = 7; writel_relaxed(((readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG) & ~(7 << 24)) | (mclk_freq << 24)), host->ioaddr + msm_host_offset->CORE_DLL_CONFIG); } /* Initialize the DLL (Programmable Delay Line ) */ static int msm_init_cm_dll(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; const struct sdhci_msm_offset *msm_host_offset = msm_host->offset; struct mmc_host *mmc = host->mmc; int rc = 0; unsigned long flags; u32 wait_cnt; bool prev_pwrsave, curr_pwrsave; pr_debug("%s: Enter %s\n", mmc_hostname(mmc), __func__); spin_lock_irqsave(&host->lock, flags); prev_pwrsave = !!(readl_relaxed(host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC) & CORE_CLK_PWRSAVE); curr_pwrsave = prev_pwrsave; /* * Make sure that clock is always enabled when DLL * tuning is in progress. Keeping PWRSAVE ON may * turn off the clock. So let's disable the PWRSAVE * here and re-enable it once tuning is completed. */ if (prev_pwrsave) { writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC) & ~CORE_CLK_PWRSAVE), host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC); curr_pwrsave = false; } if (msm_host->use_updated_dll_reset) { /* Disable the DLL clock */ writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG) & ~CORE_CK_OUT_EN), host->ioaddr + msm_host_offset->CORE_DLL_CONFIG); writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG_2) | CORE_DLL_CLOCK_DISABLE), host->ioaddr + msm_host_offset->CORE_DLL_CONFIG_2); } /* Write 1 to DLL_RST bit of DLL_CONFIG register */ writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG) | CORE_DLL_RST), host->ioaddr + msm_host_offset->CORE_DLL_CONFIG); /* Write 1 to DLL_PDN bit of DLL_CONFIG register */ writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG) | CORE_DLL_PDN), host->ioaddr + msm_host_offset->CORE_DLL_CONFIG); msm_cm_dll_set_freq(host); if (msm_host->use_updated_dll_reset) { u32 mclk_freq = 0; if ((readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG_2) & CORE_FLL_CYCLE_CNT)) mclk_freq = (u32) ((host->clock / TCXO_FREQ) * 8); else mclk_freq = (u32) ((host->clock / TCXO_FREQ) * 4); writel_relaxed(((readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG_2) & ~(0xFF << 10)) | (mclk_freq << 10)), host->ioaddr + msm_host_offset->CORE_DLL_CONFIG_2); /* wait for 5us before enabling DLL clock */ udelay(5); } /* Write 0 to DLL_RST bit of DLL_CONFIG register */ writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG) & ~CORE_DLL_RST), host->ioaddr + msm_host_offset->CORE_DLL_CONFIG); /* Write 0 to DLL_PDN bit of DLL_CONFIG register */ writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG) & ~CORE_DLL_PDN), host->ioaddr + msm_host_offset->CORE_DLL_CONFIG); if (msm_host->use_updated_dll_reset) { msm_cm_dll_set_freq(host); /* Enable the DLL clock */ writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG_2) & ~CORE_DLL_CLOCK_DISABLE), host->ioaddr + msm_host_offset->CORE_DLL_CONFIG_2); } /* Set DLL_EN bit to 1. */ writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG) | CORE_DLL_EN), host->ioaddr + msm_host_offset->CORE_DLL_CONFIG); /* Set CK_OUT_EN bit to 1. */ writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG) | CORE_CK_OUT_EN), host->ioaddr + msm_host_offset->CORE_DLL_CONFIG); wait_cnt = 50; /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */ while (!(readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_STATUS) & CORE_DLL_LOCK)) { /* max. wait for 50us sec for LOCK bit to be set */ if (--wait_cnt == 0) { pr_err("%s: %s: DLL failed to LOCK\n", mmc_hostname(mmc), __func__); rc = -ETIMEDOUT; goto out; } /* wait for 1us before polling again */ udelay(1); } out: /* Restore the correct PWRSAVE state */ if (prev_pwrsave ^ curr_pwrsave) { u32 reg = readl_relaxed(host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC); if (prev_pwrsave) reg |= CORE_CLK_PWRSAVE; else reg &= ~CORE_CLK_PWRSAVE; writel_relaxed(reg, host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC); } spin_unlock_irqrestore(&host->lock, flags); pr_debug("%s: Exit %s\n", mmc_hostname(mmc), __func__); return rc; } static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host) { u32 calib_done; int ret = 0; int cdc_err = 0; struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; const struct sdhci_msm_offset *msm_host_offset = msm_host->offset; pr_debug("%s: Enter %s\n", mmc_hostname(host->mmc), __func__); /* Write 0 to CDC_T4_DLY_SEL field in VENDOR_SPEC_DDR200_CFG */ writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_DDR_200_CFG) & ~CORE_CDC_T4_DLY_SEL), host->ioaddr + msm_host_offset->CORE_DDR_200_CFG); /* Write 0 to CDC_SWITCH_BYPASS_OFF field in CORE_CSR_CDC_GEN_CFG */ writel_relaxed((readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG) & ~CORE_CDC_SWITCH_BYPASS_OFF), host->ioaddr + CORE_CSR_CDC_GEN_CFG); /* Write 1 to CDC_SWITCH_RC_EN field in CORE_CSR_CDC_GEN_CFG */ writel_relaxed((readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG) | CORE_CDC_SWITCH_RC_EN), host->ioaddr + CORE_CSR_CDC_GEN_CFG); /* Write 0 to START_CDC_TRAFFIC field in CORE_DDR200_CFG */ writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_DDR_200_CFG) & ~CORE_START_CDC_TRAFFIC), host->ioaddr + msm_host_offset->CORE_DDR_200_CFG); /* * Perform CDC Register Initialization Sequence * * CORE_CSR_CDC_CTLR_CFG0 0x11800EC * CORE_CSR_CDC_CTLR_CFG1 0x3011111 * CORE_CSR_CDC_CAL_TIMER_CFG0 0x1201000 * CORE_CSR_CDC_CAL_TIMER_CFG1 0x4 * CORE_CSR_CDC_REFCOUNT_CFG 0xCB732020 * CORE_CSR_CDC_COARSE_CAL_CFG 0xB19 * CORE_CSR_CDC_DELAY_CFG 0x3AC * CORE_CDC_OFFSET_CFG 0x0 * CORE_CDC_SLAVE_DDA_CFG 0x16334 */ writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1); writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1); writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG); writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG); writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG); writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG); writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG); /* CDC HW Calibration */ /* Write 1 to SW_TRIG_FULL_CALIB field in CORE_CSR_CDC_CTLR_CFG0 */ writel_relaxed((readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0) | CORE_SW_TRIG_FULL_CALIB), host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); /* Write 0 to SW_TRIG_FULL_CALIB field in CORE_CSR_CDC_CTLR_CFG0 */ writel_relaxed((readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0) & ~CORE_SW_TRIG_FULL_CALIB), host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); /* Write 1 to HW_AUTOCAL_ENA field in CORE_CSR_CDC_CTLR_CFG0 */ writel_relaxed((readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0) | CORE_HW_AUTOCAL_ENA), host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); /* Write 1 to TIMER_ENA field in CORE_CSR_CDC_CAL_TIMER_CFG0 */ writel_relaxed((readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0) | CORE_TIMER_ENA), host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); mb(); /* Poll on CALIBRATION_DONE field in CORE_CSR_CDC_STATUS0 to be 1 */ ret = readl_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0, calib_done, (calib_done & CORE_CALIBRATION_DONE), 1, 50); if (ret == -ETIMEDOUT) { pr_err("%s: %s: CDC Calibration was not completed\n", mmc_hostname(host->mmc), __func__); goto out; } /* Verify CDC_ERROR_CODE field in CORE_CSR_CDC_STATUS0 is 0 */ cdc_err = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0) & CORE_CDC_ERROR_CODE_MASK; if (cdc_err) { pr_err("%s: %s: CDC Error Code %d\n", mmc_hostname(host->mmc), __func__, cdc_err); ret = -EINVAL; goto out; } /* Write 1 to START_CDC_TRAFFIC field in CORE_DDR200_CFG */ writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_DDR_200_CFG) | CORE_START_CDC_TRAFFIC), host->ioaddr + msm_host_offset->CORE_DDR_200_CFG); out: pr_debug("%s: Exit %s, ret:%d\n", mmc_hostname(host->mmc), __func__, ret); return ret; } static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; const struct sdhci_msm_offset *msm_host_offset = msm_host->offset; struct device *dev = &msm_host->pdev->dev; u32 dll_status, ddr_config; int ret = 0; u32 ext_rclk_dly_val = 0; pr_debug("%s: Enter %s\n", mmc_hostname(host->mmc), __func__); /* * Reprogramming the value in case it might have been modified by * bootloaders. */ if (msm_host->rclk_delay_fix) { writel_relaxed(DDR_CONFIG_2_POR_VAL, host->ioaddr + msm_host_offset->CORE_DDR_CONFIG_2); } else { ddr_config = DDR_CONFIG_POR_VAL & ~DDR_CONFIG_PRG_RCLK_DLY_MASK; ddr_config |= DDR_CONFIG_PRG_RCLK_DLY; writel_relaxed(ddr_config, host->ioaddr + msm_host_offset->CORE_DDR_CONFIG); } if (!of_property_read_u32(dev->of_node, "qcom,ext_prg_rclk_dly_en", &ext_rclk_dly_val)) { writel_relaxed(ext_rclk_dly_val, host->ioaddr + msm_host_offset->CORE_DDR_CONFIG_2); } if (msm_host->enhanced_strobe && mmc_card_strobe(msm_host->mmc->card)) writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_DDR_200_CFG) | CORE_CMDIN_RCLK_EN), host->ioaddr + msm_host_offset->CORE_DDR_200_CFG); /* Write 1 to DDR_CAL_EN field in CORE_DLL_CONFIG_2 */ writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG_2) | CORE_DDR_CAL_EN), host->ioaddr + msm_host_offset->CORE_DLL_CONFIG_2); /* Poll on DDR_DLL_LOCK bit in CORE_DLL_STATUS to be set */ ret = readl_poll_timeout(host->ioaddr + msm_host_offset->CORE_DLL_STATUS, dll_status, (dll_status & CORE_DDR_DLL_LOCK), 10, 1000); if (ret == -ETIMEDOUT) { pr_err("%s: %s: CM_DLL_SDC4 Calibration was not completed\n", mmc_hostname(host->mmc), __func__); goto out; } /* * set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3. * when MCLK is gated OFF, it is not gated for less than 0.5us * and MCLK must be switched on for at-least 1us before DATA * starts coming. Controllers with 14lpp tech DLL cannot * guarantee above requirement. So PWRSAVE_DLL should not be * turned on for host controllers using this DLL. */ if (!msm_host->use_14lpp_dll) writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC3) | CORE_PWRSAVE_DLL), host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC3); mb(); out: pr_debug("%s: Exit %s, ret:%d\n", mmc_hostname(host->mmc), __func__, ret); return ret; } static int sdhci_msm_enhanced_strobe(struct sdhci_host *host) { int ret = 0; struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; struct mmc_host *mmc = host->mmc; pr_debug("%s: Enter %s\n", mmc_hostname(host->mmc), __func__); if (!msm_host->enhanced_strobe || !mmc_card_strobe(mmc->card)) { pr_debug("%s: host/card does not support hs400 enhanced strobe\n", mmc_hostname(mmc)); return -EINVAL; } if (msm_host->calibration_done || !(mmc->ios.timing == MMC_TIMING_MMC_HS400)) { return 0; } /* * Reset the tuning block. */ ret = msm_init_cm_dll(host); if (ret) goto out; ret = sdhci_msm_cm_dll_sdc4_calibration(host); out: if (!ret) { msm_host->calibration_done = true; pr_info("%s: Enhanced Strobe Initialization Done\n", mmc_hostname(host->mmc)); } pr_debug("%s: Exit %s, ret:%d\n", mmc_hostname(host->mmc), __func__, ret); return ret; } static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host) { int ret = 0; struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; const struct sdhci_msm_offset *msm_host_offset = msm_host->offset; pr_debug("%s: Enter %s\n", mmc_hostname(host->mmc), __func__); /* * Retuning in HS400 (DDR mode) will fail, just reset the * tuning block and restore the saved tuning phase. */ ret = msm_init_cm_dll(host); if (ret) goto out; /* Set the selected phase in delay line hw block */ ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); if (ret) goto out; /* Write 1 to CMD_DAT_TRACK_SEL field in DLL_CONFIG */ writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG) | CORE_CMD_DAT_TRACK_SEL), host->ioaddr + msm_host_offset->CORE_DLL_CONFIG); if (msm_host->use_cdclp533) /* Calibrate CDCLP533 DLL HW */ ret = sdhci_msm_cdclp533_calibration(host); else /* Calibrate CM_DLL_SDC4 HW */ ret = sdhci_msm_cm_dll_sdc4_calibration(host); out: pr_debug("%s: Exit %s, ret:%d\n", mmc_hostname(host->mmc), __func__, ret); return ret; } static void sdhci_msm_set_mmc_drv_type(struct sdhci_host *host, u32 opcode, u8 drv_type) { struct mmc_command cmd = {0}; struct mmc_request mrq = {NULL}; struct mmc_host *mmc = host->mmc; u8 val = ((drv_type << 4) | 2); cmd.opcode = MMC_SWITCH; cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (EXT_CSD_HS_TIMING << 16) | (val << 8) | EXT_CSD_CMD_SET_NORMAL; cmd.flags = MMC_CMD_AC | MMC_RSP_R1B; /* 1 sec */ cmd.busy_timeout = 1000 * 1000; memset(cmd.resp, 0, sizeof(cmd.resp)); cmd.retries = 3; mrq.cmd = &cmd; cmd.data = NULL; mmc_wait_for_req(mmc, &mrq); pr_debug("%s: %s: set card drive type to %d\n", mmc_hostname(mmc), __func__, drv_type); } int sdhci_msm_execute_tuning(struct sdhci_host *host, u32 opcode) { unsigned long flags; int tuning_seq_cnt = 3; u8 phase, *data_buf, tuned_phases[NUM_TUNING_PHASES], tuned_phase_cnt; const u32 *tuning_block_pattern = tuning_block_64; int size = sizeof(tuning_block_64); /* Tuning pattern size in bytes */ int rc; struct mmc_host *mmc = host->mmc; struct mmc_ios ios = host->mmc->ios; struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; u8 drv_type = 0; bool drv_type_changed = false; struct mmc_card *card = host->mmc->card; int sts_retry; /* * Tuning is required for SDR104, HS200 and HS400 cards and * if clock frequency is greater than 100MHz in these modes. */ if (host->clock <= CORE_FREQ_100MHZ || !((ios.timing == MMC_TIMING_MMC_HS400) || (ios.timing == MMC_TIMING_MMC_HS200) || (ios.timing == MMC_TIMING_UHS_SDR104))) return 0; pr_debug("%s: Enter %s\n", mmc_hostname(mmc), __func__); /* CDC/SDC4 DLL HW calibration is only required for HS400 mode*/ if (msm_host->tuning_done && !msm_host->calibration_done && (mmc->ios.timing == MMC_TIMING_MMC_HS400)) { rc = sdhci_msm_hs400_dll_calibration(host); spin_lock_irqsave(&host->lock, flags); if (!rc) msm_host->calibration_done = true; spin_unlock_irqrestore(&host->lock, flags); goto out; } spin_lock_irqsave(&host->lock, flags); if ((opcode == MMC_SEND_TUNING_BLOCK_HS200) && (mmc->ios.bus_width == MMC_BUS_WIDTH_8)) { tuning_block_pattern = tuning_block_128; size = sizeof(tuning_block_128); } spin_unlock_irqrestore(&host->lock, flags); data_buf = kmalloc(size, GFP_KERNEL); if (!data_buf) { rc = -ENOMEM; goto out; } retry: tuned_phase_cnt = 0; /* first of all reset the tuning block */ rc = msm_init_cm_dll(host); if (rc) goto kfree; phase = 0; do { struct mmc_command cmd = {0}; struct mmc_data data = {0}; struct mmc_request mrq = { .cmd = &cmd, .data = &data }; struct scatterlist sg; struct mmc_command sts_cmd = {0}; /* set the phase in delay line hw block */ rc = msm_config_cm_dll_phase(host, phase); if (rc) goto kfree; cmd.opcode = opcode; cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; data.blksz = size; data.blocks = 1; data.flags = MMC_DATA_READ; data.timeout_ns = 1000 * 1000 * 1000; /* 1 sec */ data.sg = &sg; data.sg_len = 1; sg_init_one(&sg, data_buf, size); memset(data_buf, 0, size); mmc_wait_for_req(mmc, &mrq); if (card && (cmd.error || data.error)) { sts_cmd.opcode = MMC_SEND_STATUS; sts_cmd.arg = card->rca << 16; sts_cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; sts_retry = 5; while (sts_retry) { mmc_wait_for_cmd(mmc, &sts_cmd, 0); if (sts_cmd.error || (R1_CURRENT_STATE(sts_cmd.resp[0]) != R1_STATE_TRAN)) { sts_retry--; /* * wait for at least 146 MCLK cycles for * the card to move to TRANS state. As * the MCLK would be min 200MHz for * tuning, we need max 0.73us delay. To * be on safer side 1ms delay is given. */ usleep_range(1000, 1200); pr_debug("%s: phase %d sts cmd err %d resp 0x%x\n", mmc_hostname(mmc), phase, sts_cmd.error, sts_cmd.resp[0]); continue; } break; }; } if (!cmd.error && !data.error && !memcmp(data_buf, tuning_block_pattern, size)) { /* tuning is successful at this tuning point */ tuned_phases[tuned_phase_cnt++] = phase; pr_debug("%s: %s: found *** good *** phase = %d\n", mmc_hostname(mmc), __func__, phase); } else { pr_debug("%s: %s: found ## bad ## phase = %d\n", mmc_hostname(mmc), __func__, phase); } } while (++phase < 16); if ((tuned_phase_cnt == NUM_TUNING_PHASES) && card && mmc_card_mmc(card)) { /* * If all phases pass then its a problem. So change the card's * drive type to a different value, if supported and repeat * tuning until at least one phase fails. Then set the original * drive type back. * * If all the phases still pass after trying all possible * drive types, then one of those 16 phases will be picked. * This is no different from what was going on before the * modification to change drive type and retune. */ pr_debug("%s: tuned phases count: %d\n", mmc_hostname(mmc), tuned_phase_cnt); /* set drive type to other value . default setting is 0x0 */ while (++drv_type <= MAX_DRV_TYPES_SUPPORTED_HS200) { pr_debug("%s: trying different drive strength (%d)\n", mmc_hostname(mmc), drv_type); if (card->ext_csd.raw_driver_strength & (1 << drv_type)) { sdhci_msm_set_mmc_drv_type(host, opcode, drv_type); if (!drv_type_changed) drv_type_changed = true; goto retry; } } } /* reset drive type to default (50 ohm) if changed */ if (drv_type_changed) sdhci_msm_set_mmc_drv_type(host, opcode, 0); if (tuned_phase_cnt) { rc = msm_find_most_appropriate_phase(host, tuned_phases, tuned_phase_cnt); if (rc < 0) goto kfree; else phase = (u8)rc; /* * Finally set the selected phase in delay * line hw block. */ rc = msm_config_cm_dll_phase(host, phase); if (rc) goto kfree; msm_host->saved_tuning_phase = phase; pr_debug("%s: %s: finally setting the tuning phase to %d\n", mmc_hostname(mmc), __func__, phase); } else { if (--tuning_seq_cnt) goto retry; /* tuning failed */ pr_err("%s: %s: no tuning point found\n", mmc_hostname(mmc), __func__); rc = -EIO; } kfree: kfree(data_buf); out: spin_lock_irqsave(&host->lock, flags); if (!rc) msm_host->tuning_done = true; spin_unlock_irqrestore(&host->lock, flags); pr_debug("%s: Exit %s, err(%d)\n", mmc_hostname(mmc), __func__, rc); return rc; } static int sdhci_msm_setup_gpio(struct sdhci_msm_pltfm_data *pdata, bool enable) { struct sdhci_msm_gpio_data *curr; int i, ret = 0; curr = pdata->pin_data->gpio_data; for (i = 0; i < curr->size; i++) { if (!gpio_is_valid(curr->gpio[i].no)) { ret = -EINVAL; pr_err("%s: Invalid gpio = %d\n", __func__, curr->gpio[i].no); goto free_gpios; } if (enable) { ret = gpio_request(curr->gpio[i].no, curr->gpio[i].name); if (ret) { pr_err("%s: gpio_request(%d, %s) failed %d\n", __func__, curr->gpio[i].no, curr->gpio[i].name, ret); goto free_gpios; } curr->gpio[i].is_enabled = true; } else { gpio_free(curr->gpio[i].no); curr->gpio[i].is_enabled = false; } } return ret; free_gpios: for (i--; i >= 0; i--) { gpio_free(curr->gpio[i].no); curr->gpio[i].is_enabled = false; } return ret; } static int sdhci_msm_setup_pinctrl(struct sdhci_msm_pltfm_data *pdata, bool enable) { int ret = 0; if (enable) ret = pinctrl_select_state(pdata->pctrl_data->pctrl, pdata->pctrl_data->pins_active); else ret = pinctrl_select_state(pdata->pctrl_data->pctrl, pdata->pctrl_data->pins_sleep); if (ret < 0) pr_err("%s state for pinctrl failed with %d\n", enable ? "Enabling" : "Disabling", ret); return ret; } static int sdhci_msm_setup_pins(struct sdhci_msm_pltfm_data *pdata, bool enable) { int ret = 0; if (pdata->pin_cfg_sts == enable) { return 0; } else if (pdata->pctrl_data) { ret = sdhci_msm_setup_pinctrl(pdata, enable); goto out; } else if (!pdata->pin_data) { return 0; } if (pdata->pin_data->is_gpio) ret = sdhci_msm_setup_gpio(pdata, enable); out: if (!ret) pdata->pin_cfg_sts = enable; return ret; } static int sdhci_msm_dt_get_array(struct device *dev, const char *prop_name, u32 **out, int *len, u32 size) { int ret = 0; struct device_node *np = dev->of_node; size_t sz; u32 *arr = NULL; if (!of_get_property(np, prop_name, len)) { ret = -EINVAL; goto out; } sz = *len = *len / sizeof(*arr); if (sz <= 0 || (size > 0 && (sz > size))) { dev_err(dev, "%s invalid size\n", prop_name); ret = -EINVAL; goto out; } arr = devm_kzalloc(dev, sz * sizeof(*arr), GFP_KERNEL); if (!arr) { dev_err(dev, "%s failed allocating memory\n", prop_name); ret = -ENOMEM; goto out; } ret = of_property_read_u32_array(np, prop_name, arr, sz); if (ret < 0) { dev_err(dev, "%s failed reading array %d\n", prop_name, ret); goto out; } *out = arr; out: if (ret) *len = 0; return ret; } #define MAX_PROP_SIZE 32 static int sdhci_msm_dt_parse_vreg_info(struct device *dev, struct sdhci_msm_reg_data **vreg_data, const char *vreg_name) { int len, ret = 0; const __be32 *prop; char prop_name[MAX_PROP_SIZE]; struct sdhci_msm_reg_data *vreg; struct device_node *np = dev->of_node; snprintf(prop_name, MAX_PROP_SIZE, "%s-supply", vreg_name); if (!of_parse_phandle(np, prop_name, 0)) { dev_info(dev, "No vreg data found for %s\n", vreg_name); return ret; } vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL); if (!vreg) { dev_err(dev, "No memory for vreg: %s\n", vreg_name); ret = -ENOMEM; return ret; } vreg->name = vreg_name; snprintf(prop_name, MAX_PROP_SIZE, "qcom,%s-always-on", vreg_name); if (of_get_property(np, prop_name, NULL)) vreg->is_always_on = true; snprintf(prop_name, MAX_PROP_SIZE, "qcom,%s-lpm-sup", vreg_name); if (of_get_property(np, prop_name, NULL)) vreg->lpm_sup = true; snprintf(prop_name, MAX_PROP_SIZE, "qcom,%s-voltage-level", vreg_name); prop = of_get_property(np, prop_name, &len); if (!prop || (len != (2 * sizeof(__be32)))) { dev_warn(dev, "%s %s property\n", prop ? "invalid format" : "no", prop_name); } else { vreg->low_vol_level = be32_to_cpup(&prop[0]); vreg->high_vol_level = be32_to_cpup(&prop[1]); } snprintf(prop_name, MAX_PROP_SIZE, "qcom,%s-current-level", vreg_name); prop = of_get_property(np, prop_name, &len); if (!prop || (len != (2 * sizeof(__be32)))) { dev_warn(dev, "%s %s property\n", prop ? "invalid format" : "no", prop_name); } else { vreg->lpm_uA = be32_to_cpup(&prop[0]); vreg->hpm_uA = be32_to_cpup(&prop[1]); } *vreg_data = vreg; dev_dbg(dev, "%s: %s %s vol=[%d %d]uV, curr=[%d %d]uA\n", vreg->name, vreg->is_always_on ? "always_on," : "", vreg->lpm_sup ? "lpm_sup," : "", vreg->low_vol_level, vreg->high_vol_level, vreg->lpm_uA, vreg->hpm_uA); return ret; } /* GPIO/Pad data extraction */ static int sdhci_msm_parse_pinctrl_info(struct device *dev, struct sdhci_msm_pltfm_data *pdata) { struct sdhci_pinctrl_data *pctrl_data; struct pinctrl *pctrl; int ret = 0; /* Try to obtain pinctrl handle */ pctrl = devm_pinctrl_get(dev); if (IS_ERR(pctrl)) { ret = PTR_ERR(pctrl); goto out; } pctrl_data = devm_kzalloc(dev, sizeof(*pctrl_data), GFP_KERNEL); if (!pctrl_data) { dev_err(dev, "No memory for sdhci_pinctrl_data\n"); ret = -ENOMEM; goto out; } pctrl_data->pctrl = pctrl; /* Look-up and keep the states handy to be used later */ pctrl_data->pins_active = pinctrl_lookup_state( pctrl_data->pctrl, "active"); if (IS_ERR(pctrl_data->pins_active)) { ret = PTR_ERR(pctrl_data->pins_active); dev_err(dev, "Could not get active pinstates, err:%d\n", ret); goto out; } pctrl_data->pins_sleep = pinctrl_lookup_state( pctrl_data->pctrl, "sleep"); if (IS_ERR(pctrl_data->pins_sleep)) { ret = PTR_ERR(pctrl_data->pins_sleep); dev_err(dev, "Could not get sleep pinstates, err:%d\n", ret); goto out; } pdata->pctrl_data = pctrl_data; out: return ret; } #define GPIO_NAME_MAX_LEN 32 static int sdhci_msm_dt_parse_gpio_info(struct device *dev, struct sdhci_msm_pltfm_data *pdata) { int ret = 0, cnt, i; struct sdhci_msm_pin_data *pin_data; struct device_node *np = dev->of_node; ret = sdhci_msm_parse_pinctrl_info(dev, pdata); if (!ret) { goto out; } else if (ret == -EPROBE_DEFER) { dev_err(dev, "Pinctrl framework not registered, err:%d\n", ret); goto out; } else { dev_err(dev, "Parsing Pinctrl failed with %d, falling back on GPIO lib\n", ret); ret = 0; } pin_data = devm_kzalloc(dev, sizeof(*pin_data), GFP_KERNEL); if (!pin_data) { dev_err(dev, "No memory for pin_data\n"); ret = -ENOMEM; goto out; } cnt = of_gpio_count(np); if (cnt > 0) { pin_data->is_gpio = true; pin_data->gpio_data = devm_kzalloc(dev, sizeof(struct sdhci_msm_gpio_data), GFP_KERNEL); if (!pin_data->gpio_data) { dev_err(dev, "No memory for gpio_data\n"); ret = -ENOMEM; goto out; } pin_data->gpio_data->size = cnt; pin_data->gpio_data->gpio = devm_kzalloc(dev, cnt * sizeof(struct sdhci_msm_gpio), GFP_KERNEL); if (!pin_data->gpio_data->gpio) { dev_err(dev, "No memory for gpio\n"); ret = -ENOMEM; goto out; } for (i = 0; i < cnt; i++) { const char *name = NULL; char result[GPIO_NAME_MAX_LEN]; pin_data->gpio_data->gpio[i].no = of_get_gpio(np, i); of_property_read_string_index(np, "qcom,gpio-names", i, &name); snprintf(result, GPIO_NAME_MAX_LEN, "%s-%s", dev_name(dev), name ? name : "?"); pin_data->gpio_data->gpio[i].name = result; dev_dbg(dev, "%s: gpio[%s] = %d\n", __func__, pin_data->gpio_data->gpio[i].name, pin_data->gpio_data->gpio[i].no); } } pdata->pin_data = pin_data; out: if (ret) dev_err(dev, "%s failed with err %d\n", __func__, ret); return ret; } static inline void parse_affine_irq(struct sdhci_msm_pltfm_data *pdata) { } /* Parse platform data */ static struct sdhci_msm_pltfm_data *sdhci_msm_populate_pdata(struct device *dev, struct sdhci_msm_host *msm_host) { struct sdhci_msm_pltfm_data *pdata = NULL; struct device_node *np = dev->of_node; u32 bus_width = 0; int len, i; int clk_table_len; u32 *clk_table = NULL; int ice_clk_table_len; u32 *ice_clk_table = NULL; enum of_gpio_flags flags = OF_GPIO_ACTIVE_LOW; int sd_ldo, ret; pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) { dev_err(dev, "failed to allocate memory for platform data\n"); goto out; } pdata->status_gpio = of_get_named_gpio_flags(np, "cd-gpios", 0, &flags); if (gpio_is_valid(pdata->status_gpio) & !(flags & OF_GPIO_ACTIVE_LOW)) pdata->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH; sd_ldo = of_get_named_gpio(np, "sd-ldo-gpios", 0); if (gpio_is_valid(sd_ldo)) { ret = devm_gpio_request(dev, sd_ldo, "sd-ldo-gpios"); if (ret) { dev_err(dev, "failed to request sd-ldo-gpios %d\n", sd_ldo); goto out; } dev_info(dev, "Got SD LDO GPIO #%d\n", sd_ldo); /* Toggle SD LDO GPIO on Init */ gpio_direction_output(sd_ldo, 1); gpio_set_value(sd_ldo, 0); mdelay(100); gpio_set_value(sd_ldo, 1); } of_property_read_u32(np, "qcom,bus-width", &bus_width); if (bus_width == 8) pdata->mmc_bus_width = MMC_CAP_8_BIT_DATA; else if (bus_width == 4) pdata->mmc_bus_width = MMC_CAP_4_BIT_DATA; else { dev_notice(dev, "invalid bus-width, default to 1-bit mode\n"); pdata->mmc_bus_width = 0; } if (sdhci_msm_dt_get_array(dev, "qcom,clk-rates", &clk_table, &clk_table_len, 0)) { dev_err(dev, "failed parsing supported clock rates\n"); goto out; } if (!clk_table || !clk_table_len) { dev_err(dev, "Invalid clock table\n"); goto out; } pdata->sup_clk_table = clk_table; pdata->sup_clk_cnt = clk_table_len; if (msm_host->ice.pdev) { if (sdhci_msm_dt_get_array(dev, "qcom,ice-clk-rates", &ice_clk_table, &ice_clk_table_len, 0)) { dev_err(dev, "failed parsing supported ice clock rates\n"); goto out; } if (!ice_clk_table || !ice_clk_table_len) { dev_err(dev, "Invalid clock table\n"); goto out; } if (ice_clk_table_len != 2) { dev_err(dev, "Need max and min frequencies in the table\n"); goto out; } pdata->sup_ice_clk_table = ice_clk_table; pdata->sup_ice_clk_cnt = ice_clk_table_len; pdata->ice_clk_max = pdata->sup_ice_clk_table[0]; pdata->ice_clk_min = pdata->sup_ice_clk_table[1]; dev_dbg(dev, "supported ICE clock rates (Hz): max: %u min: %u\n", pdata->ice_clk_max, pdata->ice_clk_min); } pdata->vreg_data = devm_kzalloc(dev, sizeof(struct sdhci_msm_slot_reg_data), GFP_KERNEL); if (!pdata->vreg_data) { dev_err(dev, "failed to allocate memory for vreg data\n"); goto out; } if (sdhci_msm_dt_parse_vreg_info(dev, &pdata->vreg_data->vdd_data, "vdd")) { dev_err(dev, "failed parsing vdd data\n"); goto out; } if (sdhci_msm_dt_parse_vreg_info(dev, &pdata->vreg_data->vdd_io_data, "vdd-io")) { dev_err(dev, "failed parsing vdd-io data\n"); goto out; } if (!of_property_read_bool(np, "qcom,dedicated-io")) { if (sdhci_msm_dt_parse_gpio_info(dev, pdata)) { dev_err(dev, "failed parsing gpio data\n"); goto out; } } len = of_property_count_strings(np, "qcom,bus-speed-mode"); for (i = 0; i < len; i++) { const char *name = NULL; of_property_read_string_index(np, "qcom,bus-speed-mode", i, &name); if (!name) continue; if (!strncmp(name, "HS400_1p8v", sizeof("HS400_1p8v"))) pdata->caps2 |= MMC_CAP2_HS400_1_8V; else if (!strncmp(name, "HS400_1p2v", sizeof("HS400_1p2v"))) pdata->caps2 |= MMC_CAP2_HS400_1_2V; else if (!strncmp(name, "HS200_1p8v", sizeof("HS200_1p8v"))) pdata->caps2 |= MMC_CAP2_HS200_1_8V_SDR; else if (!strncmp(name, "HS200_1p2v", sizeof("HS200_1p2v"))) pdata->caps2 |= MMC_CAP2_HS200_1_2V_SDR; else if (!strncmp(name, "DDR_1p8v", sizeof("DDR_1p8v"))) pdata->caps |= MMC_CAP_1_8V_DDR | MMC_CAP_UHS_DDR50; else if (!strncmp(name, "DDR_1p2v", sizeof("DDR_1p2v"))) pdata->caps |= MMC_CAP_1_2V_DDR | MMC_CAP_UHS_DDR50; } if (of_get_property(np, "qcom,nonremovable", NULL)) pdata->nonremovable = true; if (of_get_property(np, "qcom,nonhotplug", NULL)) pdata->nonhotplug = true; pdata->largeaddressbus = of_property_read_bool(np, "qcom,large-address-bus"); pdata->disable_aggressive_pm = of_property_read_bool(np, "qcom,disable-aggressive-pm"); if (of_get_property(np, "qcom,core_3_0v_support", NULL)) pdata->core_3_0v_support = true; return pdata; out: return NULL; } /* Regulator utility functions */ static int sdhci_msm_vreg_init_reg(struct device *dev, struct sdhci_msm_reg_data *vreg) { int ret = 0; /* check if regulator is already initialized? */ if (vreg->reg) goto out; /* Get the regulator handle */ vreg->reg = devm_regulator_get(dev, vreg->name); if (IS_ERR(vreg->reg)) { ret = PTR_ERR(vreg->reg); pr_err("%s: devm_regulator_get(%s) failed. ret=%d\n", __func__, vreg->name, ret); goto out; } if (regulator_count_voltages(vreg->reg) > 0) { vreg->set_voltage_sup = true; /* sanity check */ if (!vreg->high_vol_level || !vreg->hpm_uA) { pr_err("%s: %s invalid constraints specified\n", __func__, vreg->name); ret = -EINVAL; } } out: return ret; } static void sdhci_msm_vreg_deinit_reg(struct sdhci_msm_reg_data *vreg) { if (vreg->reg) devm_regulator_put(vreg->reg); } static int sdhci_msm_vreg_set_optimum_mode(struct sdhci_msm_reg_data *vreg, int uA_load) { int ret = 0; /* * regulators that do not support regulator_set_voltage also * do not support regulator_set_optimum_mode */ if (vreg->set_voltage_sup) { ret = regulator_set_load(vreg->reg, uA_load); if (ret < 0) pr_err("%s: regulator_set_load(reg=%s,uA_load=%d) failed. ret=%d\n", __func__, vreg->name, uA_load, ret); else /* * regulator_set_load() can return non zero * value even for success case. */ ret = 0; } return ret; } static int sdhci_msm_vreg_set_voltage(struct sdhci_msm_reg_data *vreg, int min_uV, int max_uV) { int ret = 0; if (vreg->set_voltage_sup) { ret = regulator_set_voltage(vreg->reg, min_uV, max_uV); if (ret) { pr_err("%s: regulator_set_voltage(%s)failed. min_uV=%d,max_uV=%d,ret=%d\n", __func__, vreg->name, min_uV, max_uV, ret); } } return ret; } static int sdhci_msm_vreg_enable(struct sdhci_msm_reg_data *vreg) { int ret = 0; /* Put regulator in HPM (high power mode) */ ret = sdhci_msm_vreg_set_optimum_mode(vreg, vreg->hpm_uA); if (ret < 0) return ret; if (!vreg->is_enabled) { /* Set voltage level */ ret = sdhci_msm_vreg_set_voltage(vreg, vreg->high_vol_level, vreg->high_vol_level); if (ret) return ret; } ret = regulator_enable(vreg->reg); if (ret) { pr_err("%s: regulator_enable(%s) failed. ret=%d\n", __func__, vreg->name, ret); return ret; } vreg->is_enabled = true; return ret; } static int sdhci_msm_vreg_disable(struct sdhci_msm_reg_data *vreg) { int ret = 0; /* Never disable regulator marked as always_on */ if (vreg->is_enabled && !vreg->is_always_on) { ret = regulator_disable(vreg->reg); if (ret) { pr_err("%s: regulator_disable(%s) failed. ret=%d\n", __func__, vreg->name, ret); goto out; } vreg->is_enabled = false; ret = sdhci_msm_vreg_set_optimum_mode(vreg, 0); if (ret < 0) goto out; /* Set min. voltage level to 0 */ ret = sdhci_msm_vreg_set_voltage(vreg, 0, vreg->high_vol_level); if (ret) goto out; } else if (vreg->is_enabled && vreg->is_always_on) { if (vreg->lpm_sup) { /* Put always_on regulator in LPM (low power mode) */ ret = sdhci_msm_vreg_set_optimum_mode(vreg, vreg->lpm_uA); if (ret < 0) goto out; } } out: return ret; } static int sdhci_msm_setup_vreg(struct sdhci_msm_pltfm_data *pdata, bool enable, bool is_init) { int ret = 0, i; struct sdhci_msm_slot_reg_data *curr_slot; struct sdhci_msm_reg_data *vreg_table[2]; curr_slot = pdata->vreg_data; if (!curr_slot) { pr_debug("%s: vreg info unavailable,assuming the slot is powered by always on domain\n", __func__); goto out; } vreg_table[0] = curr_slot->vdd_data; vreg_table[1] = curr_slot->vdd_io_data; for (i = 0; i < ARRAY_SIZE(vreg_table); i++) { if (vreg_table[i]) { if (enable) ret = sdhci_msm_vreg_enable(vreg_table[i]); else ret = sdhci_msm_vreg_disable(vreg_table[i]); if (ret) goto out; } } out: return ret; } /* * Reset vreg by ensuring it is off during probe. A call * to enable vreg is needed to balance disable vreg */ static int sdhci_msm_vreg_reset(struct sdhci_msm_pltfm_data *pdata) { int ret; ret = sdhci_msm_setup_vreg(pdata, 1, true); if (ret) return ret; ret = sdhci_msm_setup_vreg(pdata, 0, true); return ret; } /* This init function should be called only once for each SDHC slot */ static int sdhci_msm_vreg_init(struct device *dev, struct sdhci_msm_pltfm_data *pdata, bool is_init) { int ret = 0; struct sdhci_msm_slot_reg_data *curr_slot; struct sdhci_msm_reg_data *curr_vdd_reg, *curr_vdd_io_reg; curr_slot = pdata->vreg_data; if (!curr_slot) goto out; curr_vdd_reg = curr_slot->vdd_data; curr_vdd_io_reg = curr_slot->vdd_io_data; if (!is_init) /* Deregister all regulators from regulator framework */ goto vdd_io_reg_deinit; /* * Get the regulator handle from voltage regulator framework * and then try to set the voltage level for the regulator */ if (curr_vdd_reg) { ret = sdhci_msm_vreg_init_reg(dev, curr_vdd_reg); if (ret) goto out; } if (curr_vdd_io_reg) { ret = sdhci_msm_vreg_init_reg(dev, curr_vdd_io_reg); if (ret) goto vdd_reg_deinit; } ret = sdhci_msm_vreg_reset(pdata); if (ret) dev_err(dev, "vreg reset failed (%d)\n", ret); goto out; vdd_io_reg_deinit: if (curr_vdd_io_reg) sdhci_msm_vreg_deinit_reg(curr_vdd_io_reg); vdd_reg_deinit: if (curr_vdd_reg) sdhci_msm_vreg_deinit_reg(curr_vdd_reg); out: return ret; } static int sdhci_msm_set_vdd_io_vol(struct sdhci_msm_pltfm_data *pdata, enum vdd_io_level level, unsigned int voltage_level) { int ret = 0; int set_level; struct sdhci_msm_reg_data *vdd_io_reg; if (!pdata->vreg_data) return ret; vdd_io_reg = pdata->vreg_data->vdd_io_data; if (vdd_io_reg && vdd_io_reg->is_enabled) { switch (level) { case VDD_IO_LOW: set_level = vdd_io_reg->low_vol_level; break; case VDD_IO_HIGH: set_level = vdd_io_reg->high_vol_level; break; case VDD_IO_SET_LEVEL: set_level = voltage_level; break; default: pr_err("%s: invalid argument level = %d", __func__, level); ret = -EINVAL; return ret; } ret = sdhci_msm_vreg_set_voltage(vdd_io_reg, set_level, set_level); } return ret; } /* * Acquire spin-lock host->lock before calling this function */ static void sdhci_msm_cfg_sdiowakeup_gpio_irq(struct sdhci_host *host, bool enable) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; if (enable && !msm_host->is_sdiowakeup_enabled) enable_irq(msm_host->pdata->sdiowakeup_irq); else if (!enable && msm_host->is_sdiowakeup_enabled) disable_irq_nosync(msm_host->pdata->sdiowakeup_irq); else dev_warn(&msm_host->pdev->dev, "%s: wakeup to config: %d curr: %d\n", __func__, enable, msm_host->is_sdiowakeup_enabled); msm_host->is_sdiowakeup_enabled = enable; } static irqreturn_t sdhci_msm_sdiowakeup_irq(int irq, void *data) { struct sdhci_host *host = (struct sdhci_host *)data; struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; unsigned long flags; pr_debug("%s: irq (%d) received\n", __func__, irq); spin_lock_irqsave(&host->lock, flags); sdhci_msm_cfg_sdiowakeup_gpio_irq(host, false); spin_unlock_irqrestore(&host->lock, flags); msm_host->sdio_pending_processing = true; return IRQ_HANDLED; } void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; const struct sdhci_msm_offset *msm_host_offset = msm_host->offset; pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n", mmc_hostname(host->mmc), sdhci_msm_readl_relaxed(host, msm_host_offset->CORE_PWRCTL_STATUS), sdhci_msm_readl_relaxed(host, msm_host_offset->CORE_PWRCTL_MASK), sdhci_msm_readl_relaxed(host, msm_host_offset->CORE_PWRCTL_CTL)); } static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data) { struct sdhci_host *host = (struct sdhci_host *)data; struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; const struct sdhci_msm_offset *msm_host_offset = msm_host->offset; u8 irq_status = 0; u8 irq_ack = 0; int ret = 0; int pwr_state = 0, io_level = 0; unsigned long flags; int retry = 10; irq_status = sdhci_msm_readb_relaxed(host, msm_host_offset->CORE_PWRCTL_STATUS); pr_debug("%s: Received IRQ(%d), status=0x%x\n", mmc_hostname(msm_host->mmc), irq, irq_status); /* Clear the interrupt */ sdhci_msm_writeb_relaxed(irq_status, host, msm_host_offset->CORE_PWRCTL_CLEAR); /* * SDHC has core_mem and hc_mem device memory and these memory * addresses do not fall within 1KB region. Hence, any update to * core_mem address space would require an mb() to ensure this gets * completed before its next update to registers within hc_mem. */ mb(); /* * There is a rare HW scenario where the first clear pulse could be * lost when actual reset and clear/read of status register is * happening at a time. Hence, retry for at least 10 times to make * sure status register is cleared. Otherwise, this will result in * a spurious power IRQ resulting in system instability. */ while (irq_status & sdhci_msm_readb_relaxed(host, msm_host_offset->CORE_PWRCTL_STATUS)) { if (retry == 0) { pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n", mmc_hostname(host->mmc), irq_status); sdhci_msm_dump_pwr_ctrl_regs(host); BUG_ON(1); } sdhci_msm_writeb_relaxed(irq_status, host, msm_host_offset->CORE_PWRCTL_CLEAR); retry--; udelay(10); } if (likely(retry < 10)) pr_debug("%s: success clearing (0x%x) pwrctl status register, retries left %d\n", mmc_hostname(host->mmc), irq_status, retry); /* Handle BUS ON/OFF*/ if (irq_status & CORE_PWRCTL_BUS_ON) { ret = sdhci_msm_setup_vreg(msm_host->pdata, true, false); if (!ret) { ret = sdhci_msm_setup_pins(msm_host->pdata, true); ret |= sdhci_msm_set_vdd_io_vol(msm_host->pdata, VDD_IO_HIGH, 0); } if (ret) irq_ack |= CORE_PWRCTL_BUS_FAIL; else irq_ack |= CORE_PWRCTL_BUS_SUCCESS; pwr_state = REQ_BUS_ON; io_level = REQ_IO_HIGH; } if (irq_status & CORE_PWRCTL_BUS_OFF) { ret = sdhci_msm_setup_vreg(msm_host->pdata, false, false); if (!ret) { ret = sdhci_msm_setup_pins(msm_host->pdata, false); ret |= sdhci_msm_set_vdd_io_vol(msm_host->pdata, VDD_IO_LOW, 0); } if (ret) irq_ack |= CORE_PWRCTL_BUS_FAIL; else irq_ack |= CORE_PWRCTL_BUS_SUCCESS; pwr_state = REQ_BUS_OFF; io_level = REQ_IO_LOW; } /* Handle IO LOW/HIGH */ if (irq_status & CORE_PWRCTL_IO_LOW) { /* Switch voltage Low */ ret = sdhci_msm_set_vdd_io_vol(msm_host->pdata, VDD_IO_LOW, 0); if (ret) irq_ack |= CORE_PWRCTL_IO_FAIL; else irq_ack |= CORE_PWRCTL_IO_SUCCESS; io_level = REQ_IO_LOW; } if (irq_status & CORE_PWRCTL_IO_HIGH) { /* Switch voltage High */ ret = sdhci_msm_set_vdd_io_vol(msm_host->pdata, VDD_IO_HIGH, 0); if (ret) irq_ack |= CORE_PWRCTL_IO_FAIL; else irq_ack |= CORE_PWRCTL_IO_SUCCESS; io_level = REQ_IO_HIGH; } /* ACK status to the core */ sdhci_msm_writeb_relaxed(irq_ack, host, msm_host_offset->CORE_PWRCTL_CTL); /* * SDHC has core_mem and hc_mem device memory and these memory * addresses do not fall within 1KB region. Hence, any update to * core_mem address space would require an mb() to ensure this gets * completed before its next update to registers within hc_mem. */ mb(); if ((io_level & REQ_IO_HIGH) && (msm_host->caps_0 & CORE_3_0V_SUPPORT)) writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC) & ~CORE_IO_PAD_PWR_SWITCH), host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC); else if ((io_level & REQ_IO_LOW) || (msm_host->caps_0 & CORE_1_8V_SUPPORT)) writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC) | CORE_IO_PAD_PWR_SWITCH), host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC); mb(); pr_debug("%s: Handled IRQ(%d), ret=%d, ack=0x%x\n", mmc_hostname(msm_host->mmc), irq, ret, irq_ack); spin_lock_irqsave(&host->lock, flags); if (pwr_state) msm_host->curr_pwr_state = pwr_state; if (io_level) msm_host->curr_io_level = io_level; complete(&msm_host->pwr_irq_completion); spin_unlock_irqrestore(&host->lock, flags); return IRQ_HANDLED; } static ssize_t show_polling(struct device *dev, struct device_attribute *attr, char *buf) { struct sdhci_host *host = dev_get_drvdata(dev); int poll; unsigned long flags; spin_lock_irqsave(&host->lock, flags); poll = !!(host->mmc->caps & MMC_CAP_NEEDS_POLL); spin_unlock_irqrestore(&host->lock, flags); return snprintf(buf, PAGE_SIZE, "%d\n", poll); } static ssize_t store_polling(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sdhci_host *host = dev_get_drvdata(dev); int value; unsigned long flags; if (!kstrtou32(buf, 0, &value)) { spin_lock_irqsave(&host->lock, flags); if (value) { host->mmc->caps |= MMC_CAP_NEEDS_POLL; mmc_detect_change(host->mmc, 0); } else { host->mmc->caps &= ~MMC_CAP_NEEDS_POLL; } spin_unlock_irqrestore(&host->lock, flags); } return count; } static void sdhci_msm_toggle_cdr(struct sdhci_host *host, bool enable) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; const struct sdhci_msm_offset *msm_host_offset = msm_host->offset; u32 config = readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG); if (enable) { config |= CORE_CDR_EN; config &= ~CORE_CDR_EXT_EN; writel_relaxed(config, host->ioaddr + msm_host_offset->CORE_DLL_CONFIG); } else { config &= ~CORE_CDR_EN; config |= CORE_CDR_EXT_EN; writel_relaxed(config, host->ioaddr + msm_host_offset->CORE_DLL_CONFIG); } } static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; return msm_host->pdata->sup_clk_table[0]; } static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; int max_clk_index = msm_host->pdata->sup_clk_cnt; if(msm_host->emulation) max_clk_index = SDHC_EMU_MAX_CLOCKS; return msm_host->pdata->sup_clk_table[max_clk_index - 1]; } static int sdhci_msm_enable_controller_clock(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; int rc = 0; if (atomic_read(&msm_host->controller_clock)) return 0; if (!IS_ERR(msm_host->pclk)) { rc = clk_prepare_enable(msm_host->pclk); if (rc) { pr_err("%s: %s: failed to enable the pclk with error %d\n", mmc_hostname(host->mmc), __func__, rc); goto out; } } rc = clk_prepare_enable(msm_host->clk); if (rc) { pr_err("%s: %s: failed to enable the host-clk with error %d\n", mmc_hostname(host->mmc), __func__, rc); goto disable_pclk; } if (!IS_ERR(msm_host->ice_clk)) { rc = clk_prepare_enable(msm_host->ice_clk); if (rc) { pr_err("%s: %s: failed to enable the ice-clk with error %d\n", mmc_hostname(host->mmc), __func__, rc); goto disable_host_clk; } } atomic_set(&msm_host->controller_clock, 1); pr_debug("%s: %s: enabled controller clock\n", mmc_hostname(host->mmc), __func__); goto out; disable_host_clk: if (!IS_ERR(msm_host->clk)) clk_disable_unprepare(msm_host->clk); disable_pclk: if (!IS_ERR(msm_host->pclk)) clk_disable_unprepare(msm_host->pclk); out: return rc; } static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) { struct mmc_ios curr_ios = host->mmc->ios; struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; const struct sdhci_msm_offset *msm_host_offset = msm_host->offset; struct mmc_card *card = host->mmc->card; if (curr_ios.timing == MMC_TIMING_MMC_HS400) { /* Select the divided clock (free running MCLK/2) */ writel_relaxed(((readl_relaxed(host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC) & ~CORE_HC_MCLK_SEL_MASK) | CORE_HC_MCLK_SEL_HS400), host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC); /* * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC * register */ if ((msm_host->tuning_done || (card && mmc_card_strobe(card) && msm_host->enhanced_strobe)) && !msm_host->calibration_done) { /* * Write 0x6 to HC_SELECT_IN and 1 to HC_SELECT_IN_EN * field in VENDOR_SPEC_FUNC */ writel_relaxed((readl_relaxed(host->ioaddr + \ msm_host_offset->CORE_VENDOR_SPEC) | CORE_HC_SELECT_IN_HS400 | CORE_HC_SELECT_IN_EN), host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC); } } else { if (!msm_host->use_cdclp533) /* set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3 */ writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC3) & ~CORE_PWRSAVE_DLL), host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC3); /* Select the default clock (free running MCLK) */ writel_relaxed(((readl_relaxed(host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC) & ~CORE_HC_MCLK_SEL_MASK) | CORE_HC_MCLK_SEL_DFLT), host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC); /* * Disable HC_SELECT_IN to be able to use the UHS mode select * configuration from Host Control2 register for all other * modes. * * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field * in VENDOR_SPEC_FUNC */ writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC) & ~CORE_HC_SELECT_IN_EN & ~CORE_HC_SELECT_IN_MASK), host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC); } /* Memory barrier to make sure register is written */ mb(); host->clock = clock; sdhci_set_clock(host, clock); } static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host, unsigned int uhs) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; const struct sdhci_msm_offset *msm_host_offset = msm_host->offset; u16 ctrl_2; ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); /* Select Bus Speed Mode for host */ ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; if ((uhs == MMC_TIMING_MMC_HS400) || (uhs == MMC_TIMING_MMC_HS200) || (uhs == MMC_TIMING_UHS_SDR104)) ctrl_2 |= SDHCI_CTRL_UHS_SDR104; else if (uhs == MMC_TIMING_UHS_SDR12) ctrl_2 |= SDHCI_CTRL_UHS_SDR12; else if (uhs == MMC_TIMING_UHS_SDR25) ctrl_2 |= SDHCI_CTRL_UHS_SDR25; else if (uhs == MMC_TIMING_UHS_SDR50) ctrl_2 |= SDHCI_CTRL_UHS_SDR50; else if ((uhs == MMC_TIMING_UHS_DDR50) || (uhs == MMC_TIMING_MMC_DDR52)) ctrl_2 |= SDHCI_CTRL_UHS_DDR50; /* * When clock frquency is less than 100MHz, the feedback clock must be * provided and DLL must not be used so that tuning can be skipped. To * provide feedback clock, the mode selection can be any value less * than 3'b011 in bits [2:0] of HOST CONTROL2 register. */ if (host->clock <= CORE_FREQ_100MHZ) { if ((uhs == MMC_TIMING_MMC_HS400) || (uhs == MMC_TIMING_MMC_HS200) || (uhs == MMC_TIMING_UHS_SDR104)) ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; /* * Make sure DLL is disabled when not required * * Write 1 to DLL_RST bit of DLL_CONFIG register */ writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG) | CORE_DLL_RST), host->ioaddr + msm_host_offset->CORE_DLL_CONFIG); /* Write 1 to DLL_PDN bit of DLL_CONFIG register */ writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG) | CORE_DLL_PDN), host->ioaddr + msm_host_offset->CORE_DLL_CONFIG); mb(); /* * The DLL needs to be restored and CDCLP533 recalibrated * when the clock frequency is set back to 400MHz. */ msm_host->calibration_done = false; } pr_debug("%s: %s-clock:%u uhs mode:%u ctrl_2:0x%x\n", mmc_hostname(host->mmc), __func__, host->clock, uhs, ctrl_2); sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2); } #define MAX_TEST_BUS 60 #ifdef CONFIG_MMC_CQ_HCI #define DRV_NAME "cmdq-host" static void sdhci_msm_cmdq_dump_debug_ram(struct sdhci_host *host) { int i = 0; struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; const struct sdhci_msm_offset *msm_host_offset = msm_host->offset; struct cmdq_host *cq_host = host->cq_host; u32 version = sdhci_msm_readl_relaxed(host, msm_host_offset->CORE_MCI_VERSION); u16 minor = version & CORE_VERSION_TARGET_MASK; /* registers offset changed starting from 4.2.0 */ int offset = minor >= SDHCI_MSM_VER_420 ? 0 : 0x48; pr_err("---- Debug RAM dump ----\n"); pr_err(DRV_NAME ": Debug RAM wrap-around: 0x%08x | Debug RAM overlap: 0x%08x\n", cmdq_readl(cq_host, CQ_CMD_DBG_RAM_WA + offset), cmdq_readl(cq_host, CQ_CMD_DBG_RAM_OL + offset)); while (i < 16) { pr_err(DRV_NAME ": Debug RAM dump [%d]: 0x%08x\n", i, cmdq_readl(cq_host, CQ_CMD_DBG_RAM + offset + (4 * i))); i++; } pr_err("-------------------------\n"); } #endif void sdhci_msm_dump_vendor_regs(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; const struct sdhci_msm_offset *msm_host_offset = msm_host->offset; int tbsel, tbsel2; int i, index = 0; u32 test_bus_val = 0; u32 debug_reg[MAX_TEST_BUS] = {0}; u32 sts = 0; pr_info("----------- VENDOR REGISTER DUMP -----------\n"); #ifdef CONFIG_MMC_CQ_HCI if (host->cq_host) sdhci_msm_cmdq_dump_debug_ram(host); #endif pr_info("Data cnt: 0x%08x | Fifo cnt: 0x%08x | Int sts: 0x%08x\n", sdhci_msm_readl_relaxed(host, msm_host_offset->CORE_MCI_DATA_CNT), sdhci_msm_readl_relaxed(host, msm_host_offset->CORE_MCI_FIFO_CNT), sdhci_msm_readl_relaxed(host, msm_host_offset->CORE_MCI_STATUS)); pr_info("DLL cfg: 0x%08x | DLL sts: 0x%08x | SDCC ver: 0x%08x\n", readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_CONFIG), readl_relaxed(host->ioaddr + msm_host_offset->CORE_DLL_STATUS), sdhci_msm_readl_relaxed(host, msm_host_offset->CORE_MCI_VERSION)); pr_info("Vndr func: 0x%08x | Vndr adma err : addr0: 0x%08x addr1: 0x%08x\n", readl_relaxed(host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC), readl_relaxed(host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC_ADMA_ERR_ADDR0), readl_relaxed(host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC_ADMA_ERR_ADDR1)); pr_info("Vndr func2: 0x%08x\n", readl_relaxed(host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC_FUNC2)); /* * tbsel indicates [2:0] bits and tbsel2 indicates [7:4] bits * of CORE_TESTBUS_CONFIG register. * * To select test bus 0 to 7 use tbsel and to select any test bus * above 7 use (tbsel2 | tbsel) to get the test bus number. For eg, * to select test bus 14, write 0x1E to CORE_TESTBUS_CONFIG register * i.e., tbsel2[7:4] = 0001, tbsel[2:0] = 110. */ for (tbsel2 = 0; tbsel2 < 7; tbsel2++) { for (tbsel = 0; tbsel < 8; tbsel++) { if (index >= MAX_TEST_BUS) break; test_bus_val = (tbsel2 << msm_host_offset->CORE_TESTBUS_SEL2_BIT) | tbsel | msm_host_offset->CORE_TESTBUS_ENA; sdhci_msm_writel_relaxed(test_bus_val, host, msm_host_offset->CORE_TESTBUS_CONFIG); debug_reg[index++] = sdhci_msm_readl_relaxed(host, msm_host_offset->CORE_SDCC_DEBUG_REG); } } for (i = 0; i < MAX_TEST_BUS; i = i + 4) pr_info(" Test bus[%d to %d]: 0x%08x 0x%08x 0x%08x 0x%08x\n", i, i + 3, debug_reg[i], debug_reg[i+1], debug_reg[i+2], debug_reg[i+3]); if (host->is_crypto_en) { sdhci_msm_ice_get_status(host, &sts); pr_info("%s: ICE status %x\n", mmc_hostname(host->mmc), sts); sdhci_msm_ice_print_regs(host); } } void sdhci_msm_reset(struct sdhci_host *host, u8 mask) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; /* Set ICE core to be reset in sync with SDHC core */ if (msm_host->ice.pdev) writel_relaxed(1, host->ioaddr + CORE_VENDOR_SPEC_ICE_CTRL); sdhci_reset(host, mask); } int sdhci_msm_notify_load(struct sdhci_host *host, enum mmc_load state) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; int ret = 0; u32 clk_rate = 0; if (!IS_ERR(msm_host->ice_clk)) { clk_rate = (state == MMC_LOAD_LOW) ? msm_host->pdata->ice_clk_min : msm_host->pdata->ice_clk_max; if (msm_host->ice_clk_rate == clk_rate) return 0; pr_debug("%s: changing ICE clk rate to %u\n", mmc_hostname(host->mmc), clk_rate); ret = clk_set_rate(msm_host->ice_clk, clk_rate); if (ret) { pr_err("%s: ICE_CLK rate set failed (%d) for %u\n", mmc_hostname(host->mmc), ret, clk_rate); return ret; } msm_host->ice_clk_rate = clk_rate; } return 0; } static inline void set_affine_irq(struct sdhci_msm_host *msm_host, struct sdhci_host *host) { } static void sdhci_msm_init(struct sdhci_host *host) { return; } void sdhci_msm_reset_workaround(struct sdhci_host *host, u32 enable) { u32 vendor_func2; unsigned long timeout; struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; const struct sdhci_msm_offset *msm_host_offset = msm_host->offset; vendor_func2 = readl_relaxed(host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC_FUNC2); if (enable) { writel_relaxed(vendor_func2 | HC_SW_RST_REQ, host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC_FUNC2); timeout = 10000; while (readl_relaxed(host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC_FUNC2) & HC_SW_RST_REQ) { if (timeout == 0) { pr_info("%s: Applying wait idle disable workaround\n", mmc_hostname(host->mmc)); /* * Apply the reset workaround to not wait for * pending data transfers on AXI before * resetting the controller. This could be * risky if the transfers were stuck on the * AXI bus. */ vendor_func2 = readl_relaxed(host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC_FUNC2); writel_relaxed(vendor_func2 | HC_SW_RST_WAIT_IDLE_DIS, host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC_FUNC2); host->reset_wa_t = ktime_get(); return; } timeout--; udelay(10); } pr_info("%s: waiting for SW_RST_REQ is successful\n", mmc_hostname(host->mmc)); } else { writel_relaxed(vendor_func2 & ~HC_SW_RST_WAIT_IDLE_DIS, host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC_FUNC2); } } static struct sdhci_ops sdhci_msm_ops = { .crypto_engine_cfg = sdhci_msm_ice_cfg, .crypto_cfg_reset = sdhci_msm_ice_cfg_reset, .crypto_engine_reset = sdhci_msm_ice_reset, .set_uhs_signaling = sdhci_msm_set_uhs_signaling, .platform_execute_tuning = sdhci_msm_execute_tuning, .enhanced_strobe = sdhci_msm_enhanced_strobe, .set_clock = sdhci_msm_set_clock, .get_min_clock = sdhci_msm_get_min_clock, .get_max_clock = sdhci_msm_get_max_clock, .set_bus_width = sdhci_set_bus_width, .reset = sdhci_msm_reset, .platform_init = sdhci_msm_init, .toggle_cdr = sdhci_msm_toggle_cdr, .reset_workaround = sdhci_msm_reset_workaround, }; static void sdhci_set_default_hw_caps(struct sdhci_msm_host *msm_host, struct sdhci_host *host) { u32 version, caps = 0; u16 minor; u8 major; u32 val; const struct sdhci_msm_offset *msm_host_offset = msm_host->offset; version = sdhci_msm_readl_relaxed(host, msm_host_offset->CORE_MCI_VERSION); major = (version & CORE_VERSION_MAJOR_MASK) >> CORE_VERSION_MAJOR_SHIFT; minor = version & CORE_VERSION_TARGET_MASK; caps = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES); /* * Starting with SDCC 5 controller (core major version = 1) * controller won't advertise 3.0v, 1.8v and 8-bit features * except for some targets. */ if (major >= 1 && minor != 0x11 && minor != 0x12) { struct sdhci_msm_reg_data *vdd_io_reg; /* * Enable 1.8V support capability on controllers that * support dual voltage */ vdd_io_reg = msm_host->pdata->vreg_data->vdd_io_data; if (vdd_io_reg && (vdd_io_reg->high_vol_level > 2700000)) caps |= CORE_3_0V_SUPPORT; if (vdd_io_reg && (vdd_io_reg->low_vol_level < 1950000)) caps |= CORE_1_8V_SUPPORT; if (msm_host->pdata->mmc_bus_width == MMC_CAP_8_BIT_DATA) caps |= CORE_8_BIT_SUPPORT; } /* * Enable one MID mode for SDCC5 (major 1) on 8916/8939 (minor 0x2e) and * on 8992 (minor 0x3e) as a workaround to reset for data stuck issue. */ if (major == 1 && (minor == 0x2e || minor == 0x3e || minor == 0x4d)) { host->quirks2 |= SDHCI_QUIRK2_USE_RESET_WORKAROUND; val = readl_relaxed(host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC_FUNC2); writel_relaxed((val | CORE_ONE_MID_EN), host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC_FUNC2); } /* * SDCC 5 controller with major version 1, minor version 0x34 and later * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL. */ if ((major == 1) && (minor < 0x34)) msm_host->use_cdclp533 = true; /* * SDCC 5 controller with major version 1, minor version 0x42 and later * will require additional steps when resetting DLL. * It also supports HS400 enhanced strobe mode. */ if ((major == 1) && (minor >= 0x42)) { msm_host->use_updated_dll_reset = true; msm_host->enhanced_strobe = true; } /* * SDCC 5 controller with major version 1 and minor version 0x42, * 0x46 and 0x49 currently uses 14lpp tech DLL whose internal * gating cannot guarantee MCLK timing requirement i.e. * when MCLK is gated OFF, it is not gated for less than 0.5us * and MCLK must be switched on for at-least 1us before DATA * starts coming. */ if ((major == 1) && ((minor == 0x42) || (minor == 0x46) || (minor == 0x49))) msm_host->use_14lpp_dll = true; /* Fake 3.0V support for SDIO devices which requires such voltage */ if (msm_host->pdata->core_3_0v_support) { caps |= CORE_3_0V_SUPPORT; writel_relaxed((readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES) | caps), host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC_CAPABILITIES0); } if ((major == 1) && (minor >= 0x49)) msm_host->rclk_delay_fix = true; /* * Mask 64-bit support for controller with 32-bit address bus so that * smaller descriptor size will be used and improve memory consumption. */ if (!msm_host->pdata->largeaddressbus) caps &= ~CORE_SYS_BUS_SUPPORT_64_BIT; writel_relaxed(caps, host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC_CAPABILITIES0); /* keep track of the value in SDHCI_CAPABILITIES */ msm_host->caps_0 = caps; if ((major == 1) && (minor >= 0x6b)) msm_host->ice_hci_support = true; } #ifdef CONFIG_MMC_CQ_HCI static void sdhci_msm_cmdq_init(struct sdhci_host *host, struct platform_device *pdev) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; host->cq_host = cmdq_pltfm_init(pdev); if (IS_ERR(host->cq_host)) { dev_dbg(&pdev->dev, "cmdq-pltfm init: failed: %ld\n", PTR_ERR(host->cq_host)); host->cq_host = NULL; } else { msm_host->mmc->caps2 |= MMC_CAP2_CMD_QUEUE; } } #else static void sdhci_msm_cmdq_init(struct sdhci_host *host, struct platform_device *pdev) { } #endif static bool sdhci_msm_is_bootdevice(struct device *dev) { if (strnstr(saved_command_line, "androidboot.bootdevice=", strlen(saved_command_line))) { char search_string[50]; snprintf(search_string, ARRAY_SIZE(search_string), "androidboot.bootdevice=%s", dev_name(dev)); if (strnstr(saved_command_line, search_string, strlen(saved_command_line))) return true; else return false; } /* * "androidboot.bootdevice=" argument is not present then * return true as we don't know the boot device anyways. */ return true; } void sdhci_msm_gpio_free_cd(struct sdhci_msm_host *msm_host) { gpio_free(msm_host->pdata->status_gpio); } static void set_sdcc_hdrv_pull(struct platform_device *pdev, struct device_node *syscon) { struct regmap *regmap; u32 base, regval; int ret; regmap = syscon_node_to_regmap(syscon); if (IS_ERR(regmap)) return; ret = of_property_read_u32_index(pdev->dev.of_node, "syscon", 1, &base); if (ret < 0) return; ret = of_property_read_u32_index(pdev->dev.of_node, "syscon", 2, ®val); if (ret < 0) return; /* write register TLMM_SDC1_HDRV_PULL_CTL for required drive strength * base on mask value */ ret = regmap_write(regmap, base, regval); if (ret) dev_err(&pdev->dev, "Failed to set SDCC with drive strength:0x%08x\n", regval); } static int sdhci_msm_probe(struct platform_device *pdev) { const struct sdhci_msm_offset *msm_host_offset; struct sdhci_host *host; struct sdhci_pltfm_host *pltfm_host; struct sdhci_msm_host *msm_host; struct resource *core_memres = NULL; int ret = 0, dead = 0; u16 host_version; u32 irq_status, irq_ctl; struct resource *tlmm_memres = NULL; void __iomem *tlmm_mem; unsigned long flags; struct device_node *np, *syscon_node; struct device *dev = &pdev->dev; u32 max_clk; pr_debug("%s: Enter %s\n", dev_name(&pdev->dev), __func__); msm_host = devm_kzalloc(&pdev->dev, sizeof(struct sdhci_msm_host), GFP_KERNEL); if (!msm_host) { ret = -ENOMEM; goto out; } if (of_find_compatible_node(NULL, NULL, "qcom,sdhci-msm-v5")) { msm_host->mci_removed = true; msm_host->offset = &sdhci_msm_offset_mci_removed; } else { msm_host->mci_removed = false; msm_host->offset = &sdhci_msm_offset_mci_present; } msm_host_offset = msm_host->offset; msm_host->sdhci_msm_pdata.ops = &sdhci_msm_ops; host = sdhci_pltfm_init(pdev, &msm_host->sdhci_msm_pdata, 0); if (IS_ERR(host)) { ret = PTR_ERR(host); goto out_host_free; } pltfm_host = sdhci_priv(host); pltfm_host->priv = msm_host; msm_host->mmc = host->mmc; msm_host->pdev = pdev; msm_host->emulation = of_property_read_bool(dev->of_node, "qcom,emulation"); syscon_node = of_parse_phandle(pdev->dev.of_node, "syscon", 0); if (syscon_node) set_sdcc_hdrv_pull(pdev, syscon_node); /* get the ice device vops if present */ ret = sdhci_msm_ice_get_dev(host); if (ret == -EPROBE_DEFER) { /* * SDHCI driver might be probed before ICE driver does. * In that case we would like to return EPROBE_DEFER code * in order to delay its probing. */ dev_err(&pdev->dev, "%s: required ICE device not probed yet err = %d\n", __func__, ret); goto pltfm_free; } else if (ret == -ENODEV) { /* * ICE device is not enabled in DTS file. No need for further * initialization of ICE driver. */ dev_warn(&pdev->dev, "%s: ICE device is not enabled", __func__); } else if (ret) { dev_err(&pdev->dev, "%s: sdhci_msm_ice_get_dev failed %d\n", __func__, ret); goto pltfm_free; } /* Extract platform data */ if (pdev->dev.of_node) { ret = of_alias_get_id(pdev->dev.of_node, "sdhc"); if (ret < 0) { dev_err(&pdev->dev, "Failed to get slot index %d\n", ret); goto pltfm_free; } /* skip the probe if eMMC isn't a boot device */ if ((ret == 1) && !sdhci_msm_is_bootdevice(&pdev->dev)) { ret = -ENODEV; goto pltfm_free; } if (disable_slots & (1 << (ret - 1))) { dev_info(&pdev->dev, "%s: Slot %d disabled\n", __func__, ret); ret = -ENODEV; goto pltfm_free; } if ((ret <= 2) && (ret > 0)) sdhci_slot[ret-1] = msm_host; msm_host->pdata = sdhci_msm_populate_pdata(&pdev->dev, msm_host); if (!msm_host->pdata) { dev_err(&pdev->dev, "DT parsing error\n"); goto pltfm_free; } } else { dev_err(&pdev->dev, "No device tree node\n"); goto pltfm_free; } /* Setup Clocks */ /* Setup SDCC bus voter clock. */ msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus_clk"); if (!IS_ERR_OR_NULL(msm_host->bus_clk)) { /* Vote for max. clk rate for max. performance */ ret = clk_set_rate(msm_host->bus_clk, INT_MAX); if (ret) goto pltfm_free; ret = clk_prepare_enable(msm_host->bus_clk); if (ret) goto pltfm_free; } /* Setup main peripheral bus clock */ msm_host->pclk = devm_clk_get(&pdev->dev, "iface_clk"); if (!IS_ERR(msm_host->pclk)) { ret = clk_prepare_enable(msm_host->pclk); if (ret) goto bus_clk_disable; } atomic_set(&msm_host->controller_clock, 1); if (msm_host->ice.pdev) { /* Setup SDC ICE clock */ msm_host->ice_clk = devm_clk_get(&pdev->dev, "ice_core_clk"); if (!IS_ERR(msm_host->ice_clk)) { /* ICE core has only one clock frequency for now */ ret = clk_set_rate(msm_host->ice_clk, msm_host->pdata->ice_clk_max); if (ret) { dev_err(&pdev->dev, "ICE_CLK rate set failed (%d) for %u\n", ret, msm_host->pdata->ice_clk_max); goto pclk_disable; } ret = clk_prepare_enable(msm_host->ice_clk); if (ret) goto pclk_disable; msm_host->ice_clk_rate = msm_host->pdata->ice_clk_max; } } /* Setup SDC MMC clock */ msm_host->clk = devm_clk_get(&pdev->dev, "core_clk"); if (IS_ERR(msm_host->clk)) { ret = PTR_ERR(msm_host->clk); goto pclk_disable; } np = pdev->dev.of_node; if (of_property_read_u32(np, "qcom,max_clk", &max_clk)) max_clk = sdhci_msm_get_min_clock(host); /* Set to the maximum supported clock frequency */ ret = clk_set_rate(msm_host->clk, max_clk); if (ret) { dev_err(&pdev->dev, "MClk rate set failed (%d)\n", ret); goto pclk_disable; } ret = clk_prepare_enable(msm_host->clk); if (ret) goto pclk_disable; msm_host->clk_rate = max_clk; atomic_set(&msm_host->clks_on, 1); /* Setup CDC calibration fixed feedback clock */ msm_host->ff_clk = devm_clk_get(&pdev->dev, "cal_clk"); if (!IS_ERR(msm_host->ff_clk)) { ret = clk_prepare_enable(msm_host->ff_clk); if (ret) goto clk_disable; } /* Setup CDC calibration sleep clock */ msm_host->sleep_clk = devm_clk_get(&pdev->dev, "sleep_clk"); if (!IS_ERR(msm_host->sleep_clk)) { ret = clk_prepare_enable(msm_host->sleep_clk); if (ret) goto ff_clk_disable; } msm_host->saved_tuning_phase = INVALID_TUNING_PHASE; /* Setup regulators */ ret = sdhci_msm_vreg_init(&pdev->dev, msm_host->pdata, true); if (ret) { dev_err(&pdev->dev, "Regulator setup failed (%d)\n", ret); goto sleep_clk_disable; } /* Reset the core and Enable SDHC mode */ core_memres = platform_get_resource_byname(pdev, IORESOURCE_MEM, "core_mem"); if (!msm_host->mci_removed) { if (!core_memres) { dev_err(&pdev->dev, "Failed to get iomem resource\n"); goto vreg_deinit; } msm_host->core_mem = devm_ioremap(&pdev->dev, core_memres->start, resource_size(core_memres)); if (!msm_host->core_mem) { dev_err(&pdev->dev, "Failed to remap registers\n"); ret = -ENOMEM; goto vreg_deinit; } } tlmm_memres = platform_get_resource_byname(pdev, IORESOURCE_MEM, "tlmm_mem"); if (tlmm_memres) { tlmm_mem = devm_ioremap(&pdev->dev, tlmm_memres->start, resource_size(tlmm_memres)); if (!tlmm_mem) { dev_err(&pdev->dev, "Failed to remap tlmm registers\n"); ret = -ENOMEM; goto vreg_deinit; } writel_relaxed(readl_relaxed(tlmm_mem) | 0x2, tlmm_mem); } /* * Reset the vendor spec register to power on reset state. */ writel_relaxed(CORE_VENDOR_SPEC_POR_VAL, host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC); if (!msm_host->mci_removed) { /* Set HC_MODE_EN bit in HC_MODE register */ writel_relaxed(HC_MODE_EN, (msm_host->core_mem + CORE_HC_MODE)); /* Set FF_CLK_SW_RST_DIS bit in HC_MODE register */ writel_relaxed(readl_relaxed(msm_host->core_mem + CORE_HC_MODE) | FF_CLK_SW_RST_DIS, msm_host->core_mem + CORE_HC_MODE); } sdhci_set_default_hw_caps(msm_host, host); /* Enable SDCC supported capabilities */ host->caps = SDHCI_CAN_VDD_300 | SDHCI_CAN_VDD_180 | SDHCI_ASYNC_INT_SUPPORT | SDHCI_CAN_64BIT | SDHCI_CAN_DO_HISPD | SDHCI_CAN_DO_ADMA2 | SDHCI_CAN_DO_8BIT | SDHCI_MAX_BLK_LENGTH | SDHCI_TIMEOUT_CLK_UNIT | SDHCI_BASE_SDCLK_FREQ | SDHCI_TIMEOUT_CLK_FREQ; host->caps1 = SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_DDR50; host->quirks |= SDHCI_QUIRK_MISSING_CAPS; if (msm_host->emulation) host->quirks2 |= SDHCI_QUIRK2_BROKEN_HS200; /* * Set the PAD_PWR_SWTICH_EN bit so that the PAD_PWR_SWITCH bit can * be used as required later on. */ writel_relaxed((readl_relaxed(host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC) | CORE_IO_PAD_PWR_SWITCH_EN), host->ioaddr + msm_host_offset->CORE_VENDOR_SPEC); /* * CORE_SW_RST above may trigger power irq if previous status of PWRCTL * was either BUS_ON or IO_HIGH_V. So before we enable the power irq * interrupt in GIC (by registering the interrupt handler), we need to * ensure that any pending power irq interrupt status is acknowledged * otherwise power irq interrupt handler would be fired prematurely. */ irq_status = sdhci_msm_readl_relaxed(host, msm_host_offset->CORE_PWRCTL_STATUS); sdhci_msm_writel_relaxed(irq_status, host, msm_host_offset->CORE_PWRCTL_CLEAR); irq_ctl = sdhci_msm_readl_relaxed(host, msm_host_offset->CORE_PWRCTL_CTL); if (irq_status & (CORE_PWRCTL_BUS_ON | CORE_PWRCTL_BUS_OFF)) irq_ctl |= CORE_PWRCTL_BUS_SUCCESS; if (irq_status & (CORE_PWRCTL_IO_HIGH | CORE_PWRCTL_IO_LOW)) irq_ctl |= CORE_PWRCTL_IO_SUCCESS; sdhci_msm_writel_relaxed(irq_ctl, host, msm_host_offset->CORE_PWRCTL_CTL); /* * Ensure that above writes are propogated before interrupt enablement * in GIC. */ mb(); /* * Following are the deviations from SDHC spec v3.0 - * 1. Card detection is handled using separate GPIO. * 2. Bus power control is handled by interacting with PMIC. */ host->quirks |= SDHCI_QUIRK_BROKEN_CARD_DETECTION; host->quirks |= SDHCI_QUIRK_SINGLE_POWER_WRITE; host->quirks |= SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN; host->quirks |= SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC; host->quirks |= SDHCI_QUIRK_NO_CARD_NO_RESET; host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION)); dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n", host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >> SDHCI_VENDOR_VER_SHIFT)); if (((host_version & SDHCI_VENDOR_VER_MASK) >> SDHCI_VENDOR_VER_SHIFT) == SDHCI_VER_100) { } /* Setup PWRCTL irq */ msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq"); if (msm_host->pwr_irq < 0) { dev_err(&pdev->dev, "Failed to get pwr_irq by name (%d)\n", msm_host->pwr_irq); goto vreg_deinit; } ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL, sdhci_msm_pwr_irq, IRQF_ONESHOT, dev_name(&pdev->dev), host); if (ret) { dev_err(&pdev->dev, "Request threaded irq(%d) failed (%d)\n", msm_host->pwr_irq, ret); goto vreg_deinit; } /* Enable pwr irq interrupts */ sdhci_msm_writel_relaxed(INT_MASK, host, msm_host_offset->CORE_PWRCTL_MASK); /* Set host capabilities */ msm_host->mmc->caps |= msm_host->pdata->mmc_bus_width; msm_host->mmc->caps |= msm_host->pdata->caps; msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY; msm_host->mmc->caps2 |= msm_host->pdata->caps2; msm_host->mmc->caps2 |= MMC_CAP2_BOOTPART_NOACC; msm_host->mmc->pm_caps |= MMC_PM_KEEP_POWER | MMC_PM_WAKE_SDIO_IRQ; msm_host->mmc->caps2 |= MMC_CAP2_HS400_POST_TUNING; if (msm_host->pdata->nonremovable) msm_host->mmc->caps |= MMC_CAP_NONREMOVABLE; if (!msm_host->pdata->disable_aggressive_pm) msm_host->mmc->caps |= MMC_CAP_AGGRESSIVE_PM; /* Initialize ICE if present */ if (msm_host->ice.pdev) { ret = sdhci_msm_ice_init(host); if (ret) { dev_err(&pdev->dev, "%s: SDHCi ICE init failed (%d)\n", mmc_hostname(host->mmc), ret); ret = -EINVAL; goto vreg_deinit; } host->is_crypto_en = true; /* Packed commands cannot be encrypted/decrypted using ICE */ msm_host->mmc->caps2 &= ~(MMC_CAP2_PACKED_WR | MMC_CAP2_PACKED_WR_CONTROL); } init_completion(&msm_host->pwr_irq_completion); if (gpio_is_valid(msm_host->pdata->status_gpio)) { /* * Set up the card detect GPIO in active configuration before * configuring it as an IRQ. Otherwise, it can be in some * weird/inconsistent state resulting in flood of interrupts. */ sdhci_msm_setup_pins(msm_host->pdata, true); /* * This delay is needed for stabilizing the card detect GPIO * line after changing the pull configs. */ usleep_range(10000, 10500); ret = mmc_gpio_request_cd(msm_host->mmc, msm_host->pdata->status_gpio, 0); if (ret) { dev_err(&pdev->dev, "%s: Failed to request card detection IRQ %d\n", __func__, ret); goto vreg_deinit; } } if ((sdhci_readl(host, SDHCI_CAPABILITIES) & SDHCI_CAN_64BIT) && (dma_supported(mmc_dev(host->mmc), DMA_BIT_MASK(64)))) { host->dma_mask = DMA_BIT_MASK(64); mmc_dev(host->mmc)->dma_mask = &host->dma_mask; mmc_dev(host->mmc)->coherent_dma_mask = host->dma_mask; } else if (dma_supported(mmc_dev(host->mmc), DMA_BIT_MASK(32))) { host->dma_mask = DMA_BIT_MASK(32); mmc_dev(host->mmc)->dma_mask = &host->dma_mask; mmc_dev(host->mmc)->coherent_dma_mask = host->dma_mask; } else { dev_err(&pdev->dev, "%s: Failed to set dma mask\n", __func__); } msm_host->pdata->sdiowakeup_irq = platform_get_irq_byname(pdev, "sdiowakeup_irq"); if (sdhci_is_valid_gpio_wakeup_int(msm_host)) { dev_info(&pdev->dev, "%s: sdiowakeup_irq = %d\n", __func__, msm_host->pdata->sdiowakeup_irq); msm_host->is_sdiowakeup_enabled = true; ret = request_irq(msm_host->pdata->sdiowakeup_irq, sdhci_msm_sdiowakeup_irq, IRQF_SHARED | IRQF_TRIGGER_HIGH, "sdhci-msm sdiowakeup", host); if (ret) { dev_err(&pdev->dev, "%s: request sdiowakeup IRQ %d: failed: %d\n", __func__, msm_host->pdata->sdiowakeup_irq, ret); msm_host->pdata->sdiowakeup_irq = -1; msm_host->is_sdiowakeup_enabled = false; goto vreg_deinit; } else { spin_lock_irqsave(&host->lock, flags); sdhci_msm_cfg_sdiowakeup_gpio_irq(host, false); msm_host->sdio_pending_processing = false; spin_unlock_irqrestore(&host->lock, flags); } } sdhci_msm_cmdq_init(host, pdev); ret = sdhci_add_host(host); if (ret) { dev_err(&pdev->dev, "Add host failed (%d)\n", ret); goto vreg_deinit; } pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); pm_runtime_set_autosuspend_delay(&pdev->dev, MSM_AUTOSUSPEND_DELAY_MS); pm_runtime_use_autosuspend(&pdev->dev); if (!gpio_is_valid(msm_host->pdata->status_gpio)) { msm_host->polling.show = show_polling; msm_host->polling.store = store_polling; sysfs_attr_init(&msm_host->polling.attr); msm_host->polling.attr.name = "polling"; msm_host->polling.attr.mode = S_IRUGO | S_IWUSR; ret = device_create_file(&pdev->dev, &msm_host->polling); if (ret) goto remove_host; } msm_host->auto_cmd21_attr.show = show_auto_cmd21; msm_host->auto_cmd21_attr.store = store_auto_cmd21; sysfs_attr_init(&msm_host->auto_cmd21_attr.attr); msm_host->auto_cmd21_attr.attr.name = "enable_auto_cmd21"; msm_host->auto_cmd21_attr.attr.mode = S_IRUGO | S_IWUSR; ret = device_create_file(&pdev->dev, &msm_host->auto_cmd21_attr); if (ret) { pr_err("%s: %s: failed creating auto-cmd21 attr: %d\n", mmc_hostname(host->mmc), __func__, ret); device_remove_file(&pdev->dev, &msm_host->auto_cmd21_attr); } /* Successful initialization */ goto out; remove_host: dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) == 0xffffffff); pm_runtime_disable(&pdev->dev); sdhci_remove_host(host, dead); vreg_deinit: sdhci_msm_vreg_init(&pdev->dev, msm_host->pdata, false); sleep_clk_disable: if (!IS_ERR(msm_host->sleep_clk)) clk_disable_unprepare(msm_host->sleep_clk); ff_clk_disable: if (!IS_ERR(msm_host->ff_clk)) clk_disable_unprepare(msm_host->ff_clk); clk_disable: if (!IS_ERR(msm_host->clk)) clk_disable_unprepare(msm_host->clk); pclk_disable: if (!IS_ERR(msm_host->pclk)) clk_disable_unprepare(msm_host->pclk); bus_clk_disable: if (!IS_ERR_OR_NULL(msm_host->bus_clk)) clk_disable_unprepare(msm_host->bus_clk); pltfm_free: sdhci_pltfm_free(pdev); out_host_free: devm_kfree(&pdev->dev, msm_host); out: pr_debug("%s: Exit %s\n", dev_name(&pdev->dev), __func__); return ret; } static int sdhci_msm_remove(struct platform_device *pdev) { struct sdhci_host *host = platform_get_drvdata(pdev); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; struct sdhci_msm_pltfm_data *pdata = msm_host->pdata; int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) == 0xffffffff); pr_debug("%s: %s\n", dev_name(&pdev->dev), __func__); if (!gpio_is_valid(msm_host->pdata->status_gpio)) device_remove_file(&pdev->dev, &msm_host->polling); device_remove_file(&pdev->dev, &msm_host->auto_cmd21_attr); pm_runtime_disable(&pdev->dev); sdhci_remove_host(host, dead); sdhci_pltfm_free(pdev); sdhci_msm_vreg_init(&pdev->dev, msm_host->pdata, false); sdhci_msm_setup_pins(pdata, true); sdhci_msm_setup_pins(pdata, false); return 0; } #ifdef CONFIG_PM static int sdhci_msm_cfg_sdio_wakeup(struct sdhci_host *host, bool enable) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; unsigned long flags; int ret = 0; if (!(host->mmc->card && mmc_card_sdio(host->mmc->card) && sdhci_is_valid_gpio_wakeup_int(msm_host) && mmc_card_wake_sdio_irq(host->mmc))) { msm_host->sdio_pending_processing = false; return 1; } spin_lock_irqsave(&host->lock, flags); if (enable) { /* configure DAT1 gpio if applicable */ if (sdhci_is_valid_gpio_wakeup_int(msm_host)) { msm_host->sdio_pending_processing = false; ret = enable_irq_wake(msm_host->pdata->sdiowakeup_irq); if (!ret) sdhci_msm_cfg_sdiowakeup_gpio_irq(host, true); goto out; } else { pr_err("%s: sdiowakeup_irq(%d) invalid\n", mmc_hostname(host->mmc), enable); } } else { if (sdhci_is_valid_gpio_wakeup_int(msm_host)) { ret = disable_irq_wake(msm_host->pdata->sdiowakeup_irq); sdhci_msm_cfg_sdiowakeup_gpio_irq(host, false); msm_host->sdio_pending_processing = false; } else { pr_err("%s: sdiowakeup_irq(%d)invalid\n", mmc_hostname(host->mmc), enable); } } out: if (ret) pr_err("%s: %s: %sable wakeup: failed: %d gpio: %d\n", mmc_hostname(host->mmc), __func__, enable ? "en" : "dis", ret, msm_host->pdata->sdiowakeup_irq); spin_unlock_irqrestore(&host->lock, flags); return ret; } static int sdhci_msm_runtime_suspend(struct device *dev) { struct sdhci_host *host = dev_get_drvdata(dev); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; int ret; if (host->mmc->card && mmc_card_sdio(host->mmc->card)) goto defer_disable_host_irq; sdhci_cfg_irq(host, false, true); defer_disable_host_irq: disable_irq(msm_host->pwr_irq); if (host->is_crypto_en) { ret = sdhci_msm_ice_suspend(host); if (ret < 0) pr_err("%s: failed to suspend crypto engine %d\n", mmc_hostname(host->mmc), ret); } return 0; } static int sdhci_msm_runtime_resume(struct device *dev) { struct sdhci_host *host = dev_get_drvdata(dev); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; int ret; if (host->is_crypto_en) { ret = sdhci_msm_enable_controller_clock(host); if (ret) { pr_err("%s: Failed to enable reqd clocks\n", mmc_hostname(host->mmc)); goto skip_ice_resume; } ret = sdhci_msm_ice_resume(host); if (ret) pr_err("%s: failed to resume crypto engine %d\n", mmc_hostname(host->mmc), ret); } skip_ice_resume: if (host->mmc->card && mmc_card_sdio(host->mmc->card)) goto defer_enable_host_irq; sdhci_cfg_irq(host, true, true); defer_enable_host_irq: enable_irq(msm_host->pwr_irq); return 0; } static int sdhci_msm_suspend(struct device *dev) { struct sdhci_host *host = dev_get_drvdata(dev); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; int ret = 0; int sdio_cfg = 0; if (gpio_is_valid(msm_host->pdata->status_gpio) && (msm_host->mmc->slot.cd_irq >= 0)) disable_irq(msm_host->mmc->slot.cd_irq); if (pm_runtime_suspended(dev)) { pr_debug("%s: %s: already runtime suspended\n", mmc_hostname(host->mmc), __func__); goto out; } ret = sdhci_msm_runtime_suspend(dev); out: if (host->mmc->card && mmc_card_sdio(host->mmc->card)) { sdio_cfg = sdhci_msm_cfg_sdio_wakeup(host, true); if (sdio_cfg) sdhci_cfg_irq(host, false, true); } return ret; } static int sdhci_msm_resume(struct device *dev) { struct sdhci_host *host = dev_get_drvdata(dev); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; int ret = 0; int sdio_cfg = 0; if (gpio_is_valid(msm_host->pdata->status_gpio) && (msm_host->mmc->slot.cd_irq >= 0)) enable_irq(msm_host->mmc->slot.cd_irq); if (pm_runtime_suspended(dev)) { pr_debug("%s: %s: runtime suspended, defer system resume\n", mmc_hostname(host->mmc), __func__); goto out; } ret = sdhci_msm_runtime_resume(dev); out: if (host->mmc->card && mmc_card_sdio(host->mmc->card)) { sdio_cfg = sdhci_msm_cfg_sdio_wakeup(host, false); if (sdio_cfg) sdhci_cfg_irq(host, true, true); } return ret; } static int sdhci_msm_suspend_noirq(struct device *dev) { struct sdhci_host *host = dev_get_drvdata(dev); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = pltfm_host->priv; int ret = 0; /* * ksdioirqd may be running, hence retry * suspend in case the clocks are ON */ if (atomic_read(&msm_host->clks_on)) { pr_warn("%s: %s: clock ON after suspend, aborting suspend\n", mmc_hostname(host->mmc), __func__); ret = -EAGAIN; } if (host->mmc->card && mmc_card_sdio(host->mmc->card)) if (msm_host->sdio_pending_processing) ret = -EBUSY; return ret; } static const struct dev_pm_ops sdhci_msm_pmops = { SET_SYSTEM_SLEEP_PM_OPS(sdhci_msm_suspend, sdhci_msm_resume) SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend, sdhci_msm_runtime_resume, NULL) .suspend_noirq = sdhci_msm_suspend_noirq, }; #define SDHCI_MSM_PMOPS (&sdhci_msm_pmops) #else #define SDHCI_MSM_PMOPS NULL #endif static const struct of_device_id sdhci_msm_dt_match[] = { {.compatible = "qcom,sdhci-msm"}, {.compatible = "qcom,sdhci-msm-v5"}, {}, }; MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match); static struct platform_driver sdhci_msm_driver = { .probe = sdhci_msm_probe, .remove = sdhci_msm_remove, .driver = { .name = "sdhci_msm", .owner = THIS_MODULE, .of_match_table = sdhci_msm_dt_match, .pm = SDHCI_MSM_PMOPS, }, }; module_platform_driver(sdhci_msm_driver); MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver"); MODULE_LICENSE("GPL v2");