/*
* AMD 10Gb Ethernet driver
*
* This file is available to you under your choice of the following two
* licenses:
*
* License 1: GPLv2
*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
*
* This file is free software; you may copy, redistribute and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or (at
* your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* This file incorporates work covered by the following copyright and
* permission notice:
* The Synopsys DWC ETHER XGMAC Software Driver and documentation
* (hereinafter "Software") is an unsupported proprietary work of Synopsys,
* Inc. unless otherwise expressly agreed to in writing between Synopsys
* and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product
* under any End User Software License Agreement or Agreement for Licensed
* Product with Synopsys or any supplement thereto. Permission is hereby
* granted, free of charge, to any person obtaining a copy of this software
* annotated with this license and the Software, to deal in the Software
* without restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
* BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
*
* License 2: Modified BSD
*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Advanced Micro Devices, Inc. nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* This file incorporates work covered by the following copyright and
* permission notice:
* The Synopsys DWC ETHER XGMAC Software Driver and documentation
* (hereinafter "Software") is an unsupported proprietary work of Synopsys,
* Inc. unless otherwise expressly agreed to in writing between Synopsys
* and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product
* under any End User Software License Agreement or Agreement for Licensed
* Product with Synopsys or any supplement thereto. Permission is hereby
* granted, free of charge, to any person obtaining a copy of this software
* annotated with this license and the Software, to deal in the Software
* without restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
* BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include
#include
#include
#include
#include
#include
#include
#include "xgbe.h"
#include "xgbe-common.h"
static void xgbe_an_enable_kr_training(struct xgbe_prv_data *pdata)
{
unsigned int reg;
reg = XMDIO_READ(pdata, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_PMD_CTRL);
reg |= XGBE_KR_TRAINING_ENABLE;
XMDIO_WRITE(pdata, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_PMD_CTRL, reg);
}
static void xgbe_an_disable_kr_training(struct xgbe_prv_data *pdata)
{
unsigned int reg;
reg = XMDIO_READ(pdata, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_PMD_CTRL);
reg &= ~XGBE_KR_TRAINING_ENABLE;
XMDIO_WRITE(pdata, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_PMD_CTRL, reg);
}
static void xgbe_pcs_power_cycle(struct xgbe_prv_data *pdata)
{
unsigned int reg;
reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_CTRL1);
reg |= MDIO_CTRL1_LPOWER;
XMDIO_WRITE(pdata, MDIO_MMD_PCS, MDIO_CTRL1, reg);
usleep_range(75, 100);
reg &= ~MDIO_CTRL1_LPOWER;
XMDIO_WRITE(pdata, MDIO_MMD_PCS, MDIO_CTRL1, reg);
}
static void xgbe_serdes_start_ratechange(struct xgbe_prv_data *pdata)
{
/* Assert Rx and Tx ratechange */
XSIR1_IOWRITE_BITS(pdata, SIR1_SPEED, RATECHANGE, 1);
}
static void xgbe_serdes_complete_ratechange(struct xgbe_prv_data *pdata)
{
unsigned int wait;
u16 status;
/* Release Rx and Tx ratechange */
XSIR1_IOWRITE_BITS(pdata, SIR1_SPEED, RATECHANGE, 0);
/* Wait for Rx and Tx ready */
wait = XGBE_RATECHANGE_COUNT;
while (wait--) {
usleep_range(50, 75);
status = XSIR0_IOREAD(pdata, SIR0_STATUS);
if (XSIR_GET_BITS(status, SIR0_STATUS, RX_READY) &&
XSIR_GET_BITS(status, SIR0_STATUS, TX_READY))
goto rx_reset;
}
netif_dbg(pdata, link, pdata->netdev, "SerDes rx/tx not ready (%#hx)\n",
status);
rx_reset:
/* Perform Rx reset for the DFE changes */
XRXTX_IOWRITE_BITS(pdata, RXTX_REG6, RESETB_RXD, 0);
XRXTX_IOWRITE_BITS(pdata, RXTX_REG6, RESETB_RXD, 1);
}
static void xgbe_xgmii_mode(struct xgbe_prv_data *pdata)
{
unsigned int reg;
/* Enable KR training */
xgbe_an_enable_kr_training(pdata);
/* Set MAC to 10G speed */
pdata->hw_if.set_xgmii_speed(pdata);
/* Set PCS to KR/10G speed */
reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_CTRL2);
reg &= ~MDIO_PCS_CTRL2_TYPE;
reg |= MDIO_PCS_CTRL2_10GBR;
XMDIO_WRITE(pdata, MDIO_MMD_PCS, MDIO_CTRL2, reg);
reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_CTRL1);
reg &= ~MDIO_CTRL1_SPEEDSEL;
reg |= MDIO_CTRL1_SPEED10G;
XMDIO_WRITE(pdata, MDIO_MMD_PCS, MDIO_CTRL1, reg);
xgbe_pcs_power_cycle(pdata);
/* Set SerDes to 10G speed */
xgbe_serdes_start_ratechange(pdata);
XSIR1_IOWRITE_BITS(pdata, SIR1_SPEED, DATARATE, XGBE_SPEED_10000_RATE);
XSIR1_IOWRITE_BITS(pdata, SIR1_SPEED, WORDMODE, XGBE_SPEED_10000_WORD);
XSIR1_IOWRITE_BITS(pdata, SIR1_SPEED, PLLSEL, XGBE_SPEED_10000_PLL);
XSIR1_IOWRITE_BITS(pdata, SIR1_SPEED, CDR_RATE,
pdata->serdes_cdr_rate[XGBE_SPEED_10000]);
XSIR1_IOWRITE_BITS(pdata, SIR1_SPEED, TXAMP,
pdata->serdes_tx_amp[XGBE_SPEED_10000]);
XRXTX_IOWRITE_BITS(pdata, RXTX_REG20, BLWC_ENA,
pdata->serdes_blwc[XGBE_SPEED_10000]);
XRXTX_IOWRITE_BITS(pdata, RXTX_REG114, PQ_REG,
pdata->serdes_pq_skew[XGBE_SPEED_10000]);
XRXTX_IOWRITE_BITS(pdata, RXTX_REG129, RXDFE_CONFIG,
pdata->serdes_dfe_tap_cfg[XGBE_SPEED_10000]);
XRXTX_IOWRITE(pdata, RXTX_REG22,
pdata->serdes_dfe_tap_ena[XGBE_SPEED_10000]);
xgbe_serdes_complete_ratechange(pdata);
netif_dbg(pdata, link, pdata->netdev, "10GbE KR mode set\n");
}
static void xgbe_gmii_2500_mode(struct xgbe_prv_data *pdata)
{
unsigned int reg;
/* Disable KR training */
xgbe_an_disable_kr_training(pdata);
/* Set MAC to 2.5G speed */
pdata->hw_if.set_gmii_2500_speed(pdata);
/* Set PCS to KX/1G speed */
reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_CTRL2);
reg &= ~MDIO_PCS_CTRL2_TYPE;
reg |= MDIO_PCS_CTRL2_10GBX;
XMDIO_WRITE(pdata, MDIO_MMD_PCS, MDIO_CTRL2, reg);
reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_CTRL1);
reg &= ~MDIO_CTRL1_SPEEDSEL;
reg |= MDIO_CTRL1_SPEED1G;
XMDIO_WRITE(pdata, MDIO_MMD_PCS, MDIO_CTRL1, reg);
xgbe_pcs_power_cycle(pdata);
/* Set SerDes to 2.5G speed */
xgbe_serdes_start_ratechange(pdata);
XSIR1_IOWRITE_BITS(pdata, SIR1_SPEED, DATARATE, XGBE_SPEED_2500_RATE);
XSIR1_IOWRITE_BITS(pdata, SIR1_SPEED, WORDMODE, XGBE_SPEED_2500_WORD);
XSIR1_IOWRITE_BITS(pdata, SIR1_SPEED, PLLSEL, XGBE_SPEED_2500_PLL);
XSIR1_IOWRITE_BITS(pdata, SIR1_SPEED, CDR_RATE,
pdata->serdes_cdr_rate[XGBE_SPEED_2500]);
XSIR1_IOWRITE_BITS(pdata, SIR1_SPEED, TXAMP,
pdata->serdes_tx_amp[XGBE_SPEED_2500]);
XRXTX_IOWRITE_BITS(pdata, RXTX_REG20, BLWC_ENA,
pdata->serdes_blwc[XGBE_SPEED_2500]);
XRXTX_IOWRITE_BITS(pdata, RXTX_REG114, PQ_REG,
pdata->serdes_pq_skew[XGBE_SPEED_2500]);
XRXTX_IOWRITE_BITS(pdata, RXTX_REG129, RXDFE_CONFIG,
pdata->serdes_dfe_tap_cfg[XGBE_SPEED_2500]);
XRXTX_IOWRITE(pdata, RXTX_REG22,
pdata->serdes_dfe_tap_ena[XGBE_SPEED_2500]);
xgbe_serdes_complete_ratechange(pdata);
netif_dbg(pdata, link, pdata->netdev, "2.5GbE KX mode set\n");
}
static void xgbe_gmii_mode(struct xgbe_prv_data *pdata)
{
unsigned int reg;
/* Disable KR training */
xgbe_an_disable_kr_training(pdata);
/* Set MAC to 1G speed */
pdata->hw_if.set_gmii_speed(pdata);
/* Set PCS to KX/1G speed */
reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_CTRL2);
reg &= ~MDIO_PCS_CTRL2_TYPE;
reg |= MDIO_PCS_CTRL2_10GBX;
XMDIO_WRITE(pdata, MDIO_MMD_PCS, MDIO_CTRL2, reg);
reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_CTRL1);
reg &= ~MDIO_CTRL1_SPEEDSEL;
reg |= MDIO_CTRL1_SPEED1G;
XMDIO_WRITE(pdata, MDIO_MMD_PCS, MDIO_CTRL1, reg);
xgbe_pcs_power_cycle(pdata);
/* Set SerDes to 1G speed */
xgbe_serdes_start_ratechange(pdata);
XSIR1_IOWRITE_BITS(pdata, SIR1_SPEED, DATARATE, XGBE_SPEED_1000_RATE);
XSIR1_IOWRITE_BITS(pdata, SIR1_SPEED, WORDMODE, XGBE_SPEED_1000_WORD);
XSIR1_IOWRITE_BITS(pdata, SIR1_SPEED, PLLSEL, XGBE_SPEED_1000_PLL);
XSIR1_IOWRITE_BITS(pdata, SIR1_SPEED, CDR_RATE,
pdata->serdes_cdr_rate[XGBE_SPEED_1000]);
XSIR1_IOWRITE_BITS(pdata, SIR1_SPEED, TXAMP,
pdata->serdes_tx_amp[XGBE_SPEED_1000]);
XRXTX_IOWRITE_BITS(pdata, RXTX_REG20, BLWC_ENA,
pdata->serdes_blwc[XGBE_SPEED_1000]);
XRXTX_IOWRITE_BITS(pdata, RXTX_REG114, PQ_REG,
pdata->serdes_pq_skew[XGBE_SPEED_1000]);
XRXTX_IOWRITE_BITS(pdata, RXTX_REG129, RXDFE_CONFIG,
pdata->serdes_dfe_tap_cfg[XGBE_SPEED_1000]);
XRXTX_IOWRITE(pdata, RXTX_REG22,
pdata->serdes_dfe_tap_ena[XGBE_SPEED_1000]);
xgbe_serdes_complete_ratechange(pdata);
netif_dbg(pdata, link, pdata->netdev, "1GbE KX mode set\n");
}
static void xgbe_cur_mode(struct xgbe_prv_data *pdata,
enum xgbe_mode *mode)
{
unsigned int reg;
reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_CTRL2);
if ((reg & MDIO_PCS_CTRL2_TYPE) == MDIO_PCS_CTRL2_10GBR)
*mode = XGBE_MODE_KR;
else
*mode = XGBE_MODE_KX;
}
static bool xgbe_in_kr_mode(struct xgbe_prv_data *pdata)
{
enum xgbe_mode mode;
xgbe_cur_mode(pdata, &mode);
return (mode == XGBE_MODE_KR);
}
static void xgbe_switch_mode(struct xgbe_prv_data *pdata)
{
/* If we are in KR switch to KX, and vice-versa */
if (xgbe_in_kr_mode(pdata)) {
if (pdata->speed_set == XGBE_SPEEDSET_1000_10000)
xgbe_gmii_mode(pdata);
else
xgbe_gmii_2500_mode(pdata);
} else {
xgbe_xgmii_mode(pdata);
}
}
static void xgbe_set_mode(struct xgbe_prv_data *pdata,
enum xgbe_mode mode)
{
enum xgbe_mode cur_mode;
xgbe_cur_mode(pdata, &cur_mode);
if (mode != cur_mode)
xgbe_switch_mode(pdata);
}
static bool xgbe_use_xgmii_mode(struct xgbe_prv_data *pdata)
{
if (pdata->phy.autoneg == AUTONEG_ENABLE) {
if (pdata->phy.advertising & ADVERTISED_10000baseKR_Full)
return true;
} else {
if (pdata->phy.speed == SPEED_10000)
return true;
}
return false;
}
static bool xgbe_use_gmii_2500_mode(struct xgbe_prv_data *pdata)
{
if (pdata->phy.autoneg == AUTONEG_ENABLE) {
if (pdata->phy.advertising & ADVERTISED_2500baseX_Full)
return true;
} else {
if (pdata->phy.speed == SPEED_2500)
return true;
}
return false;
}
static bool xgbe_use_gmii_mode(struct xgbe_prv_data *pdata)
{
if (pdata->phy.autoneg == AUTONEG_ENABLE) {
if (pdata->phy.advertising & ADVERTISED_1000baseKX_Full)
return true;
} else {
if (pdata->phy.speed == SPEED_1000)
return true;
}
return false;
}
static void xgbe_set_an(struct xgbe_prv_data *pdata, bool enable, bool restart)
{
unsigned int reg;
reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_CTRL1);
reg &= ~MDIO_AN_CTRL1_ENABLE;
if (enable)
reg |= MDIO_AN_CTRL1_ENABLE;
if (restart)
reg |= MDIO_AN_CTRL1_RESTART;
XMDIO_WRITE(pdata, MDIO_MMD_AN, MDIO_CTRL1, reg);
}
static void xgbe_restart_an(struct xgbe_prv_data *pdata)
{
xgbe_set_an(pdata, true, true);
netif_dbg(pdata, link, pdata->netdev, "AN enabled/restarted\n");
}
static void xgbe_disable_an(struct xgbe_prv_data *pdata)
{
xgbe_set_an(pdata, false, false);
netif_dbg(pdata, link, pdata->netdev, "AN disabled\n");
}
static enum xgbe_an xgbe_an_tx_training(struct xgbe_prv_data *pdata,
enum xgbe_rx *state)
{
unsigned int ad_reg, lp_reg, reg;
*state = XGBE_RX_COMPLETE;
/* If we're not in KR mode then we're done */
if (!xgbe_in_kr_mode(pdata))
return XGBE_AN_PAGE_RECEIVED;
/* Enable/Disable FEC */
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2);
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 2);
reg = XMDIO_READ(pdata, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_FECCTRL);
reg &= ~(MDIO_PMA_10GBR_FECABLE_ABLE | MDIO_PMA_10GBR_FECABLE_ERRABLE);
if ((ad_reg & 0xc000) && (lp_reg & 0xc000))
reg |= pdata->fec_ability;
XMDIO_WRITE(pdata, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_FECCTRL, reg);
/* Start KR training */
reg = XMDIO_READ(pdata, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_PMD_CTRL);
if (reg & XGBE_KR_TRAINING_ENABLE) {
XSIR0_IOWRITE_BITS(pdata, SIR0_KR_RT_1, RESET, 1);
reg |= XGBE_KR_TRAINING_START;
XMDIO_WRITE(pdata, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_PMD_CTRL,
reg);
XSIR0_IOWRITE_BITS(pdata, SIR0_KR_RT_1, RESET, 0);
netif_dbg(pdata, link, pdata->netdev,
"KR training initiated\n");
}
return XGBE_AN_PAGE_RECEIVED;
}
static enum xgbe_an xgbe_an_tx_xnp(struct xgbe_prv_data *pdata,
enum xgbe_rx *state)
{
u16 msg;
*state = XGBE_RX_XNP;
msg = XGBE_XNP_MCF_NULL_MESSAGE;
msg |= XGBE_XNP_MP_FORMATTED;
XMDIO_WRITE(pdata, MDIO_MMD_AN, MDIO_AN_XNP + 2, 0);
XMDIO_WRITE(pdata, MDIO_MMD_AN, MDIO_AN_XNP + 1, 0);
XMDIO_WRITE(pdata, MDIO_MMD_AN, MDIO_AN_XNP, msg);
return XGBE_AN_PAGE_RECEIVED;
}
static enum xgbe_an xgbe_an_rx_bpa(struct xgbe_prv_data *pdata,
enum xgbe_rx *state)
{
unsigned int link_support;
unsigned int reg, ad_reg, lp_reg;
/* Read Base Ability register 2 first */
reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 1);
/* Check for a supported mode, otherwise restart in a different one */
link_support = xgbe_in_kr_mode(pdata) ? 0x80 : 0x20;
if (!(reg & link_support))
return XGBE_AN_INCOMPAT_LINK;
/* Check Extended Next Page support */
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE);
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA);
return ((ad_reg & XGBE_XNP_NP_EXCHANGE) ||
(lp_reg & XGBE_XNP_NP_EXCHANGE))
? xgbe_an_tx_xnp(pdata, state)
: xgbe_an_tx_training(pdata, state);
}
static enum xgbe_an xgbe_an_rx_xnp(struct xgbe_prv_data *pdata,
enum xgbe_rx *state)
{
unsigned int ad_reg, lp_reg;
/* Check Extended Next Page support */
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_XNP);
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPX);
return ((ad_reg & XGBE_XNP_NP_EXCHANGE) ||
(lp_reg & XGBE_XNP_NP_EXCHANGE))
? xgbe_an_tx_xnp(pdata, state)
: xgbe_an_tx_training(pdata, state);
}
static enum xgbe_an xgbe_an_page_received(struct xgbe_prv_data *pdata)
{
enum xgbe_rx *state;
unsigned long an_timeout;
enum xgbe_an ret;
if (!pdata->an_start) {
pdata->an_start = jiffies;
} else {
an_timeout = pdata->an_start +
msecs_to_jiffies(XGBE_AN_MS_TIMEOUT);
if (time_after(jiffies, an_timeout)) {
/* Auto-negotiation timed out, reset state */
pdata->kr_state = XGBE_RX_BPA;
pdata->kx_state = XGBE_RX_BPA;
pdata->an_start = jiffies;
netif_dbg(pdata, link, pdata->netdev,
"AN timed out, resetting state\n");
}
}
state = xgbe_in_kr_mode(pdata) ? &pdata->kr_state
: &pdata->kx_state;
switch (*state) {
case XGBE_RX_BPA:
ret = xgbe_an_rx_bpa(pdata, state);
break;
case XGBE_RX_XNP:
ret = xgbe_an_rx_xnp(pdata, state);
break;
default:
ret = XGBE_AN_ERROR;
}
return ret;
}
static enum xgbe_an xgbe_an_incompat_link(struct xgbe_prv_data *pdata)
{
/* Be sure we aren't looping trying to negotiate */
if (xgbe_in_kr_mode(pdata)) {
pdata->kr_state = XGBE_RX_ERROR;
if (!(pdata->phy.advertising & ADVERTISED_1000baseKX_Full) &&
!(pdata->phy.advertising & ADVERTISED_2500baseX_Full))
return XGBE_AN_NO_LINK;
if (pdata->kx_state != XGBE_RX_BPA)
return XGBE_AN_NO_LINK;
} else {
pdata->kx_state = XGBE_RX_ERROR;
if (!(pdata->phy.advertising & ADVERTISED_10000baseKR_Full))
return XGBE_AN_NO_LINK;
if (pdata->kr_state != XGBE_RX_BPA)
return XGBE_AN_NO_LINK;
}
xgbe_disable_an(pdata);
xgbe_switch_mode(pdata);
xgbe_restart_an(pdata);
return XGBE_AN_INCOMPAT_LINK;
}
static irqreturn_t xgbe_an_isr(int irq, void *data)
{
struct xgbe_prv_data *pdata = (struct xgbe_prv_data *)data;
netif_dbg(pdata, intr, pdata->netdev, "AN interrupt received\n");
/* Interrupt reason must be read and cleared outside of IRQ context */
disable_irq_nosync(pdata->an_irq);
queue_work(pdata->an_workqueue, &pdata->an_irq_work);
return IRQ_HANDLED;
}
static void xgbe_an_irq_work(struct work_struct *work)
{
struct xgbe_prv_data *pdata = container_of(work,
struct xgbe_prv_data,
an_irq_work);
/* Avoid a race between enabling the IRQ and exiting the work by
* waiting for the work to finish and then queueing it
*/
flush_work(&pdata->an_work);
queue_work(pdata->an_workqueue, &pdata->an_work);
}
static const char *xgbe_state_as_string(enum xgbe_an state)
{
switch (state) {
case XGBE_AN_READY:
return "Ready";
case XGBE_AN_PAGE_RECEIVED:
return "Page-Received";
case XGBE_AN_INCOMPAT_LINK:
return "Incompatible-Link";
case XGBE_AN_COMPLETE:
return "Complete";
case XGBE_AN_NO_LINK:
return "No-Link";
case XGBE_AN_ERROR:
return "Error";
default:
return "Undefined";
}
}
static void xgbe_an_state_machine(struct work_struct *work)
{
struct xgbe_prv_data *pdata = container_of(work,
struct xgbe_prv_data,
an_work);
enum xgbe_an cur_state = pdata->an_state;
unsigned int int_reg, int_mask;
mutex_lock(&pdata->an_mutex);
/* Read the interrupt */
int_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_INT);
if (!int_reg)
goto out;
next_int:
if (int_reg & XGBE_AN_PG_RCV) {
pdata->an_state = XGBE_AN_PAGE_RECEIVED;
int_mask = XGBE_AN_PG_RCV;
} else if (int_reg & XGBE_AN_INC_LINK) {
pdata->an_state = XGBE_AN_INCOMPAT_LINK;
int_mask = XGBE_AN_INC_LINK;
} else if (int_reg & XGBE_AN_INT_CMPLT) {
pdata->an_state = XGBE_AN_COMPLETE;
int_mask = XGBE_AN_INT_CMPLT;
} else {
pdata->an_state = XGBE_AN_ERROR;
int_mask = 0;
}
/* Clear the interrupt to be processed */
int_reg &= ~int_mask;
XMDIO_WRITE(pdata, MDIO_MMD_AN, MDIO_AN_INT, int_reg);
pdata->an_result = pdata->an_state;
again:
netif_dbg(pdata, link, pdata->netdev, "AN %s\n",
xgbe_state_as_string(pdata->an_state));
cur_state = pdata->an_state;
switch (pdata->an_state) {
case XGBE_AN_READY:
pdata->an_supported = 0;
break;
case XGBE_AN_PAGE_RECEIVED:
pdata->an_state = xgbe_an_page_received(pdata);
pdata->an_supported++;
break;
case XGBE_AN_INCOMPAT_LINK:
pdata->an_supported = 0;
pdata->parallel_detect = 0;
pdata->an_state = xgbe_an_incompat_link(pdata);
break;
case XGBE_AN_COMPLETE:
pdata->parallel_detect = pdata->an_supported ? 0 : 1;
netif_dbg(pdata, link, pdata->netdev, "%s successful\n",
pdata->an_supported ? "Auto negotiation"
: "Parallel detection");
break;
case XGBE_AN_NO_LINK:
break;
default:
pdata->an_state = XGBE_AN_ERROR;
}
if (pdata->an_state == XGBE_AN_NO_LINK) {
int_reg = 0;
XMDIO_WRITE(pdata, MDIO_MMD_AN, MDIO_AN_INT, 0);
} else if (pdata->an_state == XGBE_AN_ERROR) {
netdev_err(pdata->netdev,
"error during auto-negotiation, state=%u\n",
cur_state);
int_reg = 0;
XMDIO_WRITE(pdata, MDIO_MMD_AN, MDIO_AN_INT, 0);
}
if (pdata->an_state >= XGBE_AN_COMPLETE) {
pdata->an_result = pdata->an_state;
pdata->an_state = XGBE_AN_READY;
pdata->kr_state = XGBE_RX_BPA;
pdata->kx_state = XGBE_RX_BPA;
pdata->an_start = 0;
netif_dbg(pdata, link, pdata->netdev, "AN result: %s\n",
xgbe_state_as_string(pdata->an_result));
}
if (cur_state != pdata->an_state)
goto again;
if (int_reg)
goto next_int;
out:
enable_irq(pdata->an_irq);
mutex_unlock(&pdata->an_mutex);
}
static void xgbe_an_init(struct xgbe_prv_data *pdata)
{
unsigned int reg;
/* Set up Advertisement register 3 first */
reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2);
if (pdata->phy.advertising & ADVERTISED_10000baseR_FEC)
reg |= 0xc000;
else
reg &= ~0xc000;
XMDIO_WRITE(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2, reg);
/* Set up Advertisement register 2 next */
reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1);
if (pdata->phy.advertising & ADVERTISED_10000baseKR_Full)
reg |= 0x80;
else
reg &= ~0x80;
if ((pdata->phy.advertising & ADVERTISED_1000baseKX_Full) ||
(pdata->phy.advertising & ADVERTISED_2500baseX_Full))
reg |= 0x20;
else
reg &= ~0x20;
XMDIO_WRITE(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1, reg);
/* Set up Advertisement register 1 last */
reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE);
if (pdata->phy.advertising & ADVERTISED_Pause)
reg |= 0x400;
else
reg &= ~0x400;
if (pdata->phy.advertising & ADVERTISED_Asym_Pause)
reg |= 0x800;
else
reg &= ~0x800;
/* We don't intend to perform XNP */
reg &= ~XGBE_XNP_NP_EXCHANGE;
XMDIO_WRITE(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE, reg);
netif_dbg(pdata, link, pdata->netdev, "AN initialized\n");
}
static const char *xgbe_phy_fc_string(struct xgbe_prv_data *pdata)
{
if (pdata->tx_pause && pdata->rx_pause)
return "rx/tx";
else if (pdata->rx_pause)
return "rx";
else if (pdata->tx_pause)
return "tx";
else
return "off";
}
static const char *xgbe_phy_speed_string(int speed)
{
switch (speed) {
case SPEED_1000:
return "1Gbps";
case SPEED_2500:
return "2.5Gbps";
case SPEED_10000:
return "10Gbps";
case SPEED_UNKNOWN:
return "Unknown";
default:
return "Unsupported";
}
}
static void xgbe_phy_print_status(struct xgbe_prv_data *pdata)
{
if (pdata->phy.link)
netdev_info(pdata->netdev,
"Link is Up - %s/%s - flow control %s\n",
xgbe_phy_speed_string(pdata->phy.speed),
pdata->phy.duplex == DUPLEX_FULL ? "Full" : "Half",
xgbe_phy_fc_string(pdata));
else
netdev_info(pdata->netdev, "Link is Down\n");
}
static void xgbe_phy_adjust_link(struct xgbe_prv_data *pdata)
{
int new_state = 0;
if (pdata->phy.link) {
/* Flow control support */
pdata->pause_autoneg = pdata->phy.pause_autoneg;
if (pdata->tx_pause != pdata->phy.tx_pause) {
new_state = 1;
pdata->tx_pause = pdata->phy.tx_pause;
pdata->hw_if.config_tx_flow_control(pdata);
}
if (pdata->rx_pause != pdata->phy.rx_pause) {
new_state = 1;
pdata->rx_pause = pdata->phy.rx_pause;
pdata->hw_if.config_rx_flow_control(pdata);
}
/* Speed support */
if (pdata->phy_speed != pdata->phy.speed) {
new_state = 1;
pdata->phy_speed = pdata->phy.speed;
}
if (pdata->phy_link != pdata->phy.link) {
new_state = 1;
pdata->phy_link = pdata->phy.link;
}
} else if (pdata->phy_link) {
new_state = 1;
pdata->phy_link = 0;
pdata->phy_speed = SPEED_UNKNOWN;
}
if (new_state && netif_msg_link(pdata))
xgbe_phy_print_status(pdata);
}
static int xgbe_phy_config_fixed(struct xgbe_prv_data *pdata)
{
netif_dbg(pdata, link, pdata->netdev, "fixed PHY configuration\n");
/* Disable auto-negotiation */
xgbe_disable_an(pdata);
/* Validate/Set specified speed */
switch (pdata->phy.speed) {
case SPEED_10000:
xgbe_set_mode(pdata, XGBE_MODE_KR);
break;
case SPEED_2500:
case SPEED_1000:
xgbe_set_mode(pdata, XGBE_MODE_KX);
break;
default:
return -EINVAL;
}
/* Validate duplex mode */
if (pdata->phy.duplex != DUPLEX_FULL)
return -EINVAL;
return 0;
}
static int __xgbe_phy_config_aneg(struct xgbe_prv_data *pdata)
{
set_bit(XGBE_LINK_INIT, &pdata->dev_state);
pdata->link_check = jiffies;
if (pdata->phy.autoneg != AUTONEG_ENABLE)
return xgbe_phy_config_fixed(pdata);
netif_dbg(pdata, link, pdata->netdev, "AN PHY configuration\n");
/* Disable auto-negotiation interrupt */
disable_irq(pdata->an_irq);
/* Start auto-negotiation in a supported mode */
if (pdata->phy.advertising & ADVERTISED_10000baseKR_Full) {
xgbe_set_mode(pdata, XGBE_MODE_KR);
} else if ((pdata->phy.advertising & ADVERTISED_1000baseKX_Full) ||
(pdata->phy.advertising & ADVERTISED_2500baseX_Full)) {
xgbe_set_mode(pdata, XGBE_MODE_KX);
} else {
enable_irq(pdata->an_irq);
return -EINVAL;
}
/* Disable and stop any in progress auto-negotiation */
xgbe_disable_an(pdata);
/* Clear any auto-negotitation interrupts */
XMDIO_WRITE(pdata, MDIO_MMD_AN, MDIO_AN_INT, 0);
pdata->an_result = XGBE_AN_READY;
pdata->an_state = XGBE_AN_READY;
pdata->kr_state = XGBE_RX_BPA;
pdata->kx_state = XGBE_RX_BPA;
/* Re-enable auto-negotiation interrupt */
enable_irq(pdata->an_irq);
/* Set up advertisement registers based on current settings */
xgbe_an_init(pdata);
/* Enable and start auto-negotiation */
xgbe_restart_an(pdata);
return 0;
}
static int xgbe_phy_config_aneg(struct xgbe_prv_data *pdata)
{
int ret;
mutex_lock(&pdata->an_mutex);
ret = __xgbe_phy_config_aneg(pdata);
if (ret)
set_bit(XGBE_LINK_ERR, &pdata->dev_state);
else
clear_bit(XGBE_LINK_ERR, &pdata->dev_state);
mutex_unlock(&pdata->an_mutex);
return ret;
}
static bool xgbe_phy_aneg_done(struct xgbe_prv_data *pdata)
{
return (pdata->an_result == XGBE_AN_COMPLETE);
}
static void xgbe_check_link_timeout(struct xgbe_prv_data *pdata)
{
unsigned long link_timeout;
link_timeout = pdata->link_check + (XGBE_LINK_TIMEOUT * HZ);
if (time_after(jiffies, link_timeout)) {
netif_dbg(pdata, link, pdata->netdev, "AN link timeout\n");
xgbe_phy_config_aneg(pdata);
}
}
static void xgbe_phy_status_force(struct xgbe_prv_data *pdata)
{
if (xgbe_in_kr_mode(pdata)) {
pdata->phy.speed = SPEED_10000;
} else {
switch (pdata->speed_set) {
case XGBE_SPEEDSET_1000_10000:
pdata->phy.speed = SPEED_1000;
break;
case XGBE_SPEEDSET_2500_10000:
pdata->phy.speed = SPEED_2500;
break;
}
}
pdata->phy.duplex = DUPLEX_FULL;
}
static void xgbe_phy_status_aneg(struct xgbe_prv_data *pdata)
{
unsigned int ad_reg, lp_reg;
pdata->phy.lp_advertising = 0;
if ((pdata->phy.autoneg != AUTONEG_ENABLE) || pdata->parallel_detect)
return xgbe_phy_status_force(pdata);
pdata->phy.lp_advertising |= ADVERTISED_Autoneg;
pdata->phy.lp_advertising |= ADVERTISED_Backplane;
/* Compare Advertisement and Link Partner register 1 */
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE);
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA);
if (lp_reg & 0x400)
pdata->phy.lp_advertising |= ADVERTISED_Pause;
if (lp_reg & 0x800)
pdata->phy.lp_advertising |= ADVERTISED_Asym_Pause;
if (pdata->phy.pause_autoneg) {
/* Set flow control based on auto-negotiation result */
pdata->phy.tx_pause = 0;
pdata->phy.rx_pause = 0;
if (ad_reg & lp_reg & 0x400) {
pdata->phy.tx_pause = 1;
pdata->phy.rx_pause = 1;
} else if (ad_reg & lp_reg & 0x800) {
if (ad_reg & 0x400)
pdata->phy.rx_pause = 1;
else if (lp_reg & 0x400)
pdata->phy.tx_pause = 1;
}
}
/* Compare Advertisement and Link Partner register 2 */
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1);
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 1);
if (lp_reg & 0x80)
pdata->phy.lp_advertising |= ADVERTISED_10000baseKR_Full;
if (lp_reg & 0x20) {
switch (pdata->speed_set) {
case XGBE_SPEEDSET_1000_10000:
pdata->phy.lp_advertising |= ADVERTISED_1000baseKX_Full;
break;
case XGBE_SPEEDSET_2500_10000:
pdata->phy.lp_advertising |= ADVERTISED_2500baseX_Full;
break;
}
}
ad_reg &= lp_reg;
if (ad_reg & 0x80) {
pdata->phy.speed = SPEED_10000;
xgbe_set_mode(pdata, XGBE_MODE_KR);
} else if (ad_reg & 0x20) {
switch (pdata->speed_set) {
case XGBE_SPEEDSET_1000_10000:
pdata->phy.speed = SPEED_1000;
break;
case XGBE_SPEEDSET_2500_10000:
pdata->phy.speed = SPEED_2500;
break;
}
xgbe_set_mode(pdata, XGBE_MODE_KX);
} else {
pdata->phy.speed = SPEED_UNKNOWN;
}
/* Compare Advertisement and Link Partner register 3 */
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2);
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 2);
if (lp_reg & 0xc000)
pdata->phy.lp_advertising |= ADVERTISED_10000baseR_FEC;
pdata->phy.duplex = DUPLEX_FULL;
}
static void xgbe_phy_status(struct xgbe_prv_data *pdata)
{
unsigned int reg, link_aneg;
if (test_bit(XGBE_LINK_ERR, &pdata->dev_state)) {
netif_carrier_off(pdata->netdev);
pdata->phy.link = 0;
goto adjust_link;
}
link_aneg = (pdata->phy.autoneg == AUTONEG_ENABLE);
/* Get the link status. Link status is latched low, so read
* once to clear and then read again to get current state
*/
reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_STAT1);
reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_STAT1);
pdata->phy.link = (reg & MDIO_STAT1_LSTATUS) ? 1 : 0;
if (pdata->phy.link) {
if (link_aneg && !xgbe_phy_aneg_done(pdata)) {
xgbe_check_link_timeout(pdata);
return;
}
xgbe_phy_status_aneg(pdata);
if (test_bit(XGBE_LINK_INIT, &pdata->dev_state))
clear_bit(XGBE_LINK_INIT, &pdata->dev_state);
netif_carrier_on(pdata->netdev);
} else {
if (test_bit(XGBE_LINK_INIT, &pdata->dev_state)) {
xgbe_check_link_timeout(pdata);
if (link_aneg)
return;
}
xgbe_phy_status_aneg(pdata);
netif_carrier_off(pdata->netdev);
}
adjust_link:
xgbe_phy_adjust_link(pdata);
}
static void xgbe_phy_stop(struct xgbe_prv_data *pdata)
{
netif_dbg(pdata, link, pdata->netdev, "stopping PHY\n");
/* Disable auto-negotiation */
xgbe_disable_an(pdata);
/* Disable auto-negotiation interrupts */
XMDIO_WRITE(pdata, MDIO_MMD_AN, MDIO_AN_INTMASK, 0);
devm_free_irq(pdata->dev, pdata->an_irq, pdata);
pdata->phy.link = 0;
netif_carrier_off(pdata->netdev);
xgbe_phy_adjust_link(pdata);
}
static int xgbe_phy_start(struct xgbe_prv_data *pdata)
{
struct net_device *netdev = pdata->netdev;
int ret;
netif_dbg(pdata, link, pdata->netdev, "starting PHY\n");
ret = devm_request_irq(pdata->dev, pdata->an_irq,
xgbe_an_isr, 0, pdata->an_name,
pdata);
if (ret) {
netdev_err(netdev, "phy irq request failed\n");
return ret;
}
/* Set initial mode - call the mode setting routines
* directly to insure we are properly configured
*/
if (xgbe_use_xgmii_mode(pdata)) {
xgbe_xgmii_mode(pdata);
} else if (xgbe_use_gmii_mode(pdata)) {
xgbe_gmii_mode(pdata);
} else if (xgbe_use_gmii_2500_mode(pdata)) {
xgbe_gmii_2500_mode(pdata);
} else {
ret = -EINVAL;
goto err_irq;
}
/* Set up advertisement registers based on current settings */
xgbe_an_init(pdata);
/* Enable auto-negotiation interrupts */
XMDIO_WRITE(pdata, MDIO_MMD_AN, MDIO_AN_INTMASK, 0x07);
return xgbe_phy_config_aneg(pdata);
err_irq:
devm_free_irq(pdata->dev, pdata->an_irq, pdata);
return ret;
}
static int xgbe_phy_reset(struct xgbe_prv_data *pdata)
{
unsigned int count, reg;
reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_CTRL1);
reg |= MDIO_CTRL1_RESET;
XMDIO_WRITE(pdata, MDIO_MMD_PCS, MDIO_CTRL1, reg);
count = 50;
do {
msleep(20);
reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_CTRL1);
} while ((reg & MDIO_CTRL1_RESET) && --count);
if (reg & MDIO_CTRL1_RESET)
return -ETIMEDOUT;
/* Disable auto-negotiation for now */
xgbe_disable_an(pdata);
/* Clear auto-negotiation interrupts */
XMDIO_WRITE(pdata, MDIO_MMD_AN, MDIO_AN_INT, 0);
return 0;
}
static void xgbe_dump_phy_registers(struct xgbe_prv_data *pdata)
{
struct device *dev = pdata->dev;
dev_dbg(dev, "\n************* PHY Reg dump **********************\n");
dev_dbg(dev, "PCS Control Reg (%#04x) = %#04x\n", MDIO_CTRL1,
XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_CTRL1));
dev_dbg(dev, "PCS Status Reg (%#04x) = %#04x\n", MDIO_STAT1,
XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_STAT1));
dev_dbg(dev, "Phy Id (PHYS ID 1 %#04x)= %#04x\n", MDIO_DEVID1,
XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_DEVID1));
dev_dbg(dev, "Phy Id (PHYS ID 2 %#04x)= %#04x\n", MDIO_DEVID2,
XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_DEVID2));
dev_dbg(dev, "Devices in Package (%#04x)= %#04x\n", MDIO_DEVS1,
XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_DEVS1));
dev_dbg(dev, "Devices in Package (%#04x)= %#04x\n", MDIO_DEVS2,
XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_DEVS2));
dev_dbg(dev, "Auto-Neg Control Reg (%#04x) = %#04x\n", MDIO_CTRL1,
XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_CTRL1));
dev_dbg(dev, "Auto-Neg Status Reg (%#04x) = %#04x\n", MDIO_STAT1,
XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_STAT1));
dev_dbg(dev, "Auto-Neg Ad Reg 1 (%#04x) = %#04x\n",
MDIO_AN_ADVERTISE,
XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE));
dev_dbg(dev, "Auto-Neg Ad Reg 2 (%#04x) = %#04x\n",
MDIO_AN_ADVERTISE + 1,
XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1));
dev_dbg(dev, "Auto-Neg Ad Reg 3 (%#04x) = %#04x\n",
MDIO_AN_ADVERTISE + 2,
XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2));
dev_dbg(dev, "Auto-Neg Completion Reg (%#04x) = %#04x\n",
MDIO_AN_COMP_STAT,
XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_COMP_STAT));
dev_dbg(dev, "\n*************************************************\n");
}
static void xgbe_phy_init(struct xgbe_prv_data *pdata)
{
mutex_init(&pdata->an_mutex);
INIT_WORK(&pdata->an_irq_work, xgbe_an_irq_work);
INIT_WORK(&pdata->an_work, xgbe_an_state_machine);
pdata->mdio_mmd = MDIO_MMD_PCS;
/* Initialize supported features */
pdata->phy.supported = SUPPORTED_Autoneg;
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
pdata->phy.supported |= SUPPORTED_Backplane;
pdata->phy.supported |= SUPPORTED_10000baseKR_Full;
switch (pdata->speed_set) {
case XGBE_SPEEDSET_1000_10000:
pdata->phy.supported |= SUPPORTED_1000baseKX_Full;
break;
case XGBE_SPEEDSET_2500_10000:
pdata->phy.supported |= SUPPORTED_2500baseX_Full;
break;
}
pdata->fec_ability = XMDIO_READ(pdata, MDIO_MMD_PMAPMD,
MDIO_PMA_10GBR_FECABLE);
pdata->fec_ability &= (MDIO_PMA_10GBR_FECABLE_ABLE |
MDIO_PMA_10GBR_FECABLE_ERRABLE);
if (pdata->fec_ability & MDIO_PMA_10GBR_FECABLE_ABLE)
pdata->phy.supported |= SUPPORTED_10000baseR_FEC;
pdata->phy.advertising = pdata->phy.supported;
pdata->phy.address = 0;
pdata->phy.autoneg = AUTONEG_ENABLE;
pdata->phy.speed = SPEED_UNKNOWN;
pdata->phy.duplex = DUPLEX_UNKNOWN;
pdata->phy.link = 0;
pdata->phy.pause_autoneg = pdata->pause_autoneg;
pdata->phy.tx_pause = pdata->tx_pause;
pdata->phy.rx_pause = pdata->rx_pause;
/* Fix up Flow Control advertising */
pdata->phy.advertising &= ~ADVERTISED_Pause;
pdata->phy.advertising &= ~ADVERTISED_Asym_Pause;
if (pdata->rx_pause) {
pdata->phy.advertising |= ADVERTISED_Pause;
pdata->phy.advertising |= ADVERTISED_Asym_Pause;
}
if (pdata->tx_pause)
pdata->phy.advertising ^= ADVERTISED_Asym_Pause;
if (netif_msg_drv(pdata))
xgbe_dump_phy_registers(pdata);
}
void xgbe_init_function_ptrs_phy(struct xgbe_phy_if *phy_if)
{
phy_if->phy_init = xgbe_phy_init;
phy_if->phy_reset = xgbe_phy_reset;
phy_if->phy_start = xgbe_phy_start;
phy_if->phy_stop = xgbe_phy_stop;
phy_if->phy_status = xgbe_phy_status;
phy_if->phy_config_aneg = xgbe_phy_config_aneg;
}