/* Copyright (c) 2011-2020, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ /* Smart-Peripheral-Switch (SPS) Module. */ #include /* u32 */ #include /* pr_info() */ #include /* module_init() */ #include /* kzalloc() */ #include /* mutex */ #include /* device */ #include /* alloc_chrdev_region() */ #include /* list_head */ #include /* memset */ #include /* ioremap() */ #include /* clk_enable() */ #include /* platform_get_resource_byname() */ #include #include #include #include #include "sps_bam.h" #include "spsi.h" #include "sps_core.h" #define SPS_DRV_NAME "msm_sps" /* must match the platform_device name */ /** * SPS driver state */ struct sps_drv *sps; u32 d_type; bool enhd_pipe; bool imem; enum sps_bam_type bam_type; enum sps_bam_type bam_types[] = {SPS_BAM_LEGACY, SPS_BAM_NDP, SPS_BAM_NDP_4K}; static void sps_device_de_init(void); #ifdef CONFIG_DEBUG_FS u8 debugfs_record_enabled; u8 logging_option; u8 debug_level_option; u8 print_limit_option; u8 reg_dump_option; u32 testbus_sel; u32 bam_pipe_sel; u32 desc_option; /** * Specifies range of log level from level 0 to level 3 to have fine-granularity for logging * to serve all BAM use cases. */ u32 log_level_sel; static char *debugfs_buf; static u32 debugfs_buf_size; static u32 debugfs_buf_used; static int wraparound; static struct mutex sps_debugfs_lock; struct dentry *dent; struct dentry *dfile_info; struct dentry *dfile_logging_option; struct dentry *dfile_debug_level_option; struct dentry *dfile_print_limit_option; struct dentry *dfile_reg_dump_option; struct dentry *dfile_testbus_sel; struct dentry *dfile_bam_pipe_sel; struct dentry *dfile_desc_option; struct dentry *dfile_bam_addr; struct dentry *dfile_log_level_sel; static struct sps_bam *phy2bam(phys_addr_t phys_addr); /* record debug info for debugfs */ void sps_debugfs_record(const char *msg) { mutex_lock(&sps_debugfs_lock); if (debugfs_record_enabled) { if (debugfs_buf_used + MAX_MSG_LEN >= debugfs_buf_size) { debugfs_buf_used = 0; wraparound = true; } debugfs_buf_used += scnprintf(debugfs_buf + debugfs_buf_used, debugfs_buf_size - debugfs_buf_used, msg); if (wraparound) scnprintf(debugfs_buf + debugfs_buf_used, debugfs_buf_size - debugfs_buf_used, "\n**** end line of sps log ****\n\n"); } mutex_unlock(&sps_debugfs_lock); } /* read the recorded debug info to userspace */ static ssize_t sps_read_info(struct file *file, char __user *ubuf, size_t count, loff_t *ppos) { int ret = 0; int size; mutex_lock(&sps_debugfs_lock); if (debugfs_record_enabled) { if (wraparound) size = debugfs_buf_size - MAX_MSG_LEN; else size = debugfs_buf_used; ret = simple_read_from_buffer(ubuf, count, ppos, debugfs_buf, size); } mutex_unlock(&sps_debugfs_lock); return ret; } /* * set the buffer size (in KB) for debug info */ static ssize_t sps_set_info(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { unsigned long missing; char str[MAX_MSG_LEN]; int i; u32 buf_size_kb = 0; u32 new_buf_size; u32 size = sizeof(str) < count ? sizeof(str) : count; memset(str, 0, sizeof(str)); missing = copy_from_user(str, buf, size); if (missing) return -EFAULT; for (i = 0; i < sizeof(str) && (str[i] >= '0') && (str[i] <= '9'); ++i) buf_size_kb = (buf_size_kb * 10) + (str[i] - '0'); pr_info("sps:debugfs: input buffer size is %dKB\n", buf_size_kb); if ((logging_option == 0) || (logging_option == 2)) { pr_info("sps:debugfs: need to first turn on recording.\n"); return -EFAULT; } if (buf_size_kb < 1) { pr_info("sps:debugfs: buffer size should be " "no less than 1KB.\n"); return -EFAULT; } if (buf_size_kb > (INT_MAX/SZ_1K)) { pr_err("sps:debugfs: buffer size is too large\n"); return -EFAULT; } new_buf_size = buf_size_kb * SZ_1K; mutex_lock(&sps_debugfs_lock); if (debugfs_record_enabled) { if (debugfs_buf_size == new_buf_size) { /* need do nothing */ pr_info("sps:debugfs: input buffer size " "is the same as before.\n"); mutex_unlock(&sps_debugfs_lock); return count; } else { /* release the current buffer */ debugfs_record_enabled = false; debugfs_buf_used = 0; wraparound = false; kfree(debugfs_buf); debugfs_buf = NULL; } } /* allocate new buffer */ debugfs_buf_size = new_buf_size; debugfs_buf = kzalloc(sizeof(char) * debugfs_buf_size, GFP_KERNEL); if (!debugfs_buf) { debugfs_buf_size = 0; pr_err("sps:fail to allocate memory for debug_fs.\n"); mutex_unlock(&sps_debugfs_lock); return -ENOMEM; } debugfs_buf_used = 0; wraparound = false; debugfs_record_enabled = true; mutex_unlock(&sps_debugfs_lock); return count; } const struct file_operations sps_info_ops = { .read = sps_read_info, .write = sps_set_info, }; /* return the current logging option to userspace */ static ssize_t sps_read_logging_option(struct file *file, char __user *ubuf, size_t count, loff_t *ppos) { char value[MAX_MSG_LEN]; int nbytes; nbytes = snprintf(value, MAX_MSG_LEN, "%d\n", logging_option); return simple_read_from_buffer(ubuf, count, ppos, value, nbytes); } /* * set the logging option */ static ssize_t sps_set_logging_option(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { unsigned long missing; char str[MAX_MSG_LEN]; int i; u8 option = 0; u32 size = sizeof(str) < count ? sizeof(str) : count; memset(str, 0, sizeof(str)); missing = copy_from_user(str, buf, size); if (missing) return -EFAULT; for (i = 0; i < sizeof(str) && (str[i] >= '0') && (str[i] <= '9'); ++i) option = (option * 10) + (str[i] - '0'); pr_info("sps:debugfs: try to change logging option to %d\n", option); if (option > 3) { pr_err("sps:debugfs: invalid logging option:%d\n", option); return count; } mutex_lock(&sps_debugfs_lock); if (((option == 0) || (option == 2)) && ((logging_option == 1) || (logging_option == 3))) { debugfs_record_enabled = false; kfree(debugfs_buf); debugfs_buf = NULL; debugfs_buf_used = 0; debugfs_buf_size = 0; wraparound = false; } logging_option = option; mutex_unlock(&sps_debugfs_lock); return count; } const struct file_operations sps_logging_option_ops = { .read = sps_read_logging_option, .write = sps_set_logging_option, }; /* * input the bam physical address */ static ssize_t sps_set_bam_addr(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { unsigned long missing; char str[MAX_MSG_LEN]; u32 i; u32 bam_addr = 0; struct sps_bam *bam; u32 num_pipes = 0; void *vir_addr; u32 size = sizeof(str) < count ? sizeof(str) : count; memset(str, 0, sizeof(str)); missing = copy_from_user(str, buf, size); if (missing) return -EFAULT; for (i = 0; i < sizeof(str) && (str[i] >= '0') && (str[i] <= '9'); ++i) bam_addr = (bam_addr * 10) + (str[i] - '0'); pr_info("sps:debugfs:input BAM physical address:0x%x\n", bam_addr); bam = phy2bam(bam_addr); if (bam == NULL) { pr_err("sps:debugfs:BAM 0x%x is not registered.", bam_addr); return count; } else { vir_addr = &bam->base; num_pipes = bam->props.num_pipes; if (log_level_sel <= SPS_IPC_MAX_LOGLEVEL) bam->ipc_loglevel = log_level_sel; } switch (reg_dump_option) { case 1: /* output all registers of this BAM */ print_bam_reg(bam->base); for (i = 0; i < num_pipes; i++) print_bam_pipe_reg(bam->base, i); break; case 2: /* output BAM-level registers */ print_bam_reg(bam->base); break; case 3: /* output selected BAM-level registers */ print_bam_selected_reg(vir_addr, bam->props.ee); break; case 4: /* output selected registers of all pipes */ for (i = 0; i < num_pipes; i++) print_bam_pipe_selected_reg(vir_addr, i); break; case 5: /* output selected registers of selected pipes */ for (i = 0; i < num_pipes; i++) if (bam_pipe_sel & (1UL << i)) print_bam_pipe_selected_reg(vir_addr, i); break; case 6: /* output selected registers of typical pipes */ print_bam_pipe_selected_reg(vir_addr, 4); print_bam_pipe_selected_reg(vir_addr, 5); break; case 7: /* output desc FIFO of all pipes */ for (i = 0; i < num_pipes; i++) print_bam_pipe_desc_fifo(vir_addr, i, 0); break; case 8: /* output desc FIFO of selected pipes */ for (i = 0; i < num_pipes; i++) if (bam_pipe_sel & (1UL << i)) print_bam_pipe_desc_fifo(vir_addr, i, 0); break; case 9: /* output desc FIFO of typical pipes */ print_bam_pipe_desc_fifo(vir_addr, 4, 0); print_bam_pipe_desc_fifo(vir_addr, 5, 0); break; case 10: /* output selected registers and desc FIFO of all pipes */ for (i = 0; i < num_pipes; i++) { print_bam_pipe_selected_reg(vir_addr, i); print_bam_pipe_desc_fifo(vir_addr, i, 0); } break; case 11: /* output selected registers and desc FIFO of selected pipes */ for (i = 0; i < num_pipes; i++) if (bam_pipe_sel & (1UL << i)) { print_bam_pipe_selected_reg(vir_addr, i); print_bam_pipe_desc_fifo(vir_addr, i, 0); } break; case 12: /* output selected registers and desc FIFO of typical pipes */ print_bam_pipe_selected_reg(vir_addr, 4); print_bam_pipe_desc_fifo(vir_addr, 4, 0); print_bam_pipe_selected_reg(vir_addr, 5); print_bam_pipe_desc_fifo(vir_addr, 5, 0); break; case 13: /* output BAM_TEST_BUS_REG */ if (testbus_sel) print_bam_test_bus_reg(vir_addr, testbus_sel); else { pr_info("sps:output TEST_BUS_REG for all TEST_BUS_SEL"); print_bam_test_bus_reg(vir_addr, testbus_sel); } break; case 14: /* output partial desc FIFO of selected pipes */ if (desc_option == 0) desc_option = 1; for (i = 0; i < num_pipes; i++) if (bam_pipe_sel & (1UL << i)) print_bam_pipe_desc_fifo(vir_addr, i, desc_option); break; case 15: /* output partial data blocks of descriptors */ for (i = 0; i < num_pipes; i++) if (bam_pipe_sel & (1UL << i)) print_bam_pipe_desc_fifo(vir_addr, i, 100); break; case 16: /* output all registers of selected pipes */ for (i = 0; i < num_pipes; i++) if (bam_pipe_sel & (1UL << i)) print_bam_pipe_reg(bam->base, i); break; case 91: /* output testbus register, BAM global regisers and registers of all pipes */ print_bam_test_bus_reg(vir_addr, testbus_sel); print_bam_selected_reg(vir_addr, bam->props.ee); for (i = 0; i < num_pipes; i++) print_bam_pipe_selected_reg(vir_addr, i); break; case 92: /* output testbus register, BAM global regisers and registers of selected pipes */ print_bam_test_bus_reg(vir_addr, testbus_sel); print_bam_selected_reg(vir_addr, bam->props.ee); for (i = 0; i < num_pipes; i++) if (bam_pipe_sel & (1UL << i)) print_bam_pipe_selected_reg(vir_addr, i); break; case 93: /* output registers and partial desc FIFOs of selected pipes: format 1 */ if (desc_option == 0) desc_option = 1; print_bam_test_bus_reg(vir_addr, testbus_sel); print_bam_selected_reg(vir_addr, bam->props.ee); for (i = 0; i < num_pipes; i++) if (bam_pipe_sel & (1UL << i)) print_bam_pipe_selected_reg(vir_addr, i); for (i = 0; i < num_pipes; i++) if (bam_pipe_sel & (1UL << i)) print_bam_pipe_desc_fifo(vir_addr, i, desc_option); break; case 94: /* output registers and partial desc FIFOs of selected pipes: format 2 */ if (desc_option == 0) desc_option = 1; print_bam_test_bus_reg(vir_addr, testbus_sel); print_bam_selected_reg(vir_addr, bam->props.ee); for (i = 0; i < num_pipes; i++) if (bam_pipe_sel & (1UL << i)) { print_bam_pipe_selected_reg(vir_addr, i); print_bam_pipe_desc_fifo(vir_addr, i, desc_option); } break; case 95: /* output registers and desc FIFOs of selected pipes: format 1 */ print_bam_test_bus_reg(vir_addr, testbus_sel); print_bam_selected_reg(vir_addr, bam->props.ee); for (i = 0; i < num_pipes; i++) if (bam_pipe_sel & (1UL << i)) print_bam_pipe_selected_reg(vir_addr, i); for (i = 0; i < num_pipes; i++) if (bam_pipe_sel & (1UL << i)) print_bam_pipe_desc_fifo(vir_addr, i, 0); break; case 96: /* output registers and desc FIFOs of selected pipes: format 2 */ print_bam_test_bus_reg(vir_addr, testbus_sel); print_bam_selected_reg(vir_addr, bam->props.ee); for (i = 0; i < num_pipes; i++) if (bam_pipe_sel & (1UL << i)) { print_bam_pipe_selected_reg(vir_addr, i); print_bam_pipe_desc_fifo(vir_addr, i, 0); } break; case 97: /* output registers, desc FIFOs and partial data blocks of selected pipes: format 1 */ print_bam_test_bus_reg(vir_addr, testbus_sel); print_bam_selected_reg(vir_addr, bam->props.ee); for (i = 0; i < num_pipes; i++) if (bam_pipe_sel & (1UL << i)) print_bam_pipe_selected_reg(vir_addr, i); for (i = 0; i < num_pipes; i++) if (bam_pipe_sel & (1UL << i)) print_bam_pipe_desc_fifo(vir_addr, i, 0); for (i = 0; i < num_pipes; i++) if (bam_pipe_sel & (1UL << i)) print_bam_pipe_desc_fifo(vir_addr, i, 100); break; case 98: /* output registers, desc FIFOs and partial data blocks of selected pipes: format 2 */ print_bam_test_bus_reg(vir_addr, testbus_sel); print_bam_selected_reg(vir_addr, bam->props.ee); for (i = 0; i < num_pipes; i++) if (bam_pipe_sel & (1UL << i)) { print_bam_pipe_selected_reg(vir_addr, i); print_bam_pipe_desc_fifo(vir_addr, i, 0); print_bam_pipe_desc_fifo(vir_addr, i, 100); } break; case 99: /* output all registers, desc FIFOs and partial data blocks */ print_bam_test_bus_reg(vir_addr, testbus_sel); print_bam_reg(bam->base); for (i = 0; i < num_pipes; i++) print_bam_pipe_reg(bam->base, i); print_bam_selected_reg(vir_addr, bam->props.ee); for (i = 0; i < num_pipes; i++) print_bam_pipe_selected_reg(vir_addr, i); for (i = 0; i < num_pipes; i++) print_bam_pipe_desc_fifo(vir_addr, i, 0); for (i = 0; i < num_pipes; i++) print_bam_pipe_desc_fifo(vir_addr, i, 100); break; default: pr_info("sps:no dump option is chosen yet."); } return count; } const struct file_operations sps_bam_addr_ops = { .write = sps_set_bam_addr, }; static void sps_debugfs_init(void) { debugfs_record_enabled = false; logging_option = 0; debug_level_option = 0; print_limit_option = 0; reg_dump_option = 0; testbus_sel = 0; bam_pipe_sel = 0; desc_option = 0; debugfs_buf_size = 0; debugfs_buf_used = 0; wraparound = false; log_level_sel = SPS_IPC_MAX_LOGLEVEL + 1; dent = debugfs_create_dir("sps", 0); if (IS_ERR(dent)) { pr_err("sps:fail to create the folder for debug_fs.\n"); return; } dfile_info = debugfs_create_file("info", 0664, dent, 0, &sps_info_ops); if (!dfile_info || IS_ERR(dfile_info)) { pr_err("sps:fail to create the file for debug_fs info.\n"); goto info_err; } dfile_logging_option = debugfs_create_file("logging_option", 0664, dent, 0, &sps_logging_option_ops); if (!dfile_logging_option || IS_ERR(dfile_logging_option)) { pr_err("sps:fail to create the file for debug_fs " "logging_option.\n"); goto logging_option_err; } dfile_debug_level_option = debugfs_create_u8("debug_level_option", 0664, dent, &debug_level_option); if (!dfile_debug_level_option || IS_ERR(dfile_debug_level_option)) { pr_err("sps:fail to create the file for debug_fs " "debug_level_option.\n"); goto debug_level_option_err; } dfile_print_limit_option = debugfs_create_u8("print_limit_option", 0664, dent, &print_limit_option); if (!dfile_print_limit_option || IS_ERR(dfile_print_limit_option)) { pr_err("sps:fail to create the file for debug_fs " "print_limit_option.\n"); goto print_limit_option_err; } dfile_reg_dump_option = debugfs_create_u8("reg_dump_option", 0664, dent, ®_dump_option); if (!dfile_reg_dump_option || IS_ERR(dfile_reg_dump_option)) { pr_err("sps:fail to create the file for debug_fs " "reg_dump_option.\n"); goto reg_dump_option_err; } dfile_testbus_sel = debugfs_create_u32("testbus_sel", 0664, dent, &testbus_sel); if (!dfile_testbus_sel || IS_ERR(dfile_testbus_sel)) { pr_err("sps:fail to create debug_fs file for testbus_sel.\n"); goto testbus_sel_err; } dfile_bam_pipe_sel = debugfs_create_u32("bam_pipe_sel", 0664, dent, &bam_pipe_sel); if (!dfile_bam_pipe_sel || IS_ERR(dfile_bam_pipe_sel)) { pr_err("sps:fail to create debug_fs file for bam_pipe_sel.\n"); goto bam_pipe_sel_err; } dfile_desc_option = debugfs_create_u32("desc_option", 0664, dent, &desc_option); if (!dfile_desc_option || IS_ERR(dfile_desc_option)) { pr_err("sps:fail to create debug_fs file for desc_option.\n"); goto desc_option_err; } dfile_bam_addr = debugfs_create_file("bam_addr", 0664, dent, 0, &sps_bam_addr_ops); if (!dfile_bam_addr || IS_ERR(dfile_bam_addr)) { pr_err("sps:fail to create the file for debug_fs " "bam_addr.\n"); goto bam_addr_err; } dfile_log_level_sel = debugfs_create_u32("log_level_sel", 0664, dent, &log_level_sel); if (!dfile_log_level_sel || IS_ERR(dfile_log_level_sel)) { pr_err("sps:fail to create debug_fs file for log_level_sel.\n"); goto bam_log_level_err; } mutex_init(&sps_debugfs_lock); return; bam_log_level_err: debugfs_remove(dfile_bam_addr); bam_addr_err: debugfs_remove(dfile_desc_option); desc_option_err: debugfs_remove(dfile_bam_pipe_sel); bam_pipe_sel_err: debugfs_remove(dfile_testbus_sel); testbus_sel_err: debugfs_remove(dfile_reg_dump_option); reg_dump_option_err: debugfs_remove(dfile_print_limit_option); print_limit_option_err: debugfs_remove(dfile_debug_level_option); debug_level_option_err: debugfs_remove(dfile_logging_option); logging_option_err: debugfs_remove(dfile_info); info_err: debugfs_remove(dent); } static void sps_debugfs_exit(void) { if (dfile_info) debugfs_remove(dfile_info); if (dfile_logging_option) debugfs_remove(dfile_logging_option); if (dfile_debug_level_option) debugfs_remove(dfile_debug_level_option); if (dfile_print_limit_option) debugfs_remove(dfile_print_limit_option); if (dfile_reg_dump_option) debugfs_remove(dfile_reg_dump_option); if (dfile_testbus_sel) debugfs_remove(dfile_testbus_sel); if (dfile_bam_pipe_sel) debugfs_remove(dfile_bam_pipe_sel); if (dfile_desc_option) debugfs_remove(dfile_desc_option); if (dfile_bam_addr) debugfs_remove(dfile_bam_addr); if (dent) debugfs_remove(dent); debugfs_remove(dfile_log_level_sel); kfree(debugfs_buf); debugfs_buf = NULL; } #endif /* Get the debug info of BAM registers and descriptor FIFOs */ int sps_get_bam_debug_info(unsigned long dev, u32 option, u32 para, u32 tb_sel, u32 desc_sel) { int res = 0; struct sps_bam *bam; u32 i; u32 num_pipes = 0; void *vir_addr; if (dev == 0) { SPS_ERR(sps, "sps:%s:device handle should not be 0.\n", __func__); return SPS_ERROR; } if (sps == NULL || !sps->is_ready) { SPS_DBG3(sps, "sps:%s:sps driver is not ready.\n", __func__); return -EPROBE_DEFER; } mutex_lock(&sps->lock); /* Search for the target BAM device */ bam = sps_h2bam(dev); if (bam == NULL) { pr_err("sps:Can't find any BAM with handle 0x%pK.", (void *)dev); mutex_unlock(&sps->lock); return SPS_ERROR; } mutex_unlock(&sps->lock); vir_addr = &bam->base; num_pipes = bam->props.num_pipes; SPS_DUMP("sps: dump BAM:%pa.\n", &bam->props.phys_addr); switch (option) { case 1: /* output all registers of this BAM */ print_bam_reg(bam->base); for (i = 0; i < num_pipes; i++) print_bam_pipe_reg(bam->base, i); break; case 2: /* output BAM-level registers */ print_bam_reg(bam->base); break; case 3: /* output selected BAM-level registers */ print_bam_selected_reg(vir_addr, bam->props.ee); break; case 4: /* output selected registers of all pipes */ for (i = 0; i < num_pipes; i++) print_bam_pipe_selected_reg(vir_addr, i); break; case 5: /* output selected registers of selected pipes */ for (i = 0; i < num_pipes; i++) if (para & (1UL << i)) print_bam_pipe_selected_reg(vir_addr, i); break; case 6: /* output selected registers of typical pipes */ print_bam_pipe_selected_reg(vir_addr, 4); print_bam_pipe_selected_reg(vir_addr, 5); break; case 7: /* output desc FIFO of all pipes */ for (i = 0; i < num_pipes; i++) print_bam_pipe_desc_fifo(vir_addr, i, 0); break; case 8: /* output desc FIFO of selected pipes */ for (i = 0; i < num_pipes; i++) if (para & (1UL << i)) print_bam_pipe_desc_fifo(vir_addr, i, 0); break; case 9: /* output desc FIFO of typical pipes */ print_bam_pipe_desc_fifo(vir_addr, 4, 0); print_bam_pipe_desc_fifo(vir_addr, 5, 0); break; case 10: /* output selected registers and desc FIFO of all pipes */ for (i = 0; i < num_pipes; i++) { print_bam_pipe_selected_reg(vir_addr, i); print_bam_pipe_desc_fifo(vir_addr, i, 0); } break; case 11: /* output selected registers and desc FIFO of selected pipes */ for (i = 0; i < num_pipes; i++) if (para & (1UL << i)) { print_bam_pipe_selected_reg(vir_addr, i); print_bam_pipe_desc_fifo(vir_addr, i, 0); } break; case 12: /* output selected registers and desc FIFO of typical pipes */ print_bam_pipe_selected_reg(vir_addr, 4); print_bam_pipe_desc_fifo(vir_addr, 4, 0); print_bam_pipe_selected_reg(vir_addr, 5); print_bam_pipe_desc_fifo(vir_addr, 5, 0); break; case 13: /* output BAM_TEST_BUS_REG */ if (tb_sel) print_bam_test_bus_reg(vir_addr, tb_sel); else pr_info("sps:TEST_BUS_SEL should NOT be zero."); break; case 14: /* output partial desc FIFO of selected pipes */ if (desc_sel == 0) desc_sel = 1; for (i = 0; i < num_pipes; i++) if (para & (1UL << i)) print_bam_pipe_desc_fifo(vir_addr, i, desc_sel); break; case 15: /* output partial data blocks of descriptors */ for (i = 0; i < num_pipes; i++) if (para & (1UL << i)) print_bam_pipe_desc_fifo(vir_addr, i, 100); break; case 16: /* output all registers of selected pipes */ for (i = 0; i < num_pipes; i++) if (para & (1UL << i)) print_bam_pipe_reg(bam->base, i); break; case 91: /* output testbus register, BAM global regisers and registers of all pipes */ print_bam_test_bus_reg(vir_addr, tb_sel); print_bam_selected_reg(vir_addr, bam->props.ee); for (i = 0; i < num_pipes; i++) print_bam_pipe_selected_reg(vir_addr, i); break; case 92: /* output testbus register, BAM global regisers and registers of selected pipes */ print_bam_test_bus_reg(vir_addr, tb_sel); print_bam_selected_reg(vir_addr, bam->props.ee); for (i = 0; i < num_pipes; i++) if (para & (1UL << i)) print_bam_pipe_selected_reg(vir_addr, i); break; case 93: /* output registers and partial desc FIFOs of selected pipes: format 1 */ if (desc_sel == 0) desc_sel = 1; print_bam_test_bus_reg(vir_addr, tb_sel); print_bam_selected_reg(vir_addr, bam->props.ee); for (i = 0; i < num_pipes; i++) if (para & (1UL << i)) print_bam_pipe_selected_reg(vir_addr, i); for (i = 0; i < num_pipes; i++) if (para & (1UL << i)) print_bam_pipe_desc_fifo(vir_addr, i, desc_sel); break; case 94: /* output registers and partial desc FIFOs of selected pipes: format 2 */ if (desc_sel == 0) desc_sel = 1; print_bam_test_bus_reg(vir_addr, tb_sel); print_bam_selected_reg(vir_addr, bam->props.ee); for (i = 0; i < num_pipes; i++) if (para & (1UL << i)) { print_bam_pipe_selected_reg(vir_addr, i); print_bam_pipe_desc_fifo(vir_addr, i, desc_sel); } break; case 95: /* output registers and desc FIFOs of selected pipes: format 1 */ print_bam_test_bus_reg(vir_addr, tb_sel); print_bam_selected_reg(vir_addr, bam->props.ee); for (i = 0; i < num_pipes; i++) if (para & (1UL << i)) print_bam_pipe_selected_reg(vir_addr, i); for (i = 0; i < num_pipes; i++) if (para & (1UL << i)) print_bam_pipe_desc_fifo(vir_addr, i, 0); break; case 96: /* output registers and desc FIFOs of selected pipes: format 2 */ print_bam_test_bus_reg(vir_addr, tb_sel); print_bam_selected_reg(vir_addr, bam->props.ee); for (i = 0; i < num_pipes; i++) if (para & (1UL << i)) { print_bam_pipe_selected_reg(vir_addr, i); print_bam_pipe_desc_fifo(vir_addr, i, 0); } break; case 97: /* output registers, desc FIFOs and partial data blocks of selected pipes: format 1 */ print_bam_test_bus_reg(vir_addr, tb_sel); print_bam_selected_reg(vir_addr, bam->props.ee); for (i = 0; i < num_pipes; i++) if (para & (1UL << i)) print_bam_pipe_selected_reg(vir_addr, i); for (i = 0; i < num_pipes; i++) if (para & (1UL << i)) print_bam_pipe_desc_fifo(vir_addr, i, 0); for (i = 0; i < num_pipes; i++) if (para & (1UL << i)) print_bam_pipe_desc_fifo(vir_addr, i, 100); break; case 98: /* output registers, desc FIFOs and partial data blocks of selected pipes: format 2 */ print_bam_test_bus_reg(vir_addr, tb_sel); print_bam_selected_reg(vir_addr, bam->props.ee); for (i = 0; i < num_pipes; i++) if (para & (1UL << i)) { print_bam_pipe_selected_reg(vir_addr, i); print_bam_pipe_desc_fifo(vir_addr, i, 0); print_bam_pipe_desc_fifo(vir_addr, i, 100); } break; case 99: /* output all registers, desc FIFOs and partial data blocks */ print_bam_test_bus_reg(vir_addr, tb_sel); print_bam_reg(bam->base); for (i = 0; i < num_pipes; i++) print_bam_pipe_reg(bam->base, i); print_bam_selected_reg(vir_addr, bam->props.ee); for (i = 0; i < num_pipes; i++) print_bam_pipe_selected_reg(vir_addr, i); for (i = 0; i < num_pipes; i++) print_bam_pipe_desc_fifo(vir_addr, i, 0); for (i = 0; i < num_pipes; i++) print_bam_pipe_desc_fifo(vir_addr, i, 100); break; default: pr_info("sps:no option is chosen yet."); } return res; } EXPORT_SYMBOL(sps_get_bam_debug_info); /** * Initialize SPS device * * This function initializes the SPS device. * * @return 0 on success, negative value on error * */ static int sps_device_init(void) { int result; int success; #ifdef CONFIG_SPS_SUPPORT_BAMDMA struct sps_bam_props bamdma_props = {0}; #endif SPS_DBG3(sps, "sps:%s.", __func__); success = false; result = sps_mem_init(sps->pipemem_phys_base, sps->pipemem_size); if (result) { SPS_ERR(sps, "sps:%s:SPS memory init failed", __func__); goto exit_err; } INIT_LIST_HEAD(&sps->bams_q); mutex_init(&sps->lock); if (sps_rm_init(&sps->connection_ctrl, sps->options)) { SPS_ERR(sps, "sps:%s:Fail to init SPS resource manager", __func__); goto exit_err; } result = sps_bam_driver_init(sps->options); if (result) { SPS_ERR(sps, "sps:%s:SPS BAM driver init failed", __func__); goto exit_err; } /* Initialize the BAM DMA device */ #ifdef CONFIG_SPS_SUPPORT_BAMDMA bamdma_props.phys_addr = sps->bamdma_bam_phys_base; bamdma_props.virt_addr = ioremap(sps->bamdma_bam_phys_base, sps->bamdma_bam_size); if (!bamdma_props.virt_addr) { SPS_ERR(sps, "sps:%s:Fail to IO map BAM-DMA BAM registers.\n", __func__); goto exit_err; } SPS_DBG3(sps, "sps:bamdma_bam.phys=%pa.virt=0x%pK.", &bamdma_props.phys_addr, bamdma_props.virt_addr); bamdma_props.periph_phys_addr = sps->bamdma_dma_phys_base; bamdma_props.periph_virt_size = sps->bamdma_dma_size; bamdma_props.periph_virt_addr = ioremap(sps->bamdma_dma_phys_base, sps->bamdma_dma_size); if (!bamdma_props.periph_virt_addr) { SPS_ERR(sps, "sps:%s:Fail to IO map BAM-DMA peripheral reg.\n", __func__); goto exit_err; } SPS_DBG3(sps, "sps:bamdma_dma.phys=%pa.virt=0x%pK.", &bamdma_props.periph_phys_addr, bamdma_props.periph_virt_addr); bamdma_props.irq = sps->bamdma_irq; bamdma_props.event_threshold = 0x10; /* Pipe event threshold */ bamdma_props.summing_threshold = 0x10; /* BAM event threshold */ bamdma_props.options = SPS_BAM_OPT_BAMDMA; bamdma_props.restricted_pipes = sps->bamdma_restricted_pipes; result = sps_dma_init(&bamdma_props); if (result) { SPS_ERR(sps, "sps:%s:SPS BAM DMA driver init failed", __func__); goto exit_err; } #endif /* CONFIG_SPS_SUPPORT_BAMDMA */ result = sps_map_init(NULL, sps->options); if (result) { SPS_ERR(sps, "sps:%s:SPS connection mapping init failed", __func__); goto exit_err; } success = true; exit_err: if (!success) { #ifdef CONFIG_SPS_SUPPORT_BAMDMA sps_device_de_init(); #endif return SPS_ERROR; } return 0; } /** * De-initialize SPS device * * This function de-initializes the SPS device. * * @return 0 on success, negative value on error * */ static void sps_device_de_init(void) { SPS_DBG3(sps, "sps:%s.", __func__); if (sps != NULL) { #ifdef CONFIG_SPS_SUPPORT_BAMDMA sps_dma_de_init(); #endif /* Are there any remaining BAM registrations? */ if (!list_empty(&sps->bams_q)) SPS_ERR(sps, "sps:%s:BAMs are still registered", __func__); sps_map_de_init(); } sps_mem_de_init(); } /** * Initialize client state context * * This function initializes a client state context struct. * * @client - Pointer to client state context * * @return 0 on success, negative value on error * */ static int sps_client_init(struct sps_pipe *client) { SPS_DBG(sps, "sps:%s.", __func__); if (client == NULL) return -EINVAL; /* * NOTE: Cannot store any state within the SPS driver because * the driver init function may not have been called yet. */ memset(client, 0, sizeof(*client)); sps_rm_config_init(&client->connect); client->client_state = SPS_STATE_DISCONNECT; client->bam = NULL; return 0; } /** * De-initialize client state context * * This function de-initializes a client state context struct. * * @client - Pointer to client state context * * @return 0 on success, negative value on error * */ static int sps_client_de_init(struct sps_pipe *client) { SPS_DBG(sps, "sps:%s.", __func__); if (client->client_state != SPS_STATE_DISCONNECT) { SPS_ERR(sps, "sps:De-init client in connected state: 0x%x", client->client_state); return SPS_ERROR; } client->bam = NULL; client->map = NULL; memset(&client->connect, 0, sizeof(client->connect)); return 0; } /** * Find the BAM device from the physical address * * This function finds a BAM device in the BAM registration list that * matches the specified physical address. * * @phys_addr - physical address of the BAM * * @return - pointer to the BAM device struct, or NULL on error * */ static struct sps_bam *phy2bam(phys_addr_t phys_addr) { struct sps_bam *bam; SPS_DBG2(sps, "sps:%s.", __func__); list_for_each_entry(bam, &sps->bams_q, list) { if (bam->props.phys_addr == phys_addr) return bam; } return NULL; } /** * Find the handle of a BAM device based on the physical address * * This function finds a BAM device in the BAM registration list that * matches the specified physical address, and returns its handle. * * @phys_addr - physical address of the BAM * * @h - device handle of the BAM * * @return 0 on success, negative value on error * */ int sps_phy2h(phys_addr_t phys_addr, unsigned long *handle) { struct sps_bam *bam; SPS_DBG2(sps, "sps:%s.", __func__); if (sps == NULL || !sps->is_ready) { SPS_DBG3(sps, "sps:%s:sps driver is not ready.\n", __func__); return -EPROBE_DEFER; } if (handle == NULL) { SPS_ERR(sps, "sps:%s:handle is NULL.\n", __func__); return SPS_ERROR; } list_for_each_entry(bam, &sps->bams_q, list) { if (bam->props.phys_addr == phys_addr) { *handle = (uintptr_t) bam; return 0; } } SPS_ERR(sps, "sps: BAM device %pa is not registered yet.\n", &phys_addr); return -ENODEV; } EXPORT_SYMBOL(sps_phy2h); /** * Setup desc/data FIFO for bam-to-bam connection * * @mem_buffer - Pointer to struct for allocated memory properties. * * @addr - address of FIFO * * @size - FIFO size * * @use_offset - use address offset instead of absolute address * * @return 0 on success, negative value on error * */ int sps_setup_bam2bam_fifo(struct sps_mem_buffer *mem_buffer, u32 addr, u32 size, int use_offset) { SPS_DBG1(sps, "sps:%s.", __func__); if ((mem_buffer == NULL) || (size == 0)) { SPS_ERR(sps, "sps:%s:invalid buffer address or size.", __func__); return SPS_ERROR; } if (sps == NULL || !sps->is_ready) { SPS_DBG3(sps, "sps:%s:sps driver is not ready.\n", __func__); return -EPROBE_DEFER; } if (use_offset) { if ((addr + size) <= sps->pipemem_size) mem_buffer->phys_base = sps->pipemem_phys_base + addr; else { SPS_ERR(sps, "sps:%s:requested mem is out of pipe mem range.\n", __func__); return SPS_ERROR; } } else { if (addr >= sps->pipemem_phys_base && (addr + size) <= (sps->pipemem_phys_base + sps->pipemem_size)) mem_buffer->phys_base = addr; else { SPS_ERR(sps, "sps:%s:requested mem is out of pipe mem range.\n", __func__); return SPS_ERROR; } } mem_buffer->base = spsi_get_mem_ptr(mem_buffer->phys_base); mem_buffer->size = size; memset(mem_buffer->base, 0, mem_buffer->size); return 0; } EXPORT_SYMBOL(sps_setup_bam2bam_fifo); /** * Find the BAM device from the handle * * This function finds a BAM device in the BAM registration list that * matches the specified device handle. * * @h - device handle of the BAM * * @return - pointer to the BAM device struct, or NULL on error * */ struct sps_bam *sps_h2bam(unsigned long h) { struct sps_bam *bam; SPS_DBG1(sps, "sps:%s: BAM handle:0x%pK.", __func__, (void *)h); if (h == SPS_DEV_HANDLE_MEM || h == SPS_DEV_HANDLE_INVALID) return NULL; list_for_each_entry(bam, &sps->bams_q, list) { if ((uintptr_t) bam == h) return bam; } SPS_ERR(sps, "sps:Can't find BAM device for handle 0x%pK.", (void *)h); return NULL; } /** * Lock BAM device * * This function obtains the BAM spinlock on the client's connection. * * @pipe - pointer to client pipe state * * @return pointer to BAM device struct, or NULL on error * */ static struct sps_bam *sps_bam_lock(struct sps_pipe *pipe) { struct sps_bam *bam; u32 pipe_index; bam = pipe->bam; if (bam == NULL) { SPS_ERR(sps, "sps:%s:Connection is not in connected state.", __func__); return NULL; } spin_lock_irqsave(&bam->connection_lock, bam->irqsave_flags); /* Verify client owns this pipe */ pipe_index = pipe->pipe_index; if (pipe_index >= bam->props.num_pipes || pipe != bam->pipes[pipe_index]) { SPS_ERR(bam, "sps:Client not owner of BAM %pa pipe: %d (max %d)", &bam->props.phys_addr, pipe_index, bam->props.num_pipes); spin_unlock_irqrestore(&bam->connection_lock, bam->irqsave_flags); return NULL; } return bam; } /** * Unlock BAM device * * This function releases the BAM spinlock on the client's connection. * * @bam - pointer to BAM device struct * */ static inline void sps_bam_unlock(struct sps_bam *bam) { spin_unlock_irqrestore(&bam->connection_lock, bam->irqsave_flags); } /** * Connect an SPS connection end point * */ int sps_connect(struct sps_pipe *h, struct sps_connect *connect) { struct sps_pipe *pipe = h; unsigned long dev; struct sps_bam *bam; int result; if (h == NULL) { SPS_ERR(sps, "sps:%s:pipe is NULL.\n", __func__); return SPS_ERROR; } else if (connect == NULL) { SPS_ERR(sps, "sps:%s:connection is NULL.\n", __func__); return SPS_ERROR; } if (sps == NULL) return -ENODEV; if (!sps->is_ready) { SPS_ERR(sps, "sps:%s:sps driver is not ready.\n", __func__); return -EAGAIN; } if ((connect->lock_group != SPSRM_CLEAR) && (connect->lock_group > BAM_MAX_P_LOCK_GROUP_NUM)) { SPS_ERR(sps, "sps:%s:The value of pipe lock group is invalid.\n", __func__); return SPS_ERROR; } mutex_lock(&sps->lock); /* * Must lock the BAM device at the top level function, so must * determine which BAM is the target for the connection */ if (connect->mode == SPS_MODE_SRC) dev = connect->source; else dev = connect->destination; bam = sps_h2bam(dev); if (bam == NULL) { SPS_ERR(sps, "sps:Invalid BAM device handle: 0x%pK", (void *)dev); result = SPS_ERROR; goto exit_err; } mutex_lock(&bam->lock); SPS_DBG2(bam, "sps:sps_connect: bam %pa src 0x%pK dest 0x%pK mode %s", BAM_ID(bam), (void *)connect->source, (void *)connect->destination, connect->mode == SPS_MODE_SRC ? "SRC" : "DEST"); /* Allocate resources for the specified connection */ pipe->connect = *connect; result = sps_rm_state_change(pipe, SPS_STATE_ALLOCATE); if (result) { mutex_unlock(&bam->lock); goto exit_err; } /* Configure the connection */ result = sps_rm_state_change(pipe, SPS_STATE_CONNECT); mutex_unlock(&bam->lock); if (result) { sps_disconnect(h); goto exit_err; } exit_err: mutex_unlock(&sps->lock); return result; } EXPORT_SYMBOL(sps_connect); /** * Disconnect an SPS connection end point * * This function disconnects an SPS connection end point. * The SPS hardware associated with that end point will be disabled. * For a connection involving system memory (SPS_DEV_HANDLE_MEM), all * connection resources are deallocated. For a peripheral-to-peripheral * connection, the resources associated with the connection will not be * deallocated until both end points are closed. * * The client must call sps_connect() for the handle before calling * this function. * * @h - client context for SPS connection end point * * @return 0 on success, negative value on error * */ int sps_disconnect(struct sps_pipe *h) { struct sps_pipe *pipe = h; struct sps_pipe *check; struct sps_bam *bam; int result; if (pipe == NULL) { SPS_ERR(sps, "sps:%s:Invalid pipe.", __func__); return SPS_ERROR; } bam = pipe->bam; if (bam == NULL) { SPS_ERR(sps, "sps:%s:BAM device of this pipe is NULL.", __func__); return SPS_ERROR; } SPS_DBG2(bam, "sps:sps_disconnect: bam %pa src 0x%pK dest 0x%pK mode %s", BAM_ID(bam), (void *)pipe->connect.source, (void *)pipe->connect.destination, pipe->connect.mode == SPS_MODE_SRC ? "SRC" : "DEST"); result = SPS_ERROR; /* Cross-check client with map table */ if (pipe->connect.mode == SPS_MODE_SRC) check = pipe->map->client_src; else check = pipe->map->client_dest; if (check != pipe) { SPS_ERR(sps, "sps:%s:Client context is corrupt", __func__); goto exit_err; } /* Disconnect the BAM pipe */ mutex_lock(&bam->lock); result = sps_rm_state_change(pipe, SPS_STATE_DISCONNECT); mutex_unlock(&bam->lock); if (result) goto exit_err; sps_rm_config_init(&pipe->connect); result = 0; exit_err: return result; } EXPORT_SYMBOL(sps_disconnect); /** * Register an event object for an SPS connection end point * */ int sps_register_event(struct sps_pipe *h, struct sps_register_event *reg) { struct sps_pipe *pipe = h; struct sps_bam *bam; int result; if (h == NULL) { SPS_ERR(sps, "sps:%s:pipe is NULL.\n", __func__); return SPS_ERROR; } else if (reg == NULL) { SPS_ERR(sps, "sps:%s:registered event is NULL.\n", __func__); return SPS_ERROR; } if (sps == NULL) return -ENODEV; if (!sps->is_ready) { SPS_ERR(sps, "sps:%s:sps driver not ready.\n", __func__); return -EAGAIN; } bam = sps_bam_lock(pipe); if (bam == NULL) return SPS_ERROR; SPS_DBG2(bam, "sps:%s; events:%d.\n", __func__, reg->options); result = sps_bam_pipe_reg_event(bam, pipe->pipe_index, reg); sps_bam_unlock(bam); if (result) SPS_ERR(bam, "sps:Fail to register event for BAM %pa pipe %d", &pipe->bam->props.phys_addr, pipe->pipe_index); return result; } EXPORT_SYMBOL(sps_register_event); /** * Enable an SPS connection end point * */ int sps_flow_on(struct sps_pipe *h) { struct sps_pipe *pipe = h; struct sps_bam *bam; int result = 0; if (h == NULL) { SPS_ERR(sps, "sps:%s:pipe is NULL.\n", __func__); return SPS_ERROR; } bam = sps_bam_lock(pipe); if (bam == NULL) return SPS_ERROR; SPS_DBG2(bam, "sps:%s.\n", __func__); bam_pipe_halt(&bam->base, pipe->pipe_index, false); sps_bam_unlock(bam); return result; } EXPORT_SYMBOL(sps_flow_on); /** * Disable an SPS connection end point * */ int sps_flow_off(struct sps_pipe *h, enum sps_flow_off mode) { struct sps_pipe *pipe = h; struct sps_bam *bam; int result = 0; if (h == NULL) { SPS_ERR(sps, "sps:%s:pipe is NULL.\n", __func__); return SPS_ERROR; } bam = sps_bam_lock(pipe); if (bam == NULL) return SPS_ERROR; SPS_DBG2(bam, "sps:%s.\n", __func__); bam_pipe_halt(&bam->base, pipe->pipe_index, true); sps_bam_unlock(bam); return result; } EXPORT_SYMBOL(sps_flow_off); /** * Check if the flags on a descriptor/iovec are valid * * @flags - flags on a descriptor/iovec * * @return 0 on success, negative value on error * */ static int sps_check_iovec_flags(u32 flags) { if ((flags & SPS_IOVEC_FLAG_NWD) && !(flags & (SPS_IOVEC_FLAG_EOT | SPS_IOVEC_FLAG_CMD))) { SPS_ERR(sps, "sps:%s:NWD is only valid with EOT or CMD.\n", __func__); return SPS_ERROR; } else if ((flags & SPS_IOVEC_FLAG_EOT) && (flags & SPS_IOVEC_FLAG_CMD)) { SPS_ERR(sps, "sps:%s:EOT and CMD are not allowed to coexist.\n", __func__); return SPS_ERROR; } else if (!(flags & SPS_IOVEC_FLAG_CMD) && (flags & (SPS_IOVEC_FLAG_LOCK | SPS_IOVEC_FLAG_UNLOCK))) { static char err_msg[] = "pipe lock/unlock flags are only valid with Command Descriptor"; SPS_ERR(sps, "sps:%s.\n", err_msg); return SPS_ERROR; } else if ((flags & SPS_IOVEC_FLAG_LOCK) && (flags & SPS_IOVEC_FLAG_UNLOCK)) { static char err_msg[] = "Can't lock and unlock a pipe by the same Command Descriptor"; SPS_ERR(sps, "sps:%s.\n", err_msg); return SPS_ERROR; } else if ((flags & SPS_IOVEC_FLAG_IMME) && (flags & SPS_IOVEC_FLAG_CMD)) { SPS_ERR(sps, "sps:%s:Immediate and CMD are not allowed to coexist.\n", __func__); return SPS_ERROR; } else if ((flags & SPS_IOVEC_FLAG_IMME) && (flags & SPS_IOVEC_FLAG_NWD)) { SPS_ERR(sps, "sps:%s:Immediate and NWD are not allowed to coexist.\n", __func__); return SPS_ERROR; } return 0; } /** * Perform a DMA transfer on an SPS connection end point * */ int sps_transfer(struct sps_pipe *h, struct sps_transfer *transfer) { struct sps_pipe *pipe = h; struct sps_bam *bam; int result; struct sps_iovec *iovec; int i; if (h == NULL) { SPS_ERR(sps, "sps:%s:pipe is NULL.\n", __func__); return SPS_ERROR; } else if (transfer == NULL) { SPS_ERR(sps, "sps:%s:transfer is NULL.\n", __func__); return SPS_ERROR; } else if (transfer->iovec == NULL) { SPS_ERR(sps, "sps:%s:iovec list is NULL.\n", __func__); return SPS_ERROR; } else if (transfer->iovec_count == 0) { SPS_ERR(sps, "sps:%s:iovec list is empty.\n", __func__); return SPS_ERROR; } else if (transfer->iovec_phys == 0) { SPS_ERR(sps, "sps:%s:iovec list address is invalid.\n", __func__); return SPS_ERROR; } /* Verify content of IOVECs */ iovec = transfer->iovec; for (i = 0; i < transfer->iovec_count; i++) { u32 flags = iovec->flags; if (iovec->size > SPS_IOVEC_MAX_SIZE) { SPS_ERR(sps, "sps:%s:iovec size is invalid.\n", __func__); return SPS_ERROR; } if (sps_check_iovec_flags(flags)) return SPS_ERROR; iovec++; } bam = sps_bam_lock(pipe); if (bam == NULL) return SPS_ERROR; SPS_DBG(bam, "sps:%s.\n", __func__); result = sps_bam_pipe_transfer(bam, pipe->pipe_index, transfer); sps_bam_unlock(bam); return result; } EXPORT_SYMBOL(sps_transfer); /** * Perform a single DMA transfer on an SPS connection end point * */ int sps_transfer_one(struct sps_pipe *h, phys_addr_t addr, u32 size, void *user, u32 flags) { struct sps_pipe *pipe = h; struct sps_bam *bam; int result; if (h == NULL) { SPS_ERR(sps, "sps:%s:pipe is NULL.\n", __func__); return SPS_ERROR; } if (sps_check_iovec_flags(flags)) return SPS_ERROR; bam = sps_bam_lock(pipe); if (bam == NULL) return SPS_ERROR; SPS_DBG(bam, "sps:%s.\n", __func__); result = sps_bam_pipe_transfer_one(bam, pipe->pipe_index, SPS_GET_LOWER_ADDR(addr), size, user, DESC_FLAG_WORD(flags, addr)); sps_bam_unlock(bam); return result; } EXPORT_SYMBOL(sps_transfer_one); /** * Read event queue for an SPS connection end point * */ int sps_get_event(struct sps_pipe *h, struct sps_event_notify *notify) { struct sps_pipe *pipe = h; struct sps_bam *bam; int result; if (h == NULL) { SPS_ERR(sps, "sps:%s:pipe is NULL.\n", __func__); return SPS_ERROR; } else if (notify == NULL) { SPS_ERR(sps, "sps:%s:event_notify is NULL.\n", __func__); return SPS_ERROR; } bam = sps_bam_lock(pipe); if (bam == NULL) return SPS_ERROR; SPS_DBG1(bam, "sps:%s.\n", __func__); result = sps_bam_pipe_get_event(bam, pipe->pipe_index, notify); sps_bam_unlock(bam); return result; } EXPORT_SYMBOL(sps_get_event); /** * Determine whether an SPS connection end point FIFO is empty * */ int sps_is_pipe_empty(struct sps_pipe *h, u32 *empty) { struct sps_pipe *pipe = h; struct sps_bam *bam; int result; if (h == NULL) { SPS_ERR(sps, "sps:%s:pipe is NULL.\n", __func__); return SPS_ERROR; } else if (empty == NULL) { SPS_ERR(sps, "sps:%s:result pointer is NULL.\n", __func__); return SPS_ERROR; } bam = sps_bam_lock(pipe); if (bam == NULL) return SPS_ERROR; SPS_DBG1(bam, "sps:%s.\n", __func__); result = sps_bam_pipe_is_empty(bam, pipe->pipe_index, empty); sps_bam_unlock(bam); return result; } EXPORT_SYMBOL(sps_is_pipe_empty); /** * Get number of free transfer entries for an SPS connection end point * */ int sps_get_free_count(struct sps_pipe *h, u32 *count) { struct sps_pipe *pipe = h; struct sps_bam *bam; int result; if (h == NULL) { SPS_ERR(sps, "sps:%s:pipe is NULL.\n", __func__); return SPS_ERROR; } else if (count == NULL) { SPS_ERR(sps, "sps:%s:result pointer is NULL.\n", __func__); return SPS_ERROR; } bam = sps_bam_lock(pipe); if (bam == NULL) return SPS_ERROR; SPS_DBG(bam, "sps:%s.\n", __func__); result = sps_bam_get_free_count(bam, pipe->pipe_index, count); sps_bam_unlock(bam); return result; } EXPORT_SYMBOL(sps_get_free_count); /** * Reset an SPS BAM device * */ int sps_device_reset(unsigned long dev) { struct sps_bam *bam; int result; if (dev == 0) { SPS_ERR(sps, "sps:%s:device handle should not be 0.\n", __func__); return SPS_ERROR; } if (sps == NULL || !sps->is_ready) { SPS_DBG3(sps, "sps:%s:sps driver is not ready.\n", __func__); return -EPROBE_DEFER; } mutex_lock(&sps->lock); /* Search for the target BAM device */ bam = sps_h2bam(dev); if (bam == NULL) { SPS_ERR(sps, "sps:Invalid BAM device handle: 0x%pK", (void *)dev); result = SPS_ERROR; goto exit_err; } SPS_DBG3(bam, "sps:%s.\n", __func__); mutex_lock(&bam->lock); result = sps_bam_reset(bam); mutex_unlock(&bam->lock); if (result) { SPS_ERR(sps, "sps:Fail to reset BAM device: 0x%pK", (void *)dev); goto exit_err; } exit_err: mutex_unlock(&sps->lock); return result; } EXPORT_SYMBOL(sps_device_reset); /** * Get the configuration parameters for an SPS connection end point * */ int sps_get_config(struct sps_pipe *h, struct sps_connect *config) { struct sps_pipe *pipe = h; if (h == NULL) { SPS_ERR(sps, "sps:%s:pipe is NULL.\n", __func__); return SPS_ERROR; } else if (config == NULL) { SPS_ERR(sps, "sps:%s:config pointer is NULL.\n", __func__); return SPS_ERROR; } if (pipe->bam == NULL) SPS_DBG(sps, "sps:%s.\n", __func__); else SPS_DBG(pipe->bam, "sps:%s; BAM: %pa; pipe index:%d; options:0x%x.\n", __func__, BAM_ID(pipe->bam), pipe->pipe_index, pipe->connect.options); /* Copy current client connection state */ *config = pipe->connect; return 0; } EXPORT_SYMBOL(sps_get_config); /** * Set the configuration parameters for an SPS connection end point * */ int sps_set_config(struct sps_pipe *h, struct sps_connect *config) { struct sps_pipe *pipe = h; struct sps_bam *bam; int result; if (h == NULL) { SPS_ERR(sps, "sps:%s:pipe is NULL.\n", __func__); return SPS_ERROR; } else if (config == NULL) { SPS_ERR(sps, "sps:%s:config pointer is NULL.\n", __func__); return SPS_ERROR; } bam = sps_bam_lock(pipe); if (bam == NULL) { SPS_ERR(sps, "sps:%s:BAM is NULL.\n", __func__); return SPS_ERROR; } SPS_DBG(bam, "sps:%s; BAM: %pa; pipe index:%d, config-options:0x%x.\n", __func__, BAM_ID(bam), pipe->pipe_index, config->options); result = sps_bam_pipe_set_params(bam, pipe->pipe_index, config->options); if (result == 0) pipe->connect.options = config->options; sps_bam_unlock(bam); return result; } EXPORT_SYMBOL(sps_set_config); /** * Set ownership of an SPS connection end point * */ int sps_set_owner(struct sps_pipe *h, enum sps_owner owner, struct sps_satellite *connect) { struct sps_pipe *pipe = h; struct sps_bam *bam; int result; if (h == NULL) { SPS_ERR(sps, "sps:%s:pipe is NULL.\n", __func__); return SPS_ERROR; } else if (connect == NULL) { SPS_ERR(sps, "sps:%s:connection is NULL.\n", __func__); return SPS_ERROR; } if (owner != SPS_OWNER_REMOTE) { SPS_ERR(sps, "sps:Unsupported ownership state: %d", owner); return SPS_ERROR; } bam = sps_bam_lock(pipe); if (bam == NULL) return SPS_ERROR; SPS_DBG(bam, "sps:%s; BAM: %pa; pipe index:%d.\n", __func__, BAM_ID(bam), pipe->pipe_index); result = sps_bam_set_satellite(bam, pipe->pipe_index); if (result) goto exit_err; /* Return satellite connect info */ if (connect == NULL) goto exit_err; if (pipe->connect.mode == SPS_MODE_SRC) { connect->dev = pipe->map->src.bam_phys; connect->pipe_index = pipe->map->src.pipe_index; } else { connect->dev = pipe->map->dest.bam_phys; connect->pipe_index = pipe->map->dest.pipe_index; } connect->config = SPS_CONFIG_SATELLITE; connect->options = (enum sps_option) 0; exit_err: sps_bam_unlock(bam); return result; } EXPORT_SYMBOL(sps_set_owner); /** * Allocate memory from the SPS Pipe-Memory. * */ int sps_alloc_mem(struct sps_pipe *h, enum sps_mem mem, struct sps_mem_buffer *mem_buffer) { if (sps == NULL) return -ENODEV; if (!sps->is_ready) { SPS_ERR(sps, "sps:%s:sps driver is not ready.", __func__); return -EAGAIN; } if (mem_buffer == NULL || mem_buffer->size == 0) { SPS_ERR(sps, "sps:%s:invalid memory buffer address or size", __func__); return SPS_ERROR; } if (h == NULL) SPS_DBG2(sps, "sps:%s:allocate pipe memory before setup pipe", __func__); else SPS_DBG2(sps, "sps:allocate pipe memory for pipe %d", h->pipe_index); mem_buffer->phys_base = sps_mem_alloc_io(mem_buffer->size); if (mem_buffer->phys_base == SPS_ADDR_INVALID) { SPS_ERR(sps, "sps:%s:invalid address of allocated memory", __func__); return SPS_ERROR; } mem_buffer->base = spsi_get_mem_ptr(mem_buffer->phys_base); return 0; } EXPORT_SYMBOL(sps_alloc_mem); /** * Free memory from the SPS Pipe-Memory. * */ int sps_free_mem(struct sps_pipe *h, struct sps_mem_buffer *mem_buffer) { SPS_DBG(sps, "sps:%s.", __func__); if (mem_buffer == NULL || mem_buffer->phys_base == SPS_ADDR_INVALID) { SPS_ERR(sps, "sps:%s:invalid memory to free", __func__); return SPS_ERROR; } if (h == NULL) SPS_DBG2(sps, "sps:%s:free pipe memory.", __func__); else SPS_DBG2(sps, "sps:free pipe memory for pipe %d.", h->pipe_index); sps_mem_free_io(mem_buffer->phys_base, mem_buffer->size); return 0; } EXPORT_SYMBOL(sps_free_mem); /** * Get the number of unused descriptors in the descriptor FIFO * of a pipe * */ int sps_get_unused_desc_num(struct sps_pipe *h, u32 *desc_num) { struct sps_pipe *pipe = h; struct sps_bam *bam; int result; if (h == NULL) { SPS_ERR(sps, "sps:%s:pipe is NULL.\n", __func__); return SPS_ERROR; } else if (desc_num == NULL) { SPS_ERR(sps, "sps:%s:result pointer is NULL.\n", __func__); return SPS_ERROR; } bam = sps_bam_lock(pipe); if (bam == NULL) return SPS_ERROR; SPS_DBG(bam, "sps:%s; BAM: %pa; pipe index:%d.\n", __func__, BAM_ID(bam), pipe->pipe_index); result = sps_bam_pipe_get_unused_desc_num(bam, pipe->pipe_index, desc_num); sps_bam_unlock(bam); return result; } EXPORT_SYMBOL(sps_get_unused_desc_num); /** * Vote for or relinquish BAM DMA clock * */ int sps_ctrl_bam_dma_clk(bool clk_on) { int ret; if (sps == NULL || !sps->is_ready) { SPS_DBG3(sps, "sps:%s:sps driver is not ready.\n", __func__); return -EPROBE_DEFER; } if (clk_on == true) { SPS_DBG1(sps, "%s", "sps:vote for bam dma clk.\n"); ret = clk_prepare_enable(sps->bamdma_clk); if (ret) { SPS_ERR(sps, "sps:fail to enable bamdma_clk:ret=%d\n", ret); return ret; } } else { SPS_DBG1(sps, "%s", "sps:relinquish bam dma clk.\n"); clk_disable_unprepare(sps->bamdma_clk); } return 0; } EXPORT_SYMBOL(sps_ctrl_bam_dma_clk); /** * Register a BAM device * */ int sps_register_bam_device(const struct sps_bam_props *bam_props, unsigned long *dev_handle) { struct sps_bam *bam = NULL; void *virt_addr = NULL; char bam_name[MAX_MSG_LEN]; u32 manage; int ok; int result; if (bam_props == NULL) { SPS_ERR(sps, "sps:%s:bam_props is NULL.\n", __func__); return SPS_ERROR; } else if (dev_handle == NULL) { SPS_ERR(sps, "sps:%s:device handle is NULL.\n", __func__); return SPS_ERROR; } if (sps == NULL) { pr_err("sps:%s:sps driver is not ready.\n", __func__); return -EPROBE_DEFER; } SPS_DBG3(sps, "sps:%s: Client requests to register BAM %pa.\n", __func__, &bam_props->phys_addr); /* BAM-DMA is registered internally during power-up */ if ((!sps->is_ready) && !(bam_props->options & SPS_BAM_OPT_BAMDMA)) { SPS_ERR(sps, "sps:%s:sps driver not ready.\n", __func__); return -EAGAIN; } /* Check BAM parameters */ manage = bam_props->manage & SPS_BAM_MGR_ACCESS_MASK; if (manage != SPS_BAM_MGR_NONE) { if (bam_props->virt_addr == NULL && bam_props->virt_size == 0) { SPS_ERR(sps, "sps:Invalid properties for BAM: %pa", &bam_props->phys_addr); return SPS_ERROR; } } if ((bam_props->manage & SPS_BAM_MGR_DEVICE_REMOTE) == 0) { /* BAM global is configured by local processor */ if (bam_props->summing_threshold == 0) { SPS_ERR(sps, "sps:Invalid device ctrl properties for " "BAM: %pa", &bam_props->phys_addr); return SPS_ERROR; } } manage = bam_props->manage & (SPS_BAM_MGR_PIPE_NO_CONFIG | SPS_BAM_MGR_PIPE_NO_CTRL); /* In case of error */ *dev_handle = SPS_DEV_HANDLE_INVALID; result = SPS_ERROR; mutex_lock(&sps->lock); /* Is this BAM already registered? */ bam = phy2bam(bam_props->phys_addr); if (bam != NULL) { mutex_unlock(&sps->lock); SPS_ERR(sps, "sps:BAM is already registered: %pa", &bam->props.phys_addr); result = -EEXIST; bam = NULL; /* Avoid error clean-up kfree(bam) */ goto exit_err; } /* Perform virtual mapping if required */ if ((bam_props->manage & SPS_BAM_MGR_ACCESS_MASK) != SPS_BAM_MGR_NONE && bam_props->virt_addr == NULL) { /* Map the memory region */ virt_addr = ioremap(bam_props->phys_addr, bam_props->virt_size); if (virt_addr == NULL) { SPS_ERR(sps, "sps:Unable to map BAM IO mem:%pa size:0x%x", &bam_props->phys_addr, bam_props->virt_size); goto exit_err; } } bam = kzalloc(sizeof(*bam), GFP_KERNEL); if (bam == NULL) { SPS_ERR(sps, "sps:Unable to allocate BAM device state: size 0x%zu", sizeof(*bam)); goto exit_err; } memset(bam, 0, sizeof(*bam)); mutex_init(&bam->lock); mutex_lock(&bam->lock); /* Copy configuration to BAM device descriptor */ bam->props = *bam_props; if (virt_addr != NULL) bam->props.virt_addr = virt_addr; snprintf(bam_name, sizeof(bam_name), "sps_bam_%pa_0", &bam->props.phys_addr); bam->ipc_log0 = ipc_log_context_create(SPS_IPC_LOGPAGES, bam_name, 0); if (!bam->ipc_log0) SPS_ERR(sps, "%s : unable to create IPC Logging 0 for bam %pa", __func__, &bam->props.phys_addr); snprintf(bam_name, sizeof(bam_name), "sps_bam_%pa_1", &bam->props.phys_addr); bam->ipc_log1 = ipc_log_context_create(SPS_IPC_LOGPAGES, bam_name, 0); if (!bam->ipc_log1) SPS_ERR(sps, "%s : unable to create IPC Logging 1 for bam %pa", __func__, &bam->props.phys_addr); snprintf(bam_name, sizeof(bam_name), "sps_bam_%pa_2", &bam->props.phys_addr); bam->ipc_log2 = ipc_log_context_create(SPS_IPC_LOGPAGES, bam_name, 0); if (!bam->ipc_log2) SPS_ERR(sps, "%s : unable to create IPC Logging 2 for bam %pa", __func__, &bam->props.phys_addr); snprintf(bam_name, sizeof(bam_name), "sps_bam_%pa_3", &bam->props.phys_addr); bam->ipc_log3 = ipc_log_context_create(SPS_IPC_LOGPAGES, bam_name, 0); if (!bam->ipc_log3) SPS_ERR(sps, "%s : unable to create IPC Logging 3 for bam %pa", __func__, &bam->props.phys_addr); snprintf(bam_name, sizeof(bam_name), "sps_bam_%pa_4", &bam->props.phys_addr); bam->ipc_log4 = ipc_log_context_create(SPS_IPC_LOGPAGES, bam_name, 0); if (!bam->ipc_log4) SPS_ERR(sps, "%s : unable to create IPC Logging 4 for bam %pa", __func__, &bam->props.phys_addr); if (bam_props->ipc_loglevel) bam->ipc_loglevel = bam_props->ipc_loglevel; else bam->ipc_loglevel = SPS_IPC_DEFAULT_LOGLEVEL; ok = sps_bam_device_init(bam); mutex_unlock(&bam->lock); if (ok) { SPS_ERR(bam, "sps:Fail to init BAM device: phys %pa", &bam->props.phys_addr); goto exit_err; } /* Add BAM to the list */ list_add_tail(&bam->list, &sps->bams_q); *dev_handle = (uintptr_t) bam; result = 0; exit_err: mutex_unlock(&sps->lock); if (result) { if (bam != NULL) { if (virt_addr != NULL) iounmap(bam->props.virt_addr); kfree(bam); } return result; } /* If this BAM is attached to a BAM-DMA, init the BAM-DMA device */ #ifdef CONFIG_SPS_SUPPORT_BAMDMA if ((bam->props.options & SPS_BAM_OPT_BAMDMA)) { if (sps_dma_device_init((uintptr_t) bam)) { bam->props.options &= ~SPS_BAM_OPT_BAMDMA; sps_deregister_bam_device((uintptr_t) bam); SPS_ERR(bam, "sps:Fail to init BAM-DMA BAM: phys %pa", &bam->props.phys_addr); return SPS_ERROR; } } #endif /* CONFIG_SPS_SUPPORT_BAMDMA */ SPS_INFO(bam, "sps:BAM %pa is registered.", &bam->props.phys_addr); return 0; } EXPORT_SYMBOL(sps_register_bam_device); /** * Deregister a BAM device * */ int sps_deregister_bam_device(unsigned long dev_handle) { struct sps_bam *bam; int n; if (dev_handle == 0) { SPS_ERR(sps, "sps:%s:device handle should not be 0.\n", __func__); return SPS_ERROR; } bam = sps_h2bam(dev_handle); if (bam == NULL) { SPS_ERR(sps, "sps:%s:did not find a BAM for this handle", __func__); return SPS_ERROR; } SPS_DBG3(sps, "sps:%s: SPS deregister BAM: phys %pa.", __func__, &bam->props.phys_addr); if (bam->props.options & SPS_BAM_HOLD_MEM) { for (n = 0; n < BAM_MAX_PIPES; n++) if (bam->desc_cache_pointers[n] != NULL) kfree(bam->desc_cache_pointers[n]); } /* If this BAM is attached to a BAM-DMA, init the BAM-DMA device */ #ifdef CONFIG_SPS_SUPPORT_BAMDMA if ((bam->props.options & SPS_BAM_OPT_BAMDMA)) { mutex_lock(&bam->lock); (void)sps_dma_device_de_init((uintptr_t) bam); bam->props.options &= ~SPS_BAM_OPT_BAMDMA; mutex_unlock(&bam->lock); } #endif /* Remove the BAM from the registration list */ mutex_lock(&sps->lock); list_del(&bam->list); mutex_unlock(&sps->lock); /* De-init the BAM and free resources */ mutex_lock(&bam->lock); sps_bam_device_de_init(bam); mutex_unlock(&bam->lock); ipc_log_context_destroy(bam->ipc_log1); ipc_log_context_destroy(bam->ipc_log2); if (bam->props.virt_size) (void)iounmap(bam->props.virt_addr); kfree(bam); return 0; } EXPORT_SYMBOL(sps_deregister_bam_device); /** * Get processed I/O vector (completed transfers) * */ int sps_get_iovec(struct sps_pipe *h, struct sps_iovec *iovec) { struct sps_pipe *pipe = h; struct sps_bam *bam; int result; if (h == NULL) { SPS_ERR(sps, "sps:%s:pipe is NULL.\n", __func__); return SPS_ERROR; } else if (iovec == NULL) { SPS_ERR(sps, "sps:%s:iovec pointer is NULL.\n", __func__); return SPS_ERROR; } bam = sps_bam_lock(pipe); if (bam == NULL) { SPS_ERR(sps, "sps:%s:BAM is not found by handle.\n", __func__); return SPS_ERROR; } SPS_DBG(bam, "sps:%s; BAM: %pa; pipe index:%d.\n", __func__, BAM_ID(bam), pipe->pipe_index); /* Get an iovec from the BAM pipe descriptor FIFO */ result = sps_bam_pipe_get_iovec(bam, pipe->pipe_index, iovec); sps_bam_unlock(bam); return result; } EXPORT_SYMBOL(sps_get_iovec); /** * Perform timer control * */ int sps_timer_ctrl(struct sps_pipe *h, struct sps_timer_ctrl *timer_ctrl, struct sps_timer_result *timer_result) { struct sps_pipe *pipe = h; struct sps_bam *bam; int result; if (h == NULL) { SPS_ERR(sps, "sps:%s:pipe is NULL.\n", __func__); return SPS_ERROR; } else if (timer_ctrl == NULL) { SPS_ERR(sps, "sps:%s:timer_ctrl pointer is NULL.\n", __func__); return SPS_ERROR; } else if (timer_result == NULL) { SPS_DBG(sps, "sps:%s:no result to return.\n", __func__); } bam = sps_bam_lock(pipe); if (bam == NULL) { SPS_ERR(sps, "sps:%s:BAM is not found by handle.\n", __func__); return SPS_ERROR; } SPS_DBG2(bam, "sps:%s; BAM: %pa; pipe index:%d.\n", __func__, BAM_ID(bam), pipe->pipe_index); /* Perform the BAM pipe timer control operation */ result = sps_bam_pipe_timer_ctrl(bam, pipe->pipe_index, timer_ctrl, timer_result); sps_bam_unlock(bam); return result; } EXPORT_SYMBOL(sps_timer_ctrl); /* * Reset a BAM pipe */ int sps_pipe_reset(unsigned long dev, u32 pipe) { struct sps_bam *bam; if (!dev) { SPS_ERR(sps, "sps:%s:BAM handle is NULL.\n", __func__); return SPS_ERROR; } if (pipe >= BAM_MAX_PIPES) { SPS_ERR(sps, "sps:%s:pipe index is invalid.\n", __func__); return SPS_ERROR; } bam = sps_h2bam(dev); if (bam == NULL) { SPS_ERR(sps, "sps:%s:BAM is not found by handle.\n", __func__); return SPS_ERROR; } SPS_DBG2(bam, "sps:%s; BAM: %pa; pipe index:%d.\n", __func__, BAM_ID(bam), pipe); bam_pipe_reset(&bam->base, pipe); return 0; } EXPORT_SYMBOL(sps_pipe_reset); /* * Disable a BAM pipe */ int sps_pipe_disable(unsigned long dev, u32 pipe) { struct sps_bam *bam; if (!dev) { SPS_ERR(sps, "sps:%s:BAM handle is NULL.\n", __func__); return SPS_ERROR; } if (pipe >= BAM_MAX_PIPES) { SPS_ERR(sps, "sps:%s:pipe index is invalid.\n", __func__); return SPS_ERROR; } bam = sps_h2bam(dev); if (bam == NULL) { SPS_ERR(sps, "sps:%s:BAM is not found by handle.\n", __func__); return SPS_ERROR; } SPS_DBG(bam, "sps:%s; BAM: %pa; pipe index:%d.\n", __func__, BAM_ID(bam), pipe); bam_disable_pipe(&bam->base, pipe); return 0; } EXPORT_SYMBOL(sps_pipe_disable); /* * Check pending descriptors in the descriptor FIFO * of a pipe */ int sps_pipe_pending_desc(unsigned long dev, u32 pipe, bool *pending) { struct sps_bam *bam; if (!dev) { SPS_ERR(sps, "sps:%s:BAM handle is NULL.\n", __func__); return SPS_ERROR; } if (pipe >= BAM_MAX_PIPES) { SPS_ERR(sps, "sps:%s:pipe index is invalid.\n", __func__); return SPS_ERROR; } if (!pending) { SPS_ERR(sps, "sps:%s:input flag is NULL.\n", __func__); return SPS_ERROR; } bam = sps_h2bam(dev); if (bam == NULL) { SPS_ERR(sps, "sps:%s:BAM is not found by handle.\n", __func__); return SPS_ERROR; } SPS_DBG(bam, "sps:%s; BAM: %pa; pipe index:%d.\n", __func__, BAM_ID(bam), pipe); *pending = sps_bam_pipe_pending_desc(bam, pipe); return 0; } EXPORT_SYMBOL(sps_pipe_pending_desc); /* * Process any pending IRQ of a BAM */ int sps_bam_process_irq(unsigned long dev) { struct sps_bam *bam; int ret = 0; if (!dev) { SPS_ERR(sps, "sps:%s:BAM handle is NULL.\n", __func__); return SPS_ERROR; } bam = sps_h2bam(dev); if (bam == NULL) { SPS_ERR(sps, "sps:%s:BAM is not found by handle.\n", __func__); return SPS_ERROR; } SPS_DBG1(bam, "sps:%s; BAM: %pa.\n", __func__, BAM_ID(bam)); ret = sps_bam_check_irq(bam); return ret; } EXPORT_SYMBOL(sps_bam_process_irq); /* * Get address info of a BAM */ int sps_get_bam_addr(unsigned long dev, phys_addr_t *base, u32 *size) { struct sps_bam *bam; if (!dev) { SPS_ERR(sps, "sps:%s:BAM handle is NULL.\n", __func__); return SPS_ERROR; } bam = sps_h2bam(dev); if (bam == NULL) { SPS_ERR(sps, "sps:%s:BAM is not found by handle.\n", __func__); return SPS_ERROR; } *base = bam->props.phys_addr; *size = bam->props.virt_size; SPS_DBG2(bam, "sps:%s; BAM: %pa; base:%pa; size:%d.\n", __func__, BAM_ID(bam), base, *size); return 0; } EXPORT_SYMBOL(sps_get_bam_addr); /* * Inject a ZLT with EOT for a BAM pipe */ int sps_pipe_inject_zlt(unsigned long dev, u32 pipe_index) { struct sps_bam *bam; int rc; if (!dev) { SPS_ERR(sps, "sps:%s:BAM handle is NULL.\n", __func__); return SPS_ERROR; } if (pipe_index >= BAM_MAX_PIPES) { SPS_ERR(sps, "sps:%s:pipe index is invalid.\n", __func__); return SPS_ERROR; } bam = sps_h2bam(dev); if (bam == NULL) { SPS_ERR(sps, "sps:%s:BAM is not found by handle.\n", __func__); return SPS_ERROR; } SPS_DBG(bam, "sps:%s; BAM: %pa; pipe index:%d.\n", __func__, BAM_ID(bam), pipe_index); rc = sps_bam_pipe_inject_zlt(bam, pipe_index); if (rc) SPS_ERR(bam, "sps:%s:failed to inject a ZLT.\n", __func__); return rc; } EXPORT_SYMBOL(sps_pipe_inject_zlt); /** * Allocate client state context * */ struct sps_pipe *sps_alloc_endpoint(void) { struct sps_pipe *ctx = NULL; SPS_DBG(sps, "sps:%s.", __func__); ctx = kzalloc(sizeof(struct sps_pipe), GFP_KERNEL); if (ctx == NULL) { SPS_ERR(sps, "sps:%s:Fail to allocate pipe context.", __func__); return NULL; } sps_client_init(ctx); return ctx; } EXPORT_SYMBOL(sps_alloc_endpoint); /** * Free client state context * */ int sps_free_endpoint(struct sps_pipe *ctx) { int res; SPS_DBG(sps, "sps:%s.", __func__); if (ctx == NULL) { SPS_ERR(sps, "sps:%s:pipe is NULL.\n", __func__); return SPS_ERROR; } res = sps_client_de_init(ctx); if (res == 0) kfree(ctx); return res; } EXPORT_SYMBOL(sps_free_endpoint); /** * Platform Driver. */ static int get_platform_data(struct platform_device *pdev) { struct resource *resource; struct msm_sps_platform_data *pdata; SPS_DBG3(sps, "sps:%s.", __func__); pdata = pdev->dev.platform_data; if (pdata == NULL) { SPS_ERR(sps, "sps:%s:inavlid platform data.\n", __func__); sps->bamdma_restricted_pipes = 0; return -EINVAL; } else { sps->bamdma_restricted_pipes = pdata->bamdma_restricted_pipes; SPS_DBG3(sps, "sps:bamdma_restricted_pipes=0x%x.\n", sps->bamdma_restricted_pipes); } resource = platform_get_resource_byname(pdev, IORESOURCE_MEM, "pipe_mem"); if (resource) { sps->pipemem_phys_base = resource->start; sps->pipemem_size = resource_size(resource); SPS_DBG3(sps, "sps:pipemem.base=%pa,size=0x%x.\n", &sps->pipemem_phys_base, sps->pipemem_size); } #ifdef CONFIG_SPS_SUPPORT_BAMDMA resource = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bamdma_bam"); if (resource) { sps->bamdma_bam_phys_base = resource->start; sps->bamdma_bam_size = resource_size(resource); SPS_DBG(sps, "sps:bamdma_bam.base=%pa,size=0x%x.", &sps->bamdma_bam_phys_base, sps->bamdma_bam_size); } resource = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bamdma_dma"); if (resource) { sps->bamdma_dma_phys_base = resource->start; sps->bamdma_dma_size = resource_size(resource); SPS_DBG(sps, "sps:bamdma_dma.base=%pa,size=0x%x.", &sps->bamdma_dma_phys_base, sps->bamdma_dma_size); } resource = platform_get_resource_byname(pdev, IORESOURCE_IRQ, "bamdma_irq"); if (resource) { sps->bamdma_irq = resource->start; SPS_DBG(sps, "sps:bamdma_irq=%d.", sps->bamdma_irq); } #endif return 0; } /** * Read data from device tree */ static int get_device_tree_data(struct platform_device *pdev) { #ifdef CONFIG_SPS_SUPPORT_BAMDMA struct resource *resource; SPS_DBG(sps, "sps:%s.", __func__); if (of_property_read_u32((&pdev->dev)->of_node, "qcom,bam-dma-res-pipes", &sps->bamdma_restricted_pipes)) SPS_DBG(sps, "sps:%s:No restricted bamdma pipes on this target.\n", __func__); else SPS_DBG(sps, "sps:bamdma_restricted_pipes=0x%x.", sps->bamdma_restricted_pipes); resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (resource) { sps->bamdma_bam_phys_base = resource->start; sps->bamdma_bam_size = resource_size(resource); SPS_DBG(sps, "sps:bamdma_bam.base=%pa,size=0x%x.", &sps->bamdma_bam_phys_base, sps->bamdma_bam_size); } else { SPS_ERR(sps, "sps:%s:BAM DMA BAM mem unavailable.", __func__); return -ENODEV; } resource = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (resource) { sps->bamdma_dma_phys_base = resource->start; sps->bamdma_dma_size = resource_size(resource); SPS_DBG(sps, "sps:bamdma_dma.base=%pa,size=0x%x.", &sps->bamdma_dma_phys_base, sps->bamdma_dma_size); } else { SPS_ERR(sps, "sps:%s:BAM DMA mem unavailable.", __func__); return -ENODEV; } resource = platform_get_resource(pdev, IORESOURCE_MEM, 2); if (resource) { imem = true; sps->pipemem_phys_base = resource->start; sps->pipemem_size = resource_size(resource); SPS_DBG(sps, "sps:pipemem.base=%pa,size=0x%x.", &sps->pipemem_phys_base, sps->pipemem_size); } else { imem = false; SPS_DBG(sps, "sps:%s:No pipe memory on this target.\n", __func__); } resource = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (resource) { sps->bamdma_irq = resource->start; SPS_DBG(sps, "sps:bamdma_irq=%d.", sps->bamdma_irq); } else { SPS_ERR(sps, "sps:%s:BAM DMA IRQ unavailable.", __func__); return -ENODEV; } #endif if (of_property_read_u32((&pdev->dev)->of_node, "qcom,device-type", &d_type)) { d_type = 3; SPS_DBG3(sps, "sps:default device type %d.\n", d_type); } else SPS_DBG3(sps, "sps:device type is %d.", d_type); enhd_pipe = of_property_read_bool((&pdev->dev)->of_node, "qcom,pipe-attr-ee"); SPS_DBG3(sps, "sps:PIPE_ATTR_EE is %s supported.\n", (enhd_pipe ? "" : "not")); return 0; } static struct of_device_id msm_sps_match[] = { { .compatible = "qcom,msm_sps", .data = &bam_types[SPS_BAM_NDP] }, { .compatible = "qcom,msm_sps_4k", .data = &bam_types[SPS_BAM_NDP_4K] }, {} }; static int msm_sps_probe(struct platform_device *pdev) { int ret = -ENODEV; SPS_DBG3(sps, "sps:%s.", __func__); if (pdev->dev.of_node) { const struct of_device_id *match; if (get_device_tree_data(pdev)) { SPS_ERR(sps, "sps:%s:Fail to get data from device tree.", __func__); return -ENODEV; } else SPS_DBG(sps, "%s", "sps:get data from device tree."); match = of_match_device(msm_sps_match, &pdev->dev); if (match) { bam_type = *((enum sps_bam_type *)(match->data)); SPS_DBG3(sps, "sps:BAM type is:%d\n", bam_type); } else { bam_type = SPS_BAM_NDP; SPS_DBG3(sps, "sps:use default BAM type:%d\n", bam_type); } } else { d_type = 0; if (get_platform_data(pdev)) { SPS_ERR(sps, "sps:%s:Fail to get platform data.", __func__); return -ENODEV; } else SPS_DBG(sps, "%s", "sps:get platform data."); bam_type = SPS_BAM_LEGACY; } /* Create Device */ sps->dev_class = class_create(THIS_MODULE, SPS_DRV_NAME); ret = alloc_chrdev_region(&sps->dev_num, 0, 1, SPS_DRV_NAME); if (ret) { SPS_ERR(sps, "sps:%s:alloc_chrdev_region err.", __func__); goto alloc_chrdev_region_err; } sps->dev = device_create(sps->dev_class, NULL, sps->dev_num, sps, SPS_DRV_NAME); if (IS_ERR(sps->dev)) { SPS_ERR(sps, "sps:%s:device_create err.", __func__); goto device_create_err; } if (pdev->dev.of_node) sps->dev->of_node = pdev->dev.of_node; if (!d_type) { sps->pmem_clk = clk_get(sps->dev, "mem_clk"); if (IS_ERR(sps->pmem_clk)) { if (PTR_ERR(sps->pmem_clk) == -EPROBE_DEFER) ret = -EPROBE_DEFER; else SPS_ERR(sps, "sps:%s:fail to get pmem_clk.", __func__); goto pmem_clk_err; } else { ret = clk_prepare_enable(sps->pmem_clk); if (ret) { SPS_ERR(sps, "sps:%s:failed to enable pmem_clk.", __func__); goto pmem_clk_en_err; } } } #ifdef CONFIG_SPS_SUPPORT_BAMDMA sps->dfab_clk = clk_get(sps->dev, "dfab_clk"); if (IS_ERR(sps->dfab_clk)) { if (PTR_ERR(sps->dfab_clk) == -EPROBE_DEFER) ret = -EPROBE_DEFER; else SPS_ERR(sps, "sps:%s:fail to get dfab_clk.", __func__); goto dfab_clk_err; } else { ret = clk_set_rate(sps->dfab_clk, 64000000); if (ret) { SPS_ERR(sps, "sps:%s:failed to set dfab_clk rate.", __func__); clk_put(sps->dfab_clk); goto dfab_clk_err; } } sps->bamdma_clk = clk_get(sps->dev, "dma_bam_pclk"); if (IS_ERR(sps->bamdma_clk)) { if (PTR_ERR(sps->bamdma_clk) == -EPROBE_DEFER) ret = -EPROBE_DEFER; else SPS_ERR(sps, "sps:%s:fail to get bamdma_clk.", __func__); clk_put(sps->dfab_clk); goto dfab_clk_err; } else { ret = clk_prepare_enable(sps->bamdma_clk); if (ret) { SPS_ERR(sps, "sps:failed to enable bamdma_clk. ret=%d", ret); clk_put(sps->bamdma_clk); clk_put(sps->dfab_clk); goto dfab_clk_err; } } ret = clk_prepare_enable(sps->dfab_clk); if (ret) { SPS_ERR(sps, "sps:failed to enable dfab_clk. ret=%d", ret); clk_disable_unprepare(sps->bamdma_clk); clk_put(sps->bamdma_clk); clk_put(sps->dfab_clk); goto dfab_clk_err; } #endif ret = sps_device_init(); if (ret) { SPS_ERR(sps, "sps:%s:sps_device_init err.", __func__); #ifdef CONFIG_SPS_SUPPORT_BAMDMA clk_disable_unprepare(sps->dfab_clk); clk_disable_unprepare(sps->bamdma_clk); clk_put(sps->bamdma_clk); clk_put(sps->dfab_clk); #endif goto dfab_clk_err; } #ifdef CONFIG_SPS_SUPPORT_BAMDMA clk_disable_unprepare(sps->dfab_clk); clk_disable_unprepare(sps->bamdma_clk); #endif sps->is_ready = true; SPS_INFO(sps, "%s", "sps:sps is ready.\n"); return 0; dfab_clk_err: if (!d_type) clk_disable_unprepare(sps->pmem_clk); pmem_clk_en_err: if (!d_type) clk_put(sps->pmem_clk); pmem_clk_err: device_destroy(sps->dev_class, sps->dev_num); device_create_err: unregister_chrdev_region(sps->dev_num, 1); alloc_chrdev_region_err: class_destroy(sps->dev_class); return ret; } static int msm_sps_remove(struct platform_device *pdev) { SPS_DBG3(sps, "sps:%s.\n", __func__); device_destroy(sps->dev_class, sps->dev_num); unregister_chrdev_region(sps->dev_num, 1); class_destroy(sps->dev_class); sps_device_de_init(); clk_put(sps->dfab_clk); if (!d_type) clk_put(sps->pmem_clk); clk_put(sps->bamdma_clk); return 0; } static struct platform_driver msm_sps_driver = { .probe = msm_sps_probe, .driver = { .name = SPS_DRV_NAME, .owner = THIS_MODULE, .of_match_table = msm_sps_match, .suppress_bind_attrs = true, }, .remove = msm_sps_remove, }; /** * Module Init. */ static int __init sps_init(void) { int ret; #ifdef CONFIG_DEBUG_FS sps_debugfs_init(); #endif pr_debug("sps:%s.", __func__); /* Allocate the SPS driver state struct */ sps = kzalloc(sizeof(*sps), GFP_KERNEL); if (sps == NULL) return -ENOMEM; sps->ipc_log0 = ipc_log_context_create(SPS_IPC_LOGPAGES, "sps_ipc_log0", 0); if (!sps->ipc_log0) #ifdef CONFIG_IPC_LOGGING pr_err("Failed to create IPC log0\n"); #else pr_err("IPC logging disabled\n"); #endif sps->ipc_log1 = ipc_log_context_create(SPS_IPC_LOGPAGES, "sps_ipc_log1", 0); if (!sps->ipc_log1) #ifdef CONFIG_IPC_LOGGING pr_err("Failed to create IPC log1\n"); #else pr_err("IPC logging disabled\n"); #endif sps->ipc_log2 = ipc_log_context_create(SPS_IPC_LOGPAGES, "sps_ipc_log2", 0); if (!sps->ipc_log2) #ifdef CONFIG_IPC_LOGGING pr_err("Failed to create IPC log2\n"); #else pr_err("IPC logging disabled\n"); #endif sps->ipc_log3 = ipc_log_context_create(SPS_IPC_LOGPAGES, "sps_ipc_log3", 0); if (!sps->ipc_log3) #ifdef CONFIG_IPC_LOGGING pr_err("Failed to create IPC log3\n"); #else pr_err("IPC logging disabled\n"); #endif sps->ipc_log4 = ipc_log_context_create(SPS_IPC_LOGPAGES * SPS_IPC_REG_DUMP_FACTOR, "sps_ipc_log4", 0); if (!sps->ipc_log4) #ifdef CONFIG_IPC_LOGGING pr_err("Failed to create IPC log4\n"); #else pr_err("IPC logging disabled\n"); #endif ret = platform_driver_register(&msm_sps_driver); return ret; } /** * Module Exit. */ static void __exit sps_exit(void) { pr_debug("sps:%s.", __func__); platform_driver_unregister(&msm_sps_driver); if (sps != NULL) { kfree(sps); sps = NULL; } #ifdef CONFIG_DEBUG_FS sps_debugfs_exit(); #endif } arch_initcall(sps_init); module_exit(sps_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Smart Peripheral Switch (SPS)");