/* Copyright (c) 2014-2017, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "glink_core_if.h" #include "glink_private.h" #include "glink_xprt_if.h" /* Number of internal IPC Logging log pages */ #define NUM_LOG_PAGES 10 #define GLINK_PM_QOS_HOLDOFF_MS 10 #define GLINK_QOS_DEF_NUM_TOKENS 10 #define GLINK_QOS_DEF_NUM_PRIORITY 1 #define GLINK_QOS_DEF_MTU 2048 #define GLINK_KTHREAD_PRIO 1 /** * struct glink_qos_priority_bin - Packet Scheduler's priority bucket * @max_rate_kBps: Maximum rate supported by the priority bucket. * @power_state: Transport power state for this priority bin. * @tx_ready: List of channels ready for tx in the priority bucket. * @active_ch_cnt: Active channels of this priority. */ struct glink_qos_priority_bin { unsigned long max_rate_kBps; uint32_t power_state; struct list_head tx_ready; uint32_t active_ch_cnt; }; /** * struct glink_core_xprt_ctx - transport representation structure * @xprt_state_lhb0: controls read/write access to transport state * @list_node: used to chain this transport in a global * transport list * @name: name of this transport * @edge: what this transport connects to * @id: the id to use for channel migration * @versions: array of transport versions this implementation * supports * @versions_entries: number of entries in @versions * @local_version_idx: local version index into @versions this * transport is currently running * @remote_version_idx: remote version index into @versions this * transport is currently running * @l_features: Features negotiated by the local side * @capabilities: Capabilities of underlying transport * @ops: transport defined implementation of common * operations * @local_state: value from local_channel_state_e representing * the local state of this transport * @remote_neg_completed: is the version negotiation with the remote end * completed * @xprt_ctx_lock_lhb1 lock to protect @next_lcid and @channels * @next_lcid: logical channel identifier to assign to the next * created channel * @max_cid: maximum number of channel identifiers supported * @max_iid: maximum number of intent identifiers supported * @tx_kwork: work item to process @tx_ready * @tx_wq: workqueue to run @tx_kwork * @tx_task: handle to the running kthread * @channels: list of all existing channels on this transport * @dummy_in_use: True when channels are being migrated to dummy. * @notified: list holds channels during dummy xprt cleanup. * @mtu: MTU supported by this transport. * @token_count: Number of tokens to be assigned per assignment. * @curr_qos_rate_kBps: Aggregate of currently supported QoS requests. * @threshold_rate_kBps: Maximum Rate allocated for QoS traffic. * @num_priority: Number of priority buckets in the transport. * @tx_ready_lock_lhb3: lock to protect @tx_ready * @active_high_prio: Highest priority of active channels. * @prio_bin: Pointer to priority buckets. * @pm_qos_req: power management QoS request for TX path * @qos_req_active: a vote is active with the PM QoS system * @tx_path_activity: transmit activity has occurred * @pm_qos_work: removes PM QoS vote due to inactivity * @xprt_dbgfs_lock_lhb4: debugfs channel structure lock * @log_ctx: IPC logging context for this transport. */ struct glink_core_xprt_ctx { struct rwref_lock xprt_state_lhb0; struct list_head list_node; char name[GLINK_NAME_SIZE]; char edge[GLINK_NAME_SIZE]; uint16_t id; const struct glink_core_version *versions; size_t versions_entries; uint32_t local_version_idx; uint32_t remote_version_idx; uint32_t l_features; uint32_t capabilities; struct glink_transport_if *ops; enum transport_state_e local_state; bool remote_neg_completed; spinlock_t xprt_ctx_lock_lhb1; struct list_head channels; uint32_t next_lcid; struct list_head free_lcid_list; struct list_head notified; bool dummy_in_use; uint32_t max_cid; uint32_t max_iid; struct kthread_work tx_kwork; struct kthread_worker tx_wq; struct task_struct *tx_task; size_t mtu; uint32_t token_count; unsigned long curr_qos_rate_kBps; unsigned long threshold_rate_kBps; uint32_t num_priority; spinlock_t tx_ready_lock_lhb3; uint32_t active_high_prio; struct glink_qos_priority_bin *prio_bin; struct pm_qos_request pm_qos_req; bool qos_req_active; bool tx_path_activity; struct delayed_work pm_qos_work; struct glink_core_edge_ctx *edge_ctx; struct mutex xprt_dbgfs_lock_lhb4; void *log_ctx; }; /** * Edge Context * @list_node edge list node used by edge list * @name: name of the edge * @edge_migration_lock:mutex lock for migration over edge * @edge_ref_lock: lock for reference count */ struct glink_core_edge_ctx { struct list_head list_node; char name[GLINK_NAME_SIZE]; struct mutex edge_migration_lock_lhd2; struct rwref_lock edge_ref_lock_lhd1; }; static LIST_HEAD(edge_list); static DEFINE_MUTEX(edge_list_lock_lhd0); /** * Channel Context * @xprt_state_lhb0: controls read/write access to channel state * @port_list_node: channel list node used by transport "channels" list * @tx_ready_list_node: channels that have data ready to transmit * @name: name of the channel * * @user_priv: user opaque data type passed into glink_open() * @notify_rx: RX notification function * @notify_tx_done: TX-done notification function (remote side is done) * @notify_state: Channel state (connected / disconnected) notifications * @notify_rx_intent_req: Request from remote side for an intent * @notify_rxv: RX notification function (for io buffer chain) * @notify_rx_sigs: RX signal change notification * @notify_rx_abort: Channel close RX Intent aborted * @notify_tx_abort: Channel close TX aborted * @notify_rx_tracer_pkt: Receive notification for tracer packet * @notify_remote_rx_intent: Receive notification for remote-queued RX intent * * @transport_ptr: Transport this channel uses * @lcid: Local channel ID * @rcid: Remote channel ID * @local_open_state: Local channel state * @remote_opened: Remote channel state (opened or closed) * @int_req_ack: Remote side intent request ACK state * @int_req_ack_complete: Intent tracking completion - received remote ACK * @int_req_complete: Intent tracking completion - received intent * @rx_intent_req_timeout_jiffies: Timeout for requesting an RX intent, in * jiffies; if set to 0, timeout is infinite * * @local_rx_intent_lst_lock_lhc1: RX intent list lock * @local_rx_intent_list: Active RX Intents queued by client * @local_rx_intent_ntfy_list: Client notified, waiting for rx_done() * @local_rx_intent_free_list: Available intent container structure * * @rmt_rx_intent_lst_lock_lhc2: Remote RX intent list lock * @rmt_rx_intent_list: Remote RX intent list * * @max_used_liid: Maximum Local Intent ID used * @dummy_riid: Dummy remote intent ID * * @tx_lists_lock_lhc3: TX list lock * @tx_active: Ready to transmit * * @tx_pending_rmt_done_lock_lhc4: Remote-done list lock * @tx_pending_remote_done: Transmitted, waiting for remote done * @lsigs: Local signals * @rsigs: Remote signals * @pending_delete: waiting for channel to be deleted * @no_migrate: The local client does not want to * migrate transports * @local_xprt_req: The transport the local side requested * @local_xprt_resp: The response to @local_xprt_req * @remote_xprt_req: The transport the remote side requested * @remote_xprt_resp: The response to @remote_xprt_req * @curr_priority: Channel's current priority. * @initial_priority: Channel's initial priority. * @token_count: Tokens for consumption by packet. * @txd_len: Transmitted data size in the current * token assignment cycle. * @token_start_time: Time at which tokens are assigned. * @req_rate_kBps: Current QoS request by the channel. * @tx_intent_cnt: Intent count to transmit soon in future. * @tx_cnt: Packets to be picked by tx scheduler. */ struct channel_ctx { struct rwref_lock ch_state_lhb2; struct list_head port_list_node; struct list_head tx_ready_list_node; char name[GLINK_NAME_SIZE]; /* user info */ void *user_priv; void (*notify_rx)(void *handle, const void *priv, const void *pkt_priv, const void *ptr, size_t size); void (*notify_tx_done)(void *handle, const void *priv, const void *pkt_priv, const void *ptr); void (*notify_state)(void *handle, const void *priv, unsigned event); bool (*notify_rx_intent_req)(void *handle, const void *priv, size_t req_size); void (*notify_rxv)(void *handle, const void *priv, const void *pkt_priv, void *iovec, size_t size, void * (*vbuf_provider)(void *iovec, size_t offset, size_t *size), void * (*pbuf_provider)(void *iovec, size_t offset, size_t *size)); void (*notify_rx_sigs)(void *handle, const void *priv, uint32_t old_sigs, uint32_t new_sigs); void (*notify_rx_abort)(void *handle, const void *priv, const void *pkt_priv); void (*notify_tx_abort)(void *handle, const void *priv, const void *pkt_priv); void (*notify_rx_tracer_pkt)(void *handle, const void *priv, const void *pkt_priv, const void *ptr, size_t size); void (*notify_remote_rx_intent)(void *handle, const void *priv, size_t size); /* internal port state */ struct glink_core_xprt_ctx *transport_ptr; uint32_t lcid; uint32_t rcid; enum local_channel_state_e local_open_state; bool remote_opened; bool int_req_ack; struct completion int_req_ack_complete; struct completion int_req_complete; unsigned long rx_intent_req_timeout_jiffies; spinlock_t local_rx_intent_lst_lock_lhc1; struct list_head local_rx_intent_list; struct list_head local_rx_intent_ntfy_list; struct list_head local_rx_intent_free_list; spinlock_t rmt_rx_intent_lst_lock_lhc2; struct list_head rmt_rx_intent_list; uint32_t max_used_liid; uint32_t dummy_riid; spinlock_t tx_lists_lock_lhc3; struct list_head tx_active; spinlock_t tx_pending_rmt_done_lock_lhc4; struct list_head tx_pending_remote_done; uint32_t lsigs; uint32_t rsigs; bool pending_delete; bool no_migrate; uint16_t local_xprt_req; uint16_t local_xprt_resp; uint16_t remote_xprt_req; uint16_t remote_xprt_resp; uint32_t curr_priority; uint32_t initial_priority; uint32_t token_count; size_t txd_len; unsigned long token_start_time; unsigned long req_rate_kBps; uint32_t tx_intent_cnt; uint32_t tx_cnt; }; static struct glink_core_if core_impl; static void *log_ctx; static unsigned glink_debug_mask = QCOM_GLINK_INFO; module_param_named(debug_mask, glink_debug_mask, uint, S_IRUGO | S_IWUSR | S_IWGRP); static unsigned glink_pm_qos; module_param_named(pm_qos_enable, glink_pm_qos, uint, S_IRUGO | S_IWUSR | S_IWGRP); static LIST_HEAD(transport_list); /* * Used while notifying the clients about link state events. Since the clients * need to store the callback information temporarily and since all the * existing accesses to transport list are in non-IRQ context, defining the * transport_list_lock as a mutex. */ static DEFINE_MUTEX(transport_list_lock_lha0); struct link_state_notifier_info { struct list_head list; char transport[GLINK_NAME_SIZE]; char edge[GLINK_NAME_SIZE]; void (*glink_link_state_notif_cb)( struct glink_link_state_cb_info *cb_info, void *priv); void *priv; }; static LIST_HEAD(link_state_notifier_list); static DEFINE_MUTEX(link_state_notifier_lock_lha1); static struct glink_core_xprt_ctx *find_open_transport(const char *edge, const char *name, bool initial_xprt, uint16_t *best_id); static bool xprt_is_fully_opened(struct glink_core_xprt_ctx *xprt); static struct channel_ctx *xprt_lcid_to_ch_ctx_get( struct glink_core_xprt_ctx *xprt_ctx, uint32_t lcid); static struct channel_ctx *xprt_rcid_to_ch_ctx_get( struct glink_core_xprt_ctx *xprt_ctx, uint32_t rcid); static void xprt_schedule_tx(struct glink_core_xprt_ctx *xprt_ptr, struct channel_ctx *ch_ptr, struct glink_core_tx_pkt *tx_info); static int xprt_single_threaded_tx(struct glink_core_xprt_ctx *xprt_ptr, struct channel_ctx *ch_ptr, struct glink_core_tx_pkt *tx_info); static void tx_func(struct kthread_work *work); static struct channel_ctx *ch_name_to_ch_ctx_create( struct glink_core_xprt_ctx *xprt_ctx, const char *name); static void ch_push_remote_rx_intent(struct channel_ctx *ctx, size_t size, uint32_t riid, void *cookie); static int ch_pop_remote_rx_intent(struct channel_ctx *ctx, size_t size, uint32_t *riid_ptr, size_t *intent_size, void **cookie); static struct glink_core_rx_intent *ch_push_local_rx_intent( struct channel_ctx *ctx, const void *pkt_priv, size_t size); static void ch_remove_local_rx_intent(struct channel_ctx *ctx, uint32_t liid); static struct glink_core_rx_intent *ch_get_local_rx_intent( struct channel_ctx *ctx, uint32_t liid); static void ch_set_local_rx_intent_notified(struct channel_ctx *ctx, struct glink_core_rx_intent *intent_ptr); static struct glink_core_rx_intent *ch_get_local_rx_intent_notified( struct channel_ctx *ctx, const void *ptr); static void ch_remove_local_rx_intent_notified(struct channel_ctx *ctx, struct glink_core_rx_intent *liid_ptr, bool reuse); static struct glink_core_rx_intent *ch_get_free_local_rx_intent( struct channel_ctx *ctx); static void ch_purge_intent_lists(struct channel_ctx *ctx); static void ch_add_rcid(struct glink_core_xprt_ctx *xprt_ctx, struct channel_ctx *ctx, uint32_t rcid); static bool ch_is_fully_opened(struct channel_ctx *ctx); static bool ch_is_fully_closed(struct channel_ctx *ctx); struct glink_core_tx_pkt *ch_get_tx_pending_remote_done(struct channel_ctx *ctx, uint32_t riid); static void ch_remove_tx_pending_remote_done(struct channel_ctx *ctx, struct glink_core_tx_pkt *tx_pkt); static void glink_core_rx_cmd_rx_intent_req_ack(struct glink_transport_if *if_ptr, uint32_t rcid, bool granted); static bool glink_core_remote_close_common(struct channel_ctx *ctx, bool safe); static void check_link_notifier_and_notify(struct glink_core_xprt_ctx *xprt_ptr, enum glink_link_state link_state); static void glink_core_channel_cleanup(struct glink_core_xprt_ctx *xprt_ptr); static void glink_pm_qos_vote(struct glink_core_xprt_ctx *xprt_ptr); static void glink_pm_qos_unvote(struct glink_core_xprt_ctx *xprt_ptr); static void glink_pm_qos_cancel_worker(struct work_struct *work); static bool ch_update_local_state(struct channel_ctx *ctx, enum local_channel_state_e lstate); static bool ch_update_rmt_state(struct channel_ctx *ctx, bool rstate); static void glink_core_deinit_xprt_qos_cfg( struct glink_core_xprt_ctx *xprt_ptr); #define glink_prio_to_power_state(xprt_ctx, priority) \ ((xprt_ctx)->prio_bin[priority].power_state) #define GLINK_GET_CH_TX_STATE(ctx) \ ((ctx)->tx_intent_cnt || (ctx)->tx_cnt) static int glink_get_ch_ctx(struct channel_ctx *ctx) { if (!ctx) return -EINVAL; rwref_get(&ctx->ch_state_lhb2); return 0; } static void glink_put_ch_ctx(struct channel_ctx *ctx) { rwref_put(&ctx->ch_state_lhb2); } int glink_reinit_ssr(const char *subsystem) { int ret = 0; bool transport_found = false; struct glink_core_xprt_ctx *xprt_ctx = NULL; mutex_lock(&transport_list_lock_lha0); list_for_each_entry(xprt_ctx, &transport_list, list_node) { if (!strcmp(subsystem, xprt_ctx->edge)) { xprt_ctx->ops->reinit_ssr(xprt_ctx->ops); transport_found = true; } } mutex_unlock(&transport_list_lock_lha0); if (!transport_found) ret = -ENODEV; return ret; } /** * glink_ssr() - Clean up locally for SSR by simulating remote close * @subsystem: The name of the subsystem being restarted * * Call into the transport using the ssr(if_ptr) function to allow it to * clean up any necessary structures, then simulate a remote close from * subsystem for all channels on that edge. * * Return: Standard error codes. */ int glink_ssr(const char *subsystem) { int ret = 0; bool transport_found = false; struct glink_core_xprt_ctx *xprt_ctx = NULL; struct channel_ctx *ch_ctx, *temp_ch_ctx; uint32_t i; unsigned long flags; mutex_lock(&transport_list_lock_lha0); list_for_each_entry(xprt_ctx, &transport_list, list_node) { if (!strcmp(subsystem, xprt_ctx->edge) && xprt_is_fully_opened(xprt_ctx)) { GLINK_INFO_XPRT(xprt_ctx, "%s: SSR\n", __func__); spin_lock_irqsave(&xprt_ctx->tx_ready_lock_lhb3, flags); for (i = 0; i < xprt_ctx->num_priority; i++) list_for_each_entry_safe(ch_ctx, temp_ch_ctx, &xprt_ctx->prio_bin[i].tx_ready, tx_ready_list_node) list_del_init( &ch_ctx->tx_ready_list_node); spin_unlock_irqrestore(&xprt_ctx->tx_ready_lock_lhb3, flags); xprt_ctx->ops->ssr(xprt_ctx->ops); transport_found = true; } } mutex_unlock(&transport_list_lock_lha0); if (!transport_found) ret = -ENODEV; return ret; } EXPORT_SYMBOL(glink_ssr); /** * glink_core_ch_close_ack_common() - handles the common operations during * close ack. * @ctx: Pointer to channel instance. * @is_safe: Is function called while holding ctx lock * * Return: True if the channel is fully closed after the state change, * false otherwise. */ static bool glink_core_ch_close_ack_common(struct channel_ctx *ctx, bool safe) { bool is_fully_closed; if (ctx == NULL) return false; if (safe) { ctx->local_open_state = GLINK_CHANNEL_CLOSED; is_fully_closed = ch_is_fully_closed(ctx); } else { is_fully_closed = ch_update_local_state(ctx, GLINK_CHANNEL_CLOSED); } GLINK_INFO_PERF_CH(ctx, "%s: local:GLINK_CHANNEL_CLOSING->GLINK_CHANNEL_CLOSED\n", __func__); if (ctx->notify_state) { ctx->notify_state(ctx, ctx->user_priv, GLINK_LOCAL_DISCONNECTED); ch_purge_intent_lists(ctx); GLINK_INFO_PERF_CH(ctx, "%s: notify state: GLINK_LOCAL_DISCONNECTED\n", __func__); } return is_fully_closed; } /** * glink_core_remote_close_common() - Handles the common operations during * a remote close. * @ctx: Pointer to channel instance. * @safe: Is function called with ctx rwref lock already acquired. * Return: True if the channel is fully closed after the state change, * false otherwise. */ static bool glink_core_remote_close_common(struct channel_ctx *ctx, bool safe) { bool is_fully_closed; if (ctx == NULL) return false; if (safe) { ctx->remote_opened = false; is_fully_closed = ch_is_fully_closed(ctx); } else { is_fully_closed = ch_update_rmt_state(ctx, false); } ctx->rcid = 0; if (ctx->local_open_state != GLINK_CHANNEL_CLOSED && ctx->local_open_state != GLINK_CHANNEL_CLOSING) { if (ctx->notify_state) ctx->notify_state(ctx, ctx->user_priv, GLINK_REMOTE_DISCONNECTED); GLINK_INFO_CH(ctx, "%s: %s: GLINK_REMOTE_DISCONNECTED\n", __func__, "notify state"); } if (ctx->local_open_state == GLINK_CHANNEL_CLOSED) GLINK_INFO_CH(ctx, "%s: %s, %s\n", __func__, "Did not send GLINK_REMOTE_DISCONNECTED", "local state is already CLOSED"); ctx->int_req_ack = false; complete_all(&ctx->int_req_ack_complete); complete_all(&ctx->int_req_complete); ch_purge_intent_lists(ctx); return is_fully_closed; } /** * glink_qos_calc_rate_kBps() - Calculate the transmit rate in kBps * @pkt_size: Worst case packet size per transmission. * @interval_us: Packet transmit interval in us. * * This function is used to calculate the rate of transmission rate of * a channel in kBps. * * Return: Transmission rate in kBps. */ static unsigned long glink_qos_calc_rate_kBps(size_t pkt_size, unsigned long interval_us) { unsigned long rate_kBps, rem; rate_kBps = pkt_size * USEC_PER_SEC; rem = do_div(rate_kBps, (interval_us * 1024)); return rate_kBps; } /** * glink_qos_check_feasibility() - Feasibility test on a QoS Request * @xprt_ctx: Transport in which the QoS request is made. * @req_rate_kBps: QoS Request. * * This function is used to perform the schedulability test on a QoS request * over a specific transport. * * Return: 0 on success, standard Linux error codes on failure. */ static int glink_qos_check_feasibility(struct glink_core_xprt_ctx *xprt_ctx, unsigned long req_rate_kBps) { unsigned long new_rate_kBps; if (xprt_ctx->num_priority == GLINK_QOS_DEF_NUM_PRIORITY) return -EOPNOTSUPP; new_rate_kBps = xprt_ctx->curr_qos_rate_kBps + req_rate_kBps; if (new_rate_kBps > xprt_ctx->threshold_rate_kBps) { GLINK_ERR_XPRT(xprt_ctx, "New_rate(%lu + %lu) > threshold_rate(%lu)\n", xprt_ctx->curr_qos_rate_kBps, req_rate_kBps, xprt_ctx->threshold_rate_kBps); return -EBUSY; } return 0; } /** * glink_qos_update_ch_prio() - Update the channel priority * @ctx: Channel context whose priority is updated. * @new_priority: New priority of the channel. * * This function is called to update the channel priority during QoS request, * QoS Cancel or Priority evaluation by packet scheduler. This function must * be called with transport's tx_ready_lock_lhb3 lock and channel's * tx_lists_lock_lhc3 locked. */ static void glink_qos_update_ch_prio(struct channel_ctx *ctx, uint32_t new_priority) { uint32_t old_priority; if (unlikely(!ctx)) return; old_priority = ctx->curr_priority; if (!list_empty(&ctx->tx_ready_list_node)) { ctx->transport_ptr->prio_bin[old_priority].active_ch_cnt--; list_move(&ctx->tx_ready_list_node, &ctx->transport_ptr->prio_bin[new_priority].tx_ready); ctx->transport_ptr->prio_bin[new_priority].active_ch_cnt++; } ctx->curr_priority = new_priority; } /** * glink_qos_assign_priority() - Assign priority to a channel * @ctx: Channel for which the priority has to be assigned. * @req_rate_kBps: QoS request by the channel. * * This function is used to assign a priority to the channel depending on its * QoS Request. * * Return: 0 on success, standard Linux error codes on failure. */ static int glink_qos_assign_priority(struct channel_ctx *ctx, unsigned long req_rate_kBps) { int ret; uint32_t i; unsigned long flags; spin_lock_irqsave(&ctx->transport_ptr->tx_ready_lock_lhb3, flags); if (ctx->req_rate_kBps) { spin_unlock_irqrestore(&ctx->transport_ptr->tx_ready_lock_lhb3, flags); GLINK_ERR_CH(ctx, "%s: QoS Request already exists\n", __func__); return -EINVAL; } ret = glink_qos_check_feasibility(ctx->transport_ptr, req_rate_kBps); if (ret < 0) { spin_unlock_irqrestore(&ctx->transport_ptr->tx_ready_lock_lhb3, flags); return ret; } spin_lock(&ctx->tx_lists_lock_lhc3); i = ctx->transport_ptr->num_priority - 1; while (i > 0 && ctx->transport_ptr->prio_bin[i-1].max_rate_kBps >= req_rate_kBps) i--; ctx->initial_priority = i; glink_qos_update_ch_prio(ctx, i); ctx->req_rate_kBps = req_rate_kBps; if (i > 0) { ctx->transport_ptr->curr_qos_rate_kBps += req_rate_kBps; ctx->token_count = ctx->transport_ptr->token_count; ctx->txd_len = 0; ctx->token_start_time = arch_counter_get_cntpct(); } spin_unlock(&ctx->tx_lists_lock_lhc3); spin_unlock_irqrestore(&ctx->transport_ptr->tx_ready_lock_lhb3, flags); return 0; } /** * glink_qos_reset_priority() - Reset the channel priority * @ctx: Channel for which the priority is reset. * * This function is used to reset the channel priority when the QoS request * is cancelled by the channel. * * Return: 0 on success, standard Linux error codes on failure. */ static int glink_qos_reset_priority(struct channel_ctx *ctx) { unsigned long flags; spin_lock_irqsave(&ctx->transport_ptr->tx_ready_lock_lhb3, flags); spin_lock(&ctx->tx_lists_lock_lhc3); if (ctx->initial_priority > 0) { ctx->initial_priority = 0; glink_qos_update_ch_prio(ctx, 0); ctx->transport_ptr->curr_qos_rate_kBps -= ctx->req_rate_kBps; ctx->txd_len = 0; ctx->req_rate_kBps = 0; } spin_unlock(&ctx->tx_lists_lock_lhc3); spin_unlock_irqrestore(&ctx->transport_ptr->tx_ready_lock_lhb3, flags); return 0; } /** * glink_qos_ch_vote_xprt() - Vote the transport that channel is active * @ctx: Channel context which is active. * * This function is called to vote for the transport either when the channel * is transmitting or when it shows an intention to transmit sooner. This * function must be called with transport's tx_ready_lock_lhb3 lock and * channel's tx_lists_lock_lhc3 locked. * * Return: 0 on success, standard Linux error codes on failure. */ static int glink_qos_ch_vote_xprt(struct channel_ctx *ctx) { uint32_t prio; if (unlikely(!ctx || !ctx->transport_ptr)) return -EINVAL; prio = ctx->curr_priority; ctx->transport_ptr->prio_bin[prio].active_ch_cnt++; if (ctx->transport_ptr->prio_bin[prio].active_ch_cnt == 1 && ctx->transport_ptr->active_high_prio < prio) { /* * One active channel in this priority and this is the * highest active priority bucket */ ctx->transport_ptr->active_high_prio = prio; return ctx->transport_ptr->ops->power_vote( ctx->transport_ptr->ops, glink_prio_to_power_state(ctx->transport_ptr, prio)); } return 0; } /** * glink_qos_ch_unvote_xprt() - Unvote the transport when channel is inactive * @ctx: Channel context which is inactive. * * This function is called to unvote for the transport either when all the * packets queued by the channel are transmitted by the scheduler. This * function must be called with transport's tx_ready_lock_lhb3 lock and * channel's tx_lists_lock_lhc3 locked. * * Return: 0 on success, standard Linux error codes on failure. */ static int glink_qos_ch_unvote_xprt(struct channel_ctx *ctx) { uint32_t prio; if (unlikely(!ctx || !ctx->transport_ptr)) return -EINVAL; prio = ctx->curr_priority; ctx->transport_ptr->prio_bin[prio].active_ch_cnt--; if (ctx->transport_ptr->prio_bin[prio].active_ch_cnt || ctx->transport_ptr->active_high_prio > prio) return 0; /* * No active channel in this priority and this is the * highest active priority bucket */ while (prio > 0) { prio--; if (!ctx->transport_ptr->prio_bin[prio].active_ch_cnt) continue; ctx->transport_ptr->active_high_prio = prio; return ctx->transport_ptr->ops->power_vote( ctx->transport_ptr->ops, glink_prio_to_power_state(ctx->transport_ptr, prio)); } return ctx->transport_ptr->ops->power_unvote(ctx->transport_ptr->ops); } /** * glink_qos_add_ch_tx_intent() - Add the channel's intention to transmit soon * @ctx: Channel context which is going to be active. * * This function is called to update the channel state when it is intending to * transmit sooner. This function must be called with transport's * tx_ready_lock_lhb3 lock and channel's tx_lists_lock_lhc3 locked. * * Return: 0 on success, standard Linux error codes on failure. */ static int glink_qos_add_ch_tx_intent(struct channel_ctx *ctx) { bool active_tx; if (unlikely(!ctx)) return -EINVAL; active_tx = GLINK_GET_CH_TX_STATE(ctx); ctx->tx_intent_cnt++; if (!active_tx) glink_qos_ch_vote_xprt(ctx); return 0; } /** * glink_qos_do_ch_tx() - Update the channel's state that it is transmitting * @ctx: Channel context which is transmitting. * * This function is called to update the channel state when it is queueing a * packet to transmit. This function must be called with transport's * tx_ready_lock_lhb3 lock and channel's tx_lists_lock_lhc3 locked. * * Return: 0 on success, standard Linux error codes on failure. */ static int glink_qos_do_ch_tx(struct channel_ctx *ctx) { bool active_tx; if (unlikely(!ctx)) return -EINVAL; active_tx = GLINK_GET_CH_TX_STATE(ctx); ctx->tx_cnt++; if (ctx->tx_intent_cnt) ctx->tx_intent_cnt--; if (!active_tx) glink_qos_ch_vote_xprt(ctx); return 0; } /** * glink_qos_done_ch_tx() - Update the channel's state when transmission is done * @ctx: Channel context for which all packets are transmitted. * * This function is called to update the channel state when all packets in its * transmit queue are successfully transmitted. This function must be called * with transport's tx_ready_lock_lhb3 lock and channel's tx_lists_lock_lhc3 * locked. * * Return: 0 on success, standard Linux error codes on failure. */ static int glink_qos_done_ch_tx(struct channel_ctx *ctx) { bool active_tx; if (unlikely(!ctx)) return -EINVAL; WARN_ON(ctx->tx_cnt == 0); ctx->tx_cnt = 0; active_tx = GLINK_GET_CH_TX_STATE(ctx); if (!active_tx) glink_qos_ch_unvote_xprt(ctx); return 0; } /** * tx_linear_vbuf_provider() - Virtual Buffer Provider for linear buffers * @iovec: Pointer to the beginning of the linear buffer. * @offset: Offset into the buffer whose address is needed. * @size: Pointer to hold the length of the contiguous buffer space. * * This function is used when a linear buffer is transmitted. * * Return: Address of the buffer which is at offset "offset" from the beginning * of the buffer. */ static void *tx_linear_vbuf_provider(void *iovec, size_t offset, size_t *size) { struct glink_core_tx_pkt *tx_info = (struct glink_core_tx_pkt *)iovec; if (unlikely(!iovec || !size)) return NULL; if (offset >= tx_info->size) return NULL; if (unlikely(OVERFLOW_ADD_UNSIGNED(void *, tx_info->data, offset))) return NULL; *size = tx_info->size - offset; return (void *)tx_info->data + offset; } /** * linearize_vector() - Linearize the vector buffer * @iovec: Pointer to the vector buffer. * @size: Size of data in the vector buffer. * vbuf_provider: Virtual address-space Buffer Provider for the vector. * pbuf_provider: Physical address-space Buffer Provider for the vector. * * This function is used to linearize the vector buffer provided by the * transport when the client has registered to receive only the vector * buffer. * * Return: address of the linear buffer on success, NULL on failure. */ static void *linearize_vector(void *iovec, size_t size, void * (*vbuf_provider)(void *iovec, size_t offset, size_t *buf_size), void * (*pbuf_provider)(void *iovec, size_t offset, size_t *buf_size)) { void *bounce_buf; void *pdata; void *vdata; size_t data_size; size_t offset = 0; bounce_buf = kmalloc(size, GFP_KERNEL); if (!bounce_buf) return ERR_PTR(-ENOMEM); do { if (vbuf_provider) { vdata = vbuf_provider(iovec, offset, &data_size); } else { pdata = pbuf_provider(iovec, offset, &data_size); vdata = phys_to_virt((unsigned long)pdata); } if (!vdata) break; if (OVERFLOW_ADD_UNSIGNED(size_t, data_size, offset)) { GLINK_ERR("%s: overflow data_size %zu + offset %zu\n", __func__, data_size, offset); goto err; } memcpy(bounce_buf + offset, vdata, data_size); offset += data_size; } while (offset < size); if (offset != size) { GLINK_ERR("%s: Error size_copied %zu != total_size %zu\n", __func__, offset, size); goto err; } return bounce_buf; err: kfree(bounce_buf); return NULL; } /** * glink_core_migration_edge_lock() - gains a reference count for edge and * take muted lock * @xprt_ctx: transport of the edge */ static void glink_core_migration_edge_lock(struct glink_core_xprt_ctx *xprt_ctx) { struct glink_core_edge_ctx *edge_ctx = xprt_ctx->edge_ctx; rwref_get(&edge_ctx->edge_ref_lock_lhd1); mutex_lock(&edge_ctx->edge_migration_lock_lhd2); } /** * glink_core_migration_edge_unlock() - release a reference count for edge * and release muted lock. * @xprt_ctx: transport of the edge */ static void glink_core_migration_edge_unlock( struct glink_core_xprt_ctx *xprt_ctx) { struct glink_core_edge_ctx *edge_ctx = xprt_ctx->edge_ctx; mutex_unlock(&edge_ctx->edge_migration_lock_lhd2); rwref_put(&edge_ctx->edge_ref_lock_lhd1); } /** * glink_edge_ctx_release - Free the edge context * @ch_st_lock: handle to the rwref_lock associated with the edge * * This should only be called when the reference count associated with the * edge goes to zero. */ static void glink_edge_ctx_release(struct rwref_lock *ch_st_lock) { struct glink_core_edge_ctx *ctx = container_of(ch_st_lock, struct glink_core_edge_ctx, edge_ref_lock_lhd1); mutex_lock(&edge_list_lock_lhd0); list_del(&ctx->list_node); mutex_unlock(&edge_list_lock_lhd0); kfree(ctx); } /** * edge_name_to_ctx_create() - lookup a edge by name, create the edge ctx if * it is not found. * @xprt_ctx: Transport to search for a matching edge. * * Return: The edge ctx corresponding to edge of @xprt_ctx or * NULL if memory allocation fails. */ static struct glink_core_edge_ctx *edge_name_to_ctx_create( struct glink_core_xprt_ctx *xprt_ctx) { struct glink_core_edge_ctx *edge_ctx; mutex_lock(&edge_list_lock_lhd0); list_for_each_entry(edge_ctx, &edge_list, list_node) { if (!strcmp(edge_ctx->name, xprt_ctx->edge)) { rwref_get(&edge_ctx->edge_ref_lock_lhd1); mutex_unlock(&edge_list_lock_lhd0); return edge_ctx; } } edge_ctx = kzalloc(sizeof(struct glink_core_edge_ctx), GFP_KERNEL); if (!edge_ctx) { mutex_unlock(&edge_list_lock_lhd0); return NULL; } strlcpy(edge_ctx->name, xprt_ctx->edge, GLINK_NAME_SIZE); rwref_lock_init(&edge_ctx->edge_ref_lock_lhd1, glink_edge_ctx_release); mutex_init(&edge_ctx->edge_migration_lock_lhd2); INIT_LIST_HEAD(&edge_ctx->list_node); list_add_tail(&edge_ctx->list_node, &edge_list); mutex_unlock(&edge_list_lock_lhd0); return edge_ctx; } /** * xprt_lcid_to_ch_ctx_get() - lookup a channel by local id * @xprt_ctx: Transport to search for a matching channel. * @lcid: Local channel identifier corresponding to the desired channel. * * If the channel is found, the reference count is incremented to ensure the * lifetime of the channel context. The caller must call rwref_put() when done. * * Return: The channel corresponding to @lcid or NULL if a matching channel * is not found. */ static struct channel_ctx *xprt_lcid_to_ch_ctx_get( struct glink_core_xprt_ctx *xprt_ctx, uint32_t lcid) { struct channel_ctx *entry; unsigned long flags; spin_lock_irqsave(&xprt_ctx->xprt_ctx_lock_lhb1, flags); list_for_each_entry(entry, &xprt_ctx->channels, port_list_node) if (entry->lcid == lcid) { rwref_get(&entry->ch_state_lhb2); spin_unlock_irqrestore(&xprt_ctx->xprt_ctx_lock_lhb1, flags); return entry; } spin_unlock_irqrestore(&xprt_ctx->xprt_ctx_lock_lhb1, flags); return NULL; } /** * xprt_rcid_to_ch_ctx_get() - lookup a channel by remote id * @xprt_ctx: Transport to search for a matching channel. * @rcid: Remote channel identifier corresponding to the desired channel. * * If the channel is found, the reference count is incremented to ensure the * lifetime of the channel context. The caller must call rwref_put() when done. * * Return: The channel corresponding to @rcid or NULL if a matching channel * is not found. */ static struct channel_ctx *xprt_rcid_to_ch_ctx_get( struct glink_core_xprt_ctx *xprt_ctx, uint32_t rcid) { struct channel_ctx *entry; unsigned long flags; spin_lock_irqsave(&xprt_ctx->xprt_ctx_lock_lhb1, flags); list_for_each_entry(entry, &xprt_ctx->channels, port_list_node) if (entry->rcid == rcid) { rwref_get(&entry->ch_state_lhb2); spin_unlock_irqrestore(&xprt_ctx->xprt_ctx_lock_lhb1, flags); return entry; } spin_unlock_irqrestore(&xprt_ctx->xprt_ctx_lock_lhb1, flags); return NULL; } /** * ch_check_duplicate_riid() - Checks for duplicate riid * @ctx: Local channel context * @riid: Remote intent ID * * This functions check the riid is present in the remote_rx_list or not */ bool ch_check_duplicate_riid(struct channel_ctx *ctx, int riid) { struct glink_core_rx_intent *intent; unsigned long flags; spin_lock_irqsave(&ctx->rmt_rx_intent_lst_lock_lhc2, flags); list_for_each_entry(intent, &ctx->rmt_rx_intent_list, list) { if (riid == intent->id) { spin_unlock_irqrestore( &ctx->rmt_rx_intent_lst_lock_lhc2, flags); return true; } } spin_unlock_irqrestore(&ctx->rmt_rx_intent_lst_lock_lhc2, flags); return false; } /** * ch_pop_remote_rx_intent() - Finds a matching RX intent * @ctx: Local channel context * @size: Size of Intent * @riid_ptr: Pointer to return value of remote intent ID * @cookie: Transport-specific cookie to return * * This functions searches for an RX intent that is >= to the requested size. */ int ch_pop_remote_rx_intent(struct channel_ctx *ctx, size_t size, uint32_t *riid_ptr, size_t *intent_size, void **cookie) { struct glink_core_rx_intent *intent; struct glink_core_rx_intent *intent_tmp; struct glink_core_rx_intent *best_intent = NULL; unsigned long flags; if (GLINK_MAX_PKT_SIZE < size) { GLINK_ERR_CH(ctx, "%s: R[]:%zu Invalid size.\n", __func__, size); return -EINVAL; } if (riid_ptr == NULL) return -EINVAL; *riid_ptr = 0; spin_lock_irqsave(&ctx->rmt_rx_intent_lst_lock_lhc2, flags); if (ctx->transport_ptr->capabilities & GCAP_INTENTLESS) { *riid_ptr = ++ctx->dummy_riid; spin_unlock_irqrestore(&ctx->rmt_rx_intent_lst_lock_lhc2, flags); return 0; } list_for_each_entry_safe(intent, intent_tmp, &ctx->rmt_rx_intent_list, list) { if (intent->intent_size >= size) { if (!best_intent) best_intent = intent; else if (best_intent->intent_size > intent->intent_size) best_intent = intent; if (best_intent->intent_size == size) break; } } if (best_intent) { list_del(&best_intent->list); GLINK_DBG_CH(ctx, "%s: R[%u]:%zu Removed remote intent\n", __func__, best_intent->id, best_intent->intent_size); *riid_ptr = best_intent->id; *intent_size = best_intent->intent_size; *cookie = best_intent->cookie; kfree(best_intent); spin_unlock_irqrestore( &ctx->rmt_rx_intent_lst_lock_lhc2, flags); return 0; } spin_unlock_irqrestore(&ctx->rmt_rx_intent_lst_lock_lhc2, flags); return -EAGAIN; } /** * ch_push_remote_rx_intent() - Registers a remote RX intent * @ctx: Local channel context * @size: Size of Intent * @riid: Remote intent ID * @cookie: Transport-specific cookie to cache * * This functions adds a remote RX intent to the remote RX intent list. */ void ch_push_remote_rx_intent(struct channel_ctx *ctx, size_t size, uint32_t riid, void *cookie) { struct glink_core_rx_intent *intent; unsigned long flags; gfp_t gfp_flag; if (GLINK_MAX_PKT_SIZE < size) { GLINK_ERR_CH(ctx, "%s: R[%u]:%zu Invalid size.\n", __func__, riid, size); return; } if (ch_check_duplicate_riid(ctx, riid)) { GLINK_ERR_CH(ctx, "%s: R[%d]:%zu Duplicate RIID found\n", __func__, riid, size); return; } gfp_flag = (ctx->transport_ptr->capabilities & GCAP_AUTO_QUEUE_RX_INT) ? GFP_ATOMIC : GFP_KERNEL; intent = kzalloc(sizeof(struct glink_core_rx_intent), gfp_flag); if (!intent) { GLINK_ERR_CH(ctx, "%s: R[%u]:%zu Memory allocation for intent failed\n", __func__, riid, size); return; } intent->id = riid; intent->intent_size = size; intent->cookie = cookie; spin_lock_irqsave(&ctx->rmt_rx_intent_lst_lock_lhc2, flags); list_add_tail(&intent->list, &ctx->rmt_rx_intent_list); complete_all(&ctx->int_req_complete); if (ctx->notify_remote_rx_intent) ctx->notify_remote_rx_intent(ctx, ctx->user_priv, size); spin_unlock_irqrestore(&ctx->rmt_rx_intent_lst_lock_lhc2, flags); GLINK_DBG_CH(ctx, "%s: R[%u]:%zu Pushed remote intent\n", __func__, intent->id, intent->intent_size); } /** * ch_push_local_rx_intent() - Create an rx_intent * @ctx: Local channel context * @pkt_priv: Opaque private pointer provided by client to be returned later * @size: Size of intent * * This functions creates a local intent and adds it to the local * intent list. */ struct glink_core_rx_intent *ch_push_local_rx_intent(struct channel_ctx *ctx, const void *pkt_priv, size_t size) { struct glink_core_rx_intent *intent; unsigned long flags; int ret; if (GLINK_MAX_PKT_SIZE < size) { GLINK_ERR_CH(ctx, "%s: L[]:%zu Invalid size\n", __func__, size); return NULL; } intent = ch_get_free_local_rx_intent(ctx); if (!intent) { if (ctx->max_used_liid >= ctx->transport_ptr->max_iid) { GLINK_ERR_CH(ctx, "%s: All intents are in USE max_iid[%d]", __func__, ctx->transport_ptr->max_iid); return NULL; } intent = kzalloc(sizeof(struct glink_core_rx_intent), GFP_KERNEL); if (!intent) { GLINK_ERR_CH(ctx, "%s: Memory Allocation for local rx_intent failed", __func__); return NULL; } intent->id = ++ctx->max_used_liid; } /* transport is responsible for allocating/reserving for the intent */ ret = ctx->transport_ptr->ops->allocate_rx_intent( ctx->transport_ptr->ops, size, intent); if (ret < 0) { /* intent data allocation failure */ GLINK_ERR_CH(ctx, "%s: unable to allocate intent sz[%zu] %d", __func__, size, ret); spin_lock_irqsave(&ctx->local_rx_intent_lst_lock_lhc1, flags); list_add_tail(&intent->list, &ctx->local_rx_intent_free_list); spin_unlock_irqrestore(&ctx->local_rx_intent_lst_lock_lhc1, flags); return NULL; } intent->pkt_priv = pkt_priv; intent->intent_size = size; intent->write_offset = 0; intent->pkt_size = 0; intent->bounce_buf = NULL; spin_lock_irqsave(&ctx->local_rx_intent_lst_lock_lhc1, flags); list_add_tail(&intent->list, &ctx->local_rx_intent_list); spin_unlock_irqrestore(&ctx->local_rx_intent_lst_lock_lhc1, flags); GLINK_DBG_CH(ctx, "%s: L[%u]:%zu Pushed intent\n", __func__, intent->id, intent->intent_size); return intent; } /** * ch_remove_local_rx_intent() - Find and remove RX Intent from list * @ctx: Local channel context * @liid: Local channel Intent ID * * This functions parses the local intent list for a specific channel * and checks for the intent using the intent ID. If found, the intent * is deleted from the list. */ void ch_remove_local_rx_intent(struct channel_ctx *ctx, uint32_t liid) { struct glink_core_rx_intent *intent, *tmp_intent; unsigned long flags; if (ctx->transport_ptr->max_iid < liid) { GLINK_ERR_CH(ctx, "%s: L[%u] Invalid ID.\n", __func__, liid); return; } spin_lock_irqsave(&ctx->local_rx_intent_lst_lock_lhc1, flags); list_for_each_entry_safe(intent, tmp_intent, &ctx->local_rx_intent_list, list) { if (liid == intent->id) { list_del(&intent->list); list_add_tail(&intent->list, &ctx->local_rx_intent_free_list); spin_unlock_irqrestore( &ctx->local_rx_intent_lst_lock_lhc1, flags); GLINK_DBG_CH(ctx, "%s: L[%u]:%zu moved intent to Free/unused list\n", __func__, intent->id, intent->intent_size); return; } } spin_unlock_irqrestore(&ctx->local_rx_intent_lst_lock_lhc1, flags); GLINK_ERR_CH(ctx, "%s: L[%u] Intent not found.\n", __func__, liid); } /** * ch_get_dummy_rx_intent() - Get a dummy rx_intent * @ctx: Local channel context * @liid: Local channel Intent ID * * This functions parses the local intent list for a specific channel and * returns either a matching intent or allocates a dummy one if no matching * intents can be found. * * Return: Pointer to the intent if intent is found else NULL */ struct glink_core_rx_intent *ch_get_dummy_rx_intent(struct channel_ctx *ctx, uint32_t liid) { struct glink_core_rx_intent *intent; unsigned long flags; spin_lock_irqsave(&ctx->local_rx_intent_lst_lock_lhc1, flags); if (!list_empty(&ctx->local_rx_intent_list)) { intent = list_first_entry(&ctx->local_rx_intent_list, struct glink_core_rx_intent, list); spin_unlock_irqrestore(&ctx->local_rx_intent_lst_lock_lhc1, flags); return intent; } spin_unlock_irqrestore(&ctx->local_rx_intent_lst_lock_lhc1, flags); intent = ch_get_free_local_rx_intent(ctx); if (!intent) { intent = kzalloc(sizeof(struct glink_core_rx_intent), GFP_ATOMIC); if (!intent) { GLINK_ERR_CH(ctx, "%s: Memory Allocation for local rx_intent failed", __func__); return NULL; } intent->id = ++ctx->max_used_liid; } intent->intent_size = 0; intent->write_offset = 0; intent->pkt_size = 0; intent->bounce_buf = NULL; intent->pkt_priv = NULL; spin_lock_irqsave(&ctx->local_rx_intent_lst_lock_lhc1, flags); list_add_tail(&intent->list, &ctx->local_rx_intent_list); spin_unlock_irqrestore(&ctx->local_rx_intent_lst_lock_lhc1, flags); GLINK_DBG_CH(ctx, "%s: L[%u]:%zu Pushed intent\n", __func__, intent->id, intent->intent_size); return intent; } /** * ch_get_local_rx_intent() - Search for an rx_intent * @ctx: Local channel context * @liid: Local channel Intent ID * * This functions parses the local intent list for a specific channel * and checks for the intent using the intent ID. If found, pointer to * the intent is returned. * * Return: Pointer to the intent if intent is found else NULL */ struct glink_core_rx_intent *ch_get_local_rx_intent(struct channel_ctx *ctx, uint32_t liid) { struct glink_core_rx_intent *intent; unsigned long flags; if (ctx->transport_ptr->max_iid < liid) { GLINK_ERR_CH(ctx, "%s: L[%u] Invalid ID.\n", __func__, liid); return NULL; } if (ctx->transport_ptr->capabilities & GCAP_INTENTLESS) return ch_get_dummy_rx_intent(ctx, liid); spin_lock_irqsave(&ctx->local_rx_intent_lst_lock_lhc1, flags); list_for_each_entry(intent, &ctx->local_rx_intent_list, list) { if (liid == intent->id) { spin_unlock_irqrestore( &ctx->local_rx_intent_lst_lock_lhc1, flags); return intent; } } spin_unlock_irqrestore(&ctx->local_rx_intent_lst_lock_lhc1, flags); GLINK_ERR_CH(ctx, "%s: L[%u] Intent not found.\n", __func__, liid); return NULL; } /** * ch_set_local_rx_intent_notified() - Add a rx intent to local intent * notified list * @ctx: Local channel context * @intent_ptr: Pointer to the local intent * * This functions parses the local intent list for a specific channel * and checks for the intent. If found, the function deletes the intent * from local_rx_intent list and adds it to local_rx_intent_notified list. */ void ch_set_local_rx_intent_notified(struct channel_ctx *ctx, struct glink_core_rx_intent *intent_ptr) { struct glink_core_rx_intent *tmp_intent, *intent; unsigned long flags; spin_lock_irqsave(&ctx->local_rx_intent_lst_lock_lhc1, flags); list_for_each_entry_safe(intent, tmp_intent, &ctx->local_rx_intent_list, list) { if (intent == intent_ptr) { list_del(&intent->list); list_add_tail(&intent->list, &ctx->local_rx_intent_ntfy_list); GLINK_DBG_CH(ctx, "%s: L[%u]:%zu Moved intent %s", __func__, intent_ptr->id, intent_ptr->intent_size, "from local to notify list\n"); spin_unlock_irqrestore( &ctx->local_rx_intent_lst_lock_lhc1, flags); return; } } spin_unlock_irqrestore(&ctx->local_rx_intent_lst_lock_lhc1, flags); GLINK_ERR_CH(ctx, "%s: L[%u] Intent not found.\n", __func__, intent_ptr->id); } /** * ch_get_local_rx_intent_notified() - Find rx intent in local notified list * @ctx: Local channel context * @ptr: Pointer to the rx intent * * This functions parses the local intent notify list for a specific channel * and checks for the intent. * * Return: Pointer to the intent if intent is found else NULL. */ struct glink_core_rx_intent *ch_get_local_rx_intent_notified( struct channel_ctx *ctx, const void *ptr) { struct glink_core_rx_intent *ptr_intent; unsigned long flags; spin_lock_irqsave(&ctx->local_rx_intent_lst_lock_lhc1, flags); list_for_each_entry(ptr_intent, &ctx->local_rx_intent_ntfy_list, list) { if (ptr_intent->data == ptr || ptr_intent->iovec == ptr || ptr_intent->bounce_buf == ptr) { spin_unlock_irqrestore( &ctx->local_rx_intent_lst_lock_lhc1, flags); return ptr_intent; } } spin_unlock_irqrestore(&ctx->local_rx_intent_lst_lock_lhc1, flags); GLINK_ERR_CH(ctx, "%s: Local intent not found\n", __func__); return NULL; } /** * ch_remove_local_rx_intent_notified() - Remove a rx intent in local intent * notified list * @ctx: Local channel context * @ptr: Pointer to the rx intent * @reuse: Reuse the rx intent * * This functions parses the local intent notify list for a specific channel * and checks for the intent. If found, the function deletes the intent * from local_rx_intent_notified list and adds it to local_rx_intent_free list. */ void ch_remove_local_rx_intent_notified(struct channel_ctx *ctx, struct glink_core_rx_intent *liid_ptr, bool reuse) { struct glink_core_rx_intent *ptr_intent, *tmp_intent; unsigned long flags; spin_lock_irqsave(&ctx->local_rx_intent_lst_lock_lhc1, flags); list_for_each_entry_safe(ptr_intent, tmp_intent, &ctx->local_rx_intent_ntfy_list, list) { if (ptr_intent == liid_ptr) { list_del(&ptr_intent->list); GLINK_DBG_CH(ctx, "%s: L[%u]:%zu Removed intent from notify list\n", __func__, ptr_intent->id, ptr_intent->intent_size); kfree(ptr_intent->bounce_buf); ptr_intent->bounce_buf = NULL; ptr_intent->write_offset = 0; ptr_intent->pkt_size = 0; if (reuse) list_add_tail(&ptr_intent->list, &ctx->local_rx_intent_list); else list_add_tail(&ptr_intent->list, &ctx->local_rx_intent_free_list); spin_unlock_irqrestore( &ctx->local_rx_intent_lst_lock_lhc1, flags); return; } } spin_unlock_irqrestore(&ctx->local_rx_intent_lst_lock_lhc1, flags); GLINK_ERR_CH(ctx, "%s: L[%u] Intent not found.\n", __func__, liid_ptr->id); } /** * ch_get_free_local_rx_intent() - Return a rx intent in local intent * free list * @ctx: Local channel context * * This functions parses the local_rx_intent_free list for a specific channel * and checks for the free unused intent. If found, the function returns * the free intent pointer else NULL pointer. */ struct glink_core_rx_intent *ch_get_free_local_rx_intent( struct channel_ctx *ctx) { struct glink_core_rx_intent *ptr_intent = NULL; unsigned long flags; spin_lock_irqsave(&ctx->local_rx_intent_lst_lock_lhc1, flags); if (!list_empty(&ctx->local_rx_intent_free_list)) { ptr_intent = list_first_entry(&ctx->local_rx_intent_free_list, struct glink_core_rx_intent, list); list_del(&ptr_intent->list); } spin_unlock_irqrestore(&ctx->local_rx_intent_lst_lock_lhc1, flags); return ptr_intent; } /** * ch_purge_intent_lists() - Remove all intents for a channel * * @ctx: Local channel context * * This functions parses the local intent lists for a specific channel and * removes and frees all intents. */ void ch_purge_intent_lists(struct channel_ctx *ctx) { struct glink_core_rx_intent *ptr_intent, *tmp_intent; struct glink_core_tx_pkt *tx_info, *tx_info_temp; unsigned long flags; spin_lock_irqsave(&ctx->tx_lists_lock_lhc3, flags); list_for_each_entry_safe(tx_info, tx_info_temp, &ctx->tx_active, list_node) { ctx->notify_tx_abort(ctx, ctx->user_priv, tx_info->pkt_priv); rwref_put(&tx_info->pkt_ref); } spin_unlock_irqrestore(&ctx->tx_lists_lock_lhc3, flags); spin_lock_irqsave(&ctx->local_rx_intent_lst_lock_lhc1, flags); list_for_each_entry_safe(ptr_intent, tmp_intent, &ctx->local_rx_intent_list, list) { ctx->notify_rx_abort(ctx, ctx->user_priv, ptr_intent->pkt_priv); ctx->transport_ptr->ops->deallocate_rx_intent( ctx->transport_ptr->ops, ptr_intent); list_del(&ptr_intent->list); kfree(ptr_intent); } if (!list_empty(&ctx->local_rx_intent_ntfy_list)) /* * The client is still processing an rx_notify() call and has * not yet called glink_rx_done() to return the pointer to us. * glink_rx_done() will do the appropriate cleanup when this * call occurs, but log a message here just for internal state * tracking. */ GLINK_INFO_CH(ctx, "%s: waiting on glink_rx_done()\n", __func__); list_for_each_entry_safe(ptr_intent, tmp_intent, &ctx->local_rx_intent_free_list, list) { list_del(&ptr_intent->list); kfree(ptr_intent); } ctx->max_used_liid = 0; spin_unlock_irqrestore(&ctx->local_rx_intent_lst_lock_lhc1, flags); spin_lock_irqsave(&ctx->rmt_rx_intent_lst_lock_lhc2, flags); list_for_each_entry_safe(ptr_intent, tmp_intent, &ctx->rmt_rx_intent_list, list) { list_del(&ptr_intent->list); kfree(ptr_intent); } spin_unlock_irqrestore(&ctx->rmt_rx_intent_lst_lock_lhc2, flags); } /** * ch_get_tx_pending_remote_done() - Lookup for a packet that is waiting for * the remote-done notification. * @ctx: Pointer to the channel context * @riid: riid of transmit packet * * This function adds a packet to the tx_pending_remote_done list. * * The tx_lists_lock_lhc3 lock needs to be held while calling this function. * * Return: Pointer to the tx packet */ struct glink_core_tx_pkt *ch_get_tx_pending_remote_done( struct channel_ctx *ctx, uint32_t riid) { struct glink_core_tx_pkt *tx_pkt; unsigned long flags; if (!ctx) { GLINK_ERR("%s: Invalid context pointer", __func__); return NULL; } spin_lock_irqsave(&ctx->tx_pending_rmt_done_lock_lhc4, flags); list_for_each_entry(tx_pkt, &ctx->tx_pending_remote_done, list_done) { if (tx_pkt->riid == riid) { if (tx_pkt->size_remaining) { GLINK_ERR_CH(ctx, "%s: R[%u] TX not complete", __func__, riid); tx_pkt = NULL; } spin_unlock_irqrestore( &ctx->tx_pending_rmt_done_lock_lhc4, flags); return tx_pkt; } } spin_unlock_irqrestore(&ctx->tx_pending_rmt_done_lock_lhc4, flags); GLINK_ERR_CH(ctx, "%s: R[%u] Tx packet for intent not found.\n", __func__, riid); return NULL; } /** * ch_remove_tx_pending_remote_done() - Removes a packet transmit context for a * packet that is waiting for the remote-done notification * @ctx: Pointer to the channel context * @tx_pkt: Pointer to the transmit packet * * This function parses through tx_pending_remote_done and removes a * packet that matches with the tx_pkt. */ void ch_remove_tx_pending_remote_done(struct channel_ctx *ctx, struct glink_core_tx_pkt *tx_pkt) { struct glink_core_tx_pkt *local_tx_pkt, *tmp_tx_pkt; unsigned long flags; if (!ctx || !tx_pkt) { GLINK_ERR("%s: Invalid input", __func__); return; } spin_lock_irqsave(&ctx->tx_pending_rmt_done_lock_lhc4, flags); list_for_each_entry_safe(local_tx_pkt, tmp_tx_pkt, &ctx->tx_pending_remote_done, list_done) { if (tx_pkt == local_tx_pkt) { list_del_init(&tx_pkt->list_done); GLINK_DBG_CH(ctx, "%s: R[%u] Removed Tx packet for intent\n", __func__, tx_pkt->riid); rwref_put(&tx_pkt->pkt_ref); spin_unlock_irqrestore( &ctx->tx_pending_rmt_done_lock_lhc4, flags); return; } } spin_unlock_irqrestore(&ctx->tx_pending_rmt_done_lock_lhc4, flags); GLINK_ERR_CH(ctx, "%s: R[%u] Tx packet for intent not found", __func__, tx_pkt->riid); } /** * glink_add_free_lcid_list() - adds the lcid of a to be deleted channel to * available lcid list * @ctx: Pointer to channel context. */ static void glink_add_free_lcid_list(struct channel_ctx *ctx) { struct channel_lcid *free_lcid; unsigned long flags; free_lcid = kzalloc(sizeof(*free_lcid), GFP_KERNEL); if (!free_lcid) { GLINK_ERR( "%s: allocation failed on xprt:edge [%s:%s] for lcid [%d]\n", __func__, ctx->transport_ptr->name, ctx->transport_ptr->edge, ctx->lcid); return; } free_lcid->lcid = ctx->lcid; spin_lock_irqsave(&ctx->transport_ptr->xprt_ctx_lock_lhb1, flags); list_add_tail(&free_lcid->list_node, &ctx->transport_ptr->free_lcid_list); spin_unlock_irqrestore(&ctx->transport_ptr->xprt_ctx_lock_lhb1, flags); } /** * glink_ch_ctx_release - Free the channel context * @ch_st_lock: handle to the rwref_lock associated with the chanel * * This should only be called when the reference count associated with the * channel goes to zero. */ static void glink_ch_ctx_release(struct rwref_lock *ch_st_lock) { struct channel_ctx *ctx = container_of(ch_st_lock, struct channel_ctx, ch_state_lhb2); ctx->transport_ptr = NULL; kfree(ctx); GLINK_INFO("%s: freed the channel ctx in pid [%d]\n", __func__, current->pid); ctx = NULL; } /** * ch_name_to_ch_ctx_create() - lookup a channel by name, create the channel if * it is not found. * @xprt_ctx: Transport to search for a matching channel. * @name: Name of the desired channel. * * Return: The channel corresponding to @name, NULL if a matching channel was * not found AND a new channel could not be created. */ static struct channel_ctx *ch_name_to_ch_ctx_create( struct glink_core_xprt_ctx *xprt_ctx, const char *name) { struct channel_ctx *entry; struct channel_ctx *ctx; struct channel_ctx *temp; unsigned long flags; struct channel_lcid *flcid; ctx = kzalloc(sizeof(struct channel_ctx), GFP_KERNEL); if (!ctx) { GLINK_ERR_XPRT(xprt_ctx, "%s: Failed to allocated ctx, %s", "checking if there is one existing\n", __func__); goto check_ctx; } ctx->local_open_state = GLINK_CHANNEL_CLOSED; strlcpy(ctx->name, name, GLINK_NAME_SIZE); rwref_lock_init(&ctx->ch_state_lhb2, glink_ch_ctx_release); INIT_LIST_HEAD(&ctx->tx_ready_list_node); init_completion(&ctx->int_req_ack_complete); init_completion(&ctx->int_req_complete); INIT_LIST_HEAD(&ctx->local_rx_intent_list); INIT_LIST_HEAD(&ctx->local_rx_intent_ntfy_list); INIT_LIST_HEAD(&ctx->local_rx_intent_free_list); spin_lock_init(&ctx->local_rx_intent_lst_lock_lhc1); INIT_LIST_HEAD(&ctx->rmt_rx_intent_list); spin_lock_init(&ctx->rmt_rx_intent_lst_lock_lhc2); INIT_LIST_HEAD(&ctx->tx_active); spin_lock_init(&ctx->tx_pending_rmt_done_lock_lhc4); INIT_LIST_HEAD(&ctx->tx_pending_remote_done); spin_lock_init(&ctx->tx_lists_lock_lhc3); check_ctx: rwref_write_get(&xprt_ctx->xprt_state_lhb0); if (xprt_ctx->local_state != GLINK_XPRT_OPENED) { kfree(ctx); rwref_write_put(&xprt_ctx->xprt_state_lhb0); return NULL; } spin_lock_irqsave(&xprt_ctx->xprt_ctx_lock_lhb1, flags); list_for_each_entry_safe(entry, temp, &xprt_ctx->channels, port_list_node) if (!strcmp(entry->name, name) && !entry->pending_delete) { spin_unlock_irqrestore(&xprt_ctx->xprt_ctx_lock_lhb1, flags); kfree(ctx); rwref_write_put(&xprt_ctx->xprt_state_lhb0); return entry; } if (ctx) { if (list_empty(&xprt_ctx->free_lcid_list)) { if (xprt_ctx->next_lcid > xprt_ctx->max_cid) { /* no more channels available */ GLINK_ERR_XPRT(xprt_ctx, "%s: unable to exceed %u channels\n", __func__, xprt_ctx->max_cid); spin_unlock_irqrestore( &xprt_ctx->xprt_ctx_lock_lhb1, flags); kfree(ctx); rwref_write_put(&xprt_ctx->xprt_state_lhb0); return NULL; } else { ctx->lcid = xprt_ctx->next_lcid++; } } else { flcid = list_first_entry(&xprt_ctx->free_lcid_list, struct channel_lcid, list_node); ctx->lcid = flcid->lcid; list_del(&flcid->list_node); kfree(flcid); } list_add_tail(&ctx->port_list_node, &xprt_ctx->channels); GLINK_INFO_PERF_CH_XPRT(ctx, xprt_ctx, "%s: local:GLINK_CHANNEL_CLOSED\n", __func__); } spin_unlock_irqrestore(&xprt_ctx->xprt_ctx_lock_lhb1, flags); rwref_write_put(&xprt_ctx->xprt_state_lhb0); mutex_lock(&xprt_ctx->xprt_dbgfs_lock_lhb4); if (ctx != NULL) glink_debugfs_add_channel(ctx, xprt_ctx); mutex_unlock(&xprt_ctx->xprt_dbgfs_lock_lhb4); return ctx; } /** * ch_add_rcid() - add a remote channel identifier to an existing channel * @xprt_ctx: Transport the channel resides on. * @ctx: Channel receiving the identifier. * @rcid: The remote channel identifier. */ static void ch_add_rcid(struct glink_core_xprt_ctx *xprt_ctx, struct channel_ctx *ctx, uint32_t rcid) { ctx->rcid = rcid; } /** * ch_update_local_state() - Update the local channel state * @ctx: Pointer to channel context. * @lstate: Local channel state. * * Return: True if the channel is fully closed as a result of this update, * false otherwise. */ static bool ch_update_local_state(struct channel_ctx *ctx, enum local_channel_state_e lstate) { bool is_fully_closed; rwref_write_get(&ctx->ch_state_lhb2); ctx->local_open_state = lstate; is_fully_closed = ch_is_fully_closed(ctx); rwref_write_put(&ctx->ch_state_lhb2); return is_fully_closed; } /** * ch_update_local_state() - Update the local channel state * @ctx: Pointer to channel context. * @rstate: Remote Channel state. * * Return: True if the channel is fully closed as result of this update, * false otherwise. */ static bool ch_update_rmt_state(struct channel_ctx *ctx, bool rstate) { bool is_fully_closed; rwref_write_get(&ctx->ch_state_lhb2); ctx->remote_opened = rstate; is_fully_closed = ch_is_fully_closed(ctx); rwref_write_put(&ctx->ch_state_lhb2); return is_fully_closed; } /* * ch_is_fully_opened() - Verify if a channel is open * ctx: Pointer to channel context * * Return: True if open, else flase */ static bool ch_is_fully_opened(struct channel_ctx *ctx) { if (ctx->remote_opened && ctx->local_open_state == GLINK_CHANNEL_OPENED) return true; return false; } /* * ch_is_fully_closed() - Verify if a channel is closed on both sides * @ctx: Pointer to channel context * @returns: True if open, else flase */ static bool ch_is_fully_closed(struct channel_ctx *ctx) { if (!ctx->remote_opened && ctx->local_open_state == GLINK_CHANNEL_CLOSED) return true; return false; } /** * find_open_transport() - find a specific open transport * @edge: Edge the transport is on. * @name: Name of the transport (or NULL if no preference) * @initial_xprt: The specified transport is the start for migration * @best_id: The best transport found for this connection * * Find an open transport corresponding to the specified @name and @edge. @edge * is expected to be valid. @name is expected to be NULL (unspecified) or * valid. If @name is not specified, then the best transport found on the * specified edge will be returned. * * Return: Transport with the specified name on the specified edge, if open. * NULL if the transport exists, but is not fully open. ENODEV if no such * transport exists. */ static struct glink_core_xprt_ctx *find_open_transport(const char *edge, const char *name, bool initial_xprt, uint16_t *best_id) { struct glink_core_xprt_ctx *xprt; struct glink_core_xprt_ctx *best_xprt; struct glink_core_xprt_ctx *ret; bool first = true; ret = (struct glink_core_xprt_ctx *)ERR_PTR(-ENODEV); best_xprt = (struct glink_core_xprt_ctx *)ERR_PTR(-ENODEV); *best_id = USHRT_MAX; mutex_lock(&transport_list_lock_lha0); list_for_each_entry(xprt, &transport_list, list_node) { if (strcmp(edge, xprt->edge)) continue; if (first) { first = false; ret = NULL; } if (!xprt_is_fully_opened(xprt)) continue; if (xprt->id < *best_id) { *best_id = xprt->id; best_xprt = xprt; } /* * Braces are required in this instacne because the else will * attach to the wrong if otherwise. */ if (name) { if (!strcmp(name, xprt->name)) ret = xprt; } else { ret = best_xprt; } } mutex_unlock(&transport_list_lock_lha0); if (IS_ERR_OR_NULL(ret)) return ret; if (!initial_xprt) *best_id = ret->id; return ret; } /** * xprt_is_fully_opened() - check the open status of a transport * @xprt: Transport being checked. * * Return: True if the transport is fully opened, false otherwise. */ static bool xprt_is_fully_opened(struct glink_core_xprt_ctx *xprt) { if (xprt->remote_neg_completed && xprt->local_state == GLINK_XPRT_OPENED) return true; return false; } /** * glink_dummy_notify_rx_intent_req() - Dummy RX Request * * @handle: Channel handle (ignored) * @priv: Private data pointer (ignored) * @req_size: Requested size (ignored) * * Dummy RX intent request if client does not implement the optional callback * function. * * Return: False */ static bool glink_dummy_notify_rx_intent_req(void *handle, const void *priv, size_t req_size) { return false; } /** * glink_dummy_notify_rx_sigs() - Dummy signal callback * * @handle: Channel handle (ignored) * @priv: Private data pointer (ignored) * @req_size: Requested size (ignored) * * Dummy signal callback if client does not implement the optional callback * function. * * Return: False */ static void glink_dummy_notify_rx_sigs(void *handle, const void *priv, uint32_t old_sigs, uint32_t new_sigs) { /* intentionally left blank */ } /** * glink_dummy_rx_abort() - Dummy rx abort callback * * handle: Channel handle (ignored) * priv: Private data pointer (ignored) * pkt_priv: Private intent data pointer (ignored) * * Dummy rx abort callback if client does not implement the optional callback * function. */ static void glink_dummy_notify_rx_abort(void *handle, const void *priv, const void *pkt_priv) { /* intentionally left blank */ } /** * glink_dummy_tx_abort() - Dummy tx abort callback * * @handle: Channel handle (ignored) * @priv: Private data pointer (ignored) * @pkt_priv: Private intent data pointer (ignored) * * Dummy tx abort callback if client does not implement the optional callback * function. */ static void glink_dummy_notify_tx_abort(void *handle, const void *priv, const void *pkt_priv) { /* intentionally left blank */ } /** * dummy_poll() - a dummy poll() for transports that don't define one * @if_ptr: The transport interface handle for this transport. * @lcid: The channel to poll. * * Return: An error to indicate that this operation is unsupported. */ static int dummy_poll(struct glink_transport_if *if_ptr, uint32_t lcid) { return -EOPNOTSUPP; } /** * dummy_reuse_rx_intent() - a dummy reuse_rx_intent() for transports that * don't define one * @if_ptr: The transport interface handle for this transport. * @intent: The intent to reuse. * * Return: Success. */ static int dummy_reuse_rx_intent(struct glink_transport_if *if_ptr, struct glink_core_rx_intent *intent) { return 0; } /** * dummy_mask_rx_irq() - a dummy mask_rx_irq() for transports that don't define * one * @if_ptr: The transport interface handle for this transport. * @lcid: The local channel id for this channel. * @mask: True to mask the irq, false to unmask. * @pstruct: Platform defined structure with data necessary for masking. * * Return: An error to indicate that this operation is unsupported. */ static int dummy_mask_rx_irq(struct glink_transport_if *if_ptr, uint32_t lcid, bool mask, void *pstruct) { return -EOPNOTSUPP; } /** * dummy_wait_link_down() - a dummy wait_link_down() for transports that don't * define one * @if_ptr: The transport interface handle for this transport. * * Return: An error to indicate that this operation is unsupported. */ static int dummy_wait_link_down(struct glink_transport_if *if_ptr) { return -EOPNOTSUPP; } /** * dummy_allocate_rx_intent() - a dummy RX intent allocation function that does * not allocate anything * @if_ptr: The transport the intent is associated with. * @size: Size of intent. * @intent: Pointer to the intent structure. * * Return: Success. */ static int dummy_allocate_rx_intent(struct glink_transport_if *if_ptr, size_t size, struct glink_core_rx_intent *intent) { return 0; } /** * dummy_tx_cmd_tracer_pkt() - a dummy tracer packet tx cmd for transports * that don't define one * @if_ptr: The transport interface handle for this transport. * @lcid: The channel in which the tracer packet is transmitted. * @pctx: Context of the packet to be transmitted. * * Return: 0. */ static int dummy_tx_cmd_tracer_pkt(struct glink_transport_if *if_ptr, uint32_t lcid, struct glink_core_tx_pkt *pctx) { pctx->size_remaining = 0; return 0; } /** * dummy_tx_cmd_local_rx_intent() - dummy local rx intent request * @if_ptr: The transport to transmit on. * @lcid: The local channel id to encode. * @size: The intent size to encode. * @liid: The local intent id to encode. * * Return: Success. */ static int dummy_tx_cmd_local_rx_intent(struct glink_transport_if *if_ptr, uint32_t lcid, size_t size, uint32_t liid) { return 0; } /** * dummy_tx_cmd_local_rx_done() - dummy rx done command * @if_ptr: The transport to transmit on. * @lcid: The local channel id to encode. * @liid: The local intent id to encode. * @reuse: Reuse the consumed intent. */ static void dummy_tx_cmd_local_rx_done(struct glink_transport_if *if_ptr, uint32_t lcid, uint32_t liid, bool reuse) { /* intentionally left blank */ } /** * dummy_tx() - dummy tx() that does not send anything * @if_ptr: The transport to transmit on. * @lcid: The local channel id to encode. * @pctx: The data to encode. * * Return: Number of bytes written i.e. zero. */ static int dummy_tx(struct glink_transport_if *if_ptr, uint32_t lcid, struct glink_core_tx_pkt *pctx) { return 0; } /** * dummy_tx_cmd_rx_intent_req() - dummy rx intent request functon * @if_ptr: The transport to transmit on. * @lcid: The local channel id to encode. * @size: The requested intent size to encode. * * Return: Success. */ static int dummy_tx_cmd_rx_intent_req(struct glink_transport_if *if_ptr, uint32_t lcid, size_t size) { return 0; } /** * dummy_tx_cmd_rx_intent_req_ack() - dummy rx intent request ack * @if_ptr: The transport to transmit on. * @lcid: The local channel id to encode. * @granted: The request response to encode. * * Return: Success. */ static int dummy_tx_cmd_remote_rx_intent_req_ack( struct glink_transport_if *if_ptr, uint32_t lcid, bool granted) { return 0; } /** * dummy_tx_cmd_set_sigs() - dummy signals ack transmit function * @if_ptr: The transport to transmit on. * @lcid: The local channel id to encode. * @sigs: The signals to encode. * * Return: Success. */ static int dummy_tx_cmd_set_sigs(struct glink_transport_if *if_ptr, uint32_t lcid, uint32_t sigs) { return 0; } /** * dummy_tx_cmd_ch_close() - dummy channel close transmit function * @if_ptr: The transport to transmit on. * @lcid: The local channel id to encode. * * Return: Success. */ static int dummy_tx_cmd_ch_close(struct glink_transport_if *if_ptr, uint32_t lcid) { return 0; } /** * dummy_tx_cmd_ch_remote_close_ack() - dummy channel close ack sending function * @if_ptr: The transport to transmit on. * @rcid: The remote channel id to encode. */ static void dummy_tx_cmd_ch_remote_close_ack(struct glink_transport_if *if_ptr, uint32_t rcid) { /* intentionally left blank */ } /** * dummy_tx_cmd_ch_open() - dummy channel open cmd sending function * @if_ptr: The transport to transmit on. * @lcid: The local channel id to encode. * @name: The channel name to encode. * @req_xprt: The transport the core would like to migrate this channel to. * * Return: 0 on success or standard Linux error code. */ static int dummy_tx_cmd_ch_open(struct glink_transport_if *if_ptr, uint32_t lcid, const char *name, uint16_t req_xprt) { return -EOPNOTSUPP; } /** * dummy_tx_cmd_ch_remote_open_ack() - convert a channel open ack cmd to wire * format and transmit * @if_ptr: The transport to transmit on. * @rcid: The remote channel id to encode. * @xprt_resp: The response to a transport migration request. */ static void dummy_tx_cmd_ch_remote_open_ack(struct glink_transport_if *if_ptr, uint32_t rcid, uint16_t xprt_resp) { /* intentionally left blank */ } /** * dummy_get_power_vote_ramp_time() - Dummy Power vote ramp time * @if_ptr: The transport to transmit on. * @state: The power state being requested from the transport. */ static unsigned long dummy_get_power_vote_ramp_time( struct glink_transport_if *if_ptr, uint32_t state) { return (unsigned long)-EOPNOTSUPP; } /** * dummy_power_vote() - Dummy Power vote operation * @if_ptr: The transport to transmit on. * @state: The power state being requested from the transport. */ static int dummy_power_vote(struct glink_transport_if *if_ptr, uint32_t state) { return -EOPNOTSUPP; } /** * dummy_power_unvote() - Dummy Power unvote operation * @if_ptr: The transport to transmit on. */ static int dummy_power_unvote(struct glink_transport_if *if_ptr) { return -EOPNOTSUPP; } /** * notif_if_up_all_xprts() - Check and notify existing transport state if up * @notif_info: Data structure containing transport information to be notified. * * This function is called when the client registers a notifier to know about * the state of a transport. This function matches the existing transports with * the transport in the "notif_info" parameter. When a matching transport is * found, the callback function in the "notif_info" parameter is called with * the state of the matching transport. * * If an edge or transport is not defined, then all edges and/or transports * will be matched and will receive up notifications. */ static void notif_if_up_all_xprts( struct link_state_notifier_info *notif_info) { struct glink_core_xprt_ctx *xprt_ptr; struct glink_link_state_cb_info cb_info; cb_info.link_state = GLINK_LINK_STATE_UP; mutex_lock(&transport_list_lock_lha0); list_for_each_entry(xprt_ptr, &transport_list, list_node) { if (strlen(notif_info->edge) && strcmp(notif_info->edge, xprt_ptr->edge)) continue; if (strlen(notif_info->transport) && strcmp(notif_info->transport, xprt_ptr->name)) continue; if (!xprt_is_fully_opened(xprt_ptr)) continue; cb_info.transport = xprt_ptr->name; cb_info.edge = xprt_ptr->edge; notif_info->glink_link_state_notif_cb(&cb_info, notif_info->priv); } mutex_unlock(&transport_list_lock_lha0); } /** * check_link_notifier_and_notify() - Check and notify clients about link state * @xprt_ptr: Transport whose state to be notified. * @link_state: State of the transport to be notified. * * This function is called when the state of the transport changes. This * function matches the transport with the clients that have registered to * be notified about the state changes. When a matching client notifier is * found, the callback function in the client notifier is called with the * new state of the transport. */ static void check_link_notifier_and_notify(struct glink_core_xprt_ctx *xprt_ptr, enum glink_link_state link_state) { struct link_state_notifier_info *notif_info; struct glink_link_state_cb_info cb_info; cb_info.link_state = link_state; mutex_lock(&link_state_notifier_lock_lha1); list_for_each_entry(notif_info, &link_state_notifier_list, list) { if (strlen(notif_info->edge) && strcmp(notif_info->edge, xprt_ptr->edge)) continue; if (strlen(notif_info->transport) && strcmp(notif_info->transport, xprt_ptr->name)) continue; cb_info.transport = xprt_ptr->name; cb_info.edge = xprt_ptr->edge; notif_info->glink_link_state_notif_cb(&cb_info, notif_info->priv); } mutex_unlock(&link_state_notifier_lock_lha1); } /** * Open GLINK channel. * * @cfg_ptr: Open configuration structure (the structure is copied before * glink_open returns). All unused fields should be zero-filled. * * This should not be called from link state callback context by clients. * It is recommended that client should invoke this function from their own * thread. * * Return: Pointer to channel on success, PTR_ERR() with standard Linux * error code on failure. */ void *glink_open(const struct glink_open_config *cfg) { struct channel_ctx *ctx = NULL; struct glink_core_xprt_ctx *transport_ptr; size_t len; int ret; uint16_t best_id; if (!cfg->edge || !cfg->name) { GLINK_ERR("%s: !cfg->edge || !cfg->name\n", __func__); return ERR_PTR(-EINVAL); } len = strlen(cfg->edge); if (len == 0 || len >= GLINK_NAME_SIZE) { GLINK_ERR("%s: [EDGE] len == 0 || len >= GLINK_NAME_SIZE\n", __func__); return ERR_PTR(-EINVAL); } len = strlen(cfg->name); if (len == 0 || len >= GLINK_NAME_SIZE) { GLINK_ERR("%s: [NAME] len == 0 || len >= GLINK_NAME_SIZE\n", __func__); return ERR_PTR(-EINVAL); } if (cfg->transport) { len = strlen(cfg->transport); if (len == 0 || len >= GLINK_NAME_SIZE) { GLINK_ERR("%s: [TRANSPORT] len == 0 || %s\n", __func__, "len >= GLINK_NAME_SIZE"); return ERR_PTR(-EINVAL); } } /* confirm required notification parameters */ if (!(cfg->notify_rx || cfg->notify_rxv) || !cfg->notify_tx_done || !cfg->notify_state || ((cfg->options & GLINK_OPT_RX_INTENT_NOTIF) && !cfg->notify_remote_rx_intent)) { GLINK_ERR("%s: Incorrect notification parameters\n", __func__); return ERR_PTR(-EINVAL); } /* find transport */ transport_ptr = find_open_transport(cfg->edge, cfg->transport, cfg->options & GLINK_OPT_INITIAL_XPORT, &best_id); if (IS_ERR_OR_NULL(transport_ptr)) { GLINK_ERR("%s:%s %s: Error %d - unable to find transport\n", cfg->transport, cfg->edge, __func__, (unsigned)PTR_ERR(transport_ptr)); return ERR_PTR(-ENODEV); } /* * look for an existing port structure which can occur in * reopen and remote-open-first cases */ ctx = ch_name_to_ch_ctx_create(transport_ptr, cfg->name); if (ctx == NULL) { GLINK_ERR("%s:%s %s: Error - unable to allocate new channel\n", cfg->transport, cfg->edge, __func__); return ERR_PTR(-ENOMEM); } /* port already exists */ if (ctx->local_open_state != GLINK_CHANNEL_CLOSED) { /* not ready to be re-opened */ GLINK_INFO_CH_XPRT(ctx, transport_ptr, "%s: Channel not ready to be re-opened. State: %u\n", __func__, ctx->local_open_state); return ERR_PTR(-EBUSY); } /* initialize port structure */ ctx->user_priv = cfg->priv; ctx->rx_intent_req_timeout_jiffies = msecs_to_jiffies(cfg->rx_intent_req_timeout_ms); ctx->notify_rx = cfg->notify_rx; ctx->notify_tx_done = cfg->notify_tx_done; ctx->notify_state = cfg->notify_state; ctx->notify_rx_intent_req = cfg->notify_rx_intent_req; ctx->notify_rxv = cfg->notify_rxv; ctx->notify_rx_sigs = cfg->notify_rx_sigs; ctx->notify_rx_abort = cfg->notify_rx_abort; ctx->notify_tx_abort = cfg->notify_tx_abort; ctx->notify_rx_tracer_pkt = cfg->notify_rx_tracer_pkt; ctx->notify_remote_rx_intent = cfg->notify_remote_rx_intent; if (!ctx->notify_rx_intent_req) ctx->notify_rx_intent_req = glink_dummy_notify_rx_intent_req; if (!ctx->notify_rx_sigs) ctx->notify_rx_sigs = glink_dummy_notify_rx_sigs; if (!ctx->notify_rx_abort) ctx->notify_rx_abort = glink_dummy_notify_rx_abort; if (!ctx->notify_tx_abort) ctx->notify_tx_abort = glink_dummy_notify_tx_abort; if (!ctx->rx_intent_req_timeout_jiffies) ctx->rx_intent_req_timeout_jiffies = MAX_SCHEDULE_TIMEOUT; ctx->local_xprt_req = best_id; ctx->no_migrate = cfg->transport && !(cfg->options & GLINK_OPT_INITIAL_XPORT); ctx->transport_ptr = transport_ptr; ctx->local_open_state = GLINK_CHANNEL_OPENING; GLINK_INFO_PERF_CH(ctx, "%s: local:GLINK_CHANNEL_CLOSED->GLINK_CHANNEL_OPENING\n", __func__); /* start local-open sequence */ ret = ctx->transport_ptr->ops->tx_cmd_ch_open(ctx->transport_ptr->ops, ctx->lcid, cfg->name, best_id); if (ret) { /* failure to send open command (transport failure) */ ctx->local_open_state = GLINK_CHANNEL_CLOSED; GLINK_ERR_CH(ctx, "%s: Unable to send open command %d\n", __func__, ret); return ERR_PTR(ret); } GLINK_INFO_CH(ctx, "%s: Created channel, sent OPEN command. ctx %p\n", __func__, ctx); return ctx; } EXPORT_SYMBOL(glink_open); /** * glink_get_channel_id_for_handle() - Get logical channel ID * * @handle: handle of channel * * Used internally by G-Link debugfs. * * Return: Logical Channel ID or standard Linux error code */ int glink_get_channel_id_for_handle(void *handle) { struct channel_ctx *ctx = (struct channel_ctx *)handle; if (ctx == NULL) return -EINVAL; return ctx->lcid; } EXPORT_SYMBOL(glink_get_channel_id_for_handle); /** * glink_get_channel_name_for_handle() - return channel name * * @handle: handle of channel * * Used internally by G-Link debugfs. * * Return: Channel name or NULL */ char *glink_get_channel_name_for_handle(void *handle) { struct channel_ctx *ctx = (struct channel_ctx *)handle; if (ctx == NULL) return NULL; return ctx->name; } EXPORT_SYMBOL(glink_get_channel_name_for_handle); /** * glink_delete_ch_from_list() - delete the channel from the list * @ctx: Pointer to channel context. * @add_flcid: Boolean value to decide whether the lcid should be added or not. * * This function deletes the channel from the list along with the debugfs * information associated with it. It also adds the channel lcid to the free * lcid list except if the channel is deleted in case of ssr/unregister case. * It can only called when channel is fully closed. * * Return: true when transport_ptr->channels is empty. */ static bool glink_delete_ch_from_list(struct channel_ctx *ctx, bool add_flcid) { unsigned long flags; bool ret = false; spin_lock_irqsave(&ctx->transport_ptr->xprt_ctx_lock_lhb1, flags); if (!list_empty(&ctx->port_list_node)) list_del_init(&ctx->port_list_node); if (list_empty(&ctx->transport_ptr->channels) && list_empty(&ctx->transport_ptr->notified)) ret = true; spin_unlock_irqrestore( &ctx->transport_ptr->xprt_ctx_lock_lhb1, flags); if (add_flcid) glink_add_free_lcid_list(ctx); mutex_lock(&ctx->transport_ptr->xprt_dbgfs_lock_lhb4); glink_debugfs_remove_channel(ctx, ctx->transport_ptr); mutex_unlock(&ctx->transport_ptr->xprt_dbgfs_lock_lhb4); rwref_put(&ctx->ch_state_lhb2); return ret; } /** * glink_close() - Close a previously opened channel. * * @handle: handle to close * * Once the closing process has been completed, the GLINK_LOCAL_DISCONNECTED * state event will be sent and the channel can be reopened. * * Return: 0 on success; -EINVAL for invalid handle, -EBUSY is close is * already in progress, standard Linux Error code otherwise. */ int glink_close(void *handle) { struct glink_core_xprt_ctx *xprt_ctx = NULL; struct channel_ctx *ctx = (struct channel_ctx *)handle; int ret = -EINVAL; unsigned long flags; bool is_empty = false; ret = glink_get_ch_ctx(ctx); if (ret) return ret; GLINK_INFO_CH(ctx, "%s: Closing channel, ctx: %p\n", __func__, ctx); if (ctx->local_open_state == GLINK_CHANNEL_CLOSED) { glink_put_ch_ctx(ctx); return 0; } if (ctx->local_open_state == GLINK_CHANNEL_CLOSING) { /* close already pending */ glink_put_ch_ctx(ctx); return -EBUSY; } rwref_get(&ctx->ch_state_lhb2); relock: xprt_ctx = ctx->transport_ptr; rwref_read_get(&xprt_ctx->xprt_state_lhb0); rwref_write_get(&ctx->ch_state_lhb2); if (xprt_ctx != ctx->transport_ptr) { rwref_write_put(&ctx->ch_state_lhb2); rwref_read_put(&xprt_ctx->xprt_state_lhb0); goto relock; } /* Set the channel state before removing it from xprt's list(s) */ GLINK_INFO_PERF_CH(ctx, "%s: local:%u->GLINK_CHANNEL_CLOSING\n", __func__, ctx->local_open_state); ctx->local_open_state = GLINK_CHANNEL_CLOSING; ctx->pending_delete = true; ctx->int_req_ack = false; spin_lock_irqsave(&xprt_ctx->tx_ready_lock_lhb3, flags); if (!list_empty(&ctx->tx_ready_list_node)) list_del_init(&ctx->tx_ready_list_node); spin_unlock_irqrestore(&xprt_ctx->tx_ready_lock_lhb3, flags); if (xprt_ctx->local_state != GLINK_XPRT_DOWN) { glink_qos_reset_priority(ctx); ret = xprt_ctx->ops->tx_cmd_ch_close(xprt_ctx->ops, ctx->lcid); rwref_write_put(&ctx->ch_state_lhb2); } else if (!strcmp(xprt_ctx->name, "dummy")) { /* * This check will avoid any race condition when clients call * glink_close before the dummy xprt swapping happens in link * down scenario. */ ret = 0; rwref_write_put(&ctx->ch_state_lhb2); glink_core_ch_close_ack_common(ctx, false); if (ch_is_fully_closed(ctx)) { is_empty = glink_delete_ch_from_list(ctx, false); rwref_put(&xprt_ctx->xprt_state_lhb0); if (is_empty && !xprt_ctx->dummy_in_use) /* For the xprt reference */ rwref_put(&xprt_ctx->xprt_state_lhb0); } else { GLINK_ERR_CH(ctx, "channel Not closed yet local state [%d] remote_state [%d]\n", ctx->local_open_state, ctx->remote_opened); } } else { /* * This case handles the scenario where glink_core_link_down * changes the local_state to GLINK_XPRT_DOWN but glink_close * gets the channel write lock before glink_core_channel_cleanup */ rwref_write_put(&ctx->ch_state_lhb2); } complete_all(&ctx->int_req_ack_complete); complete_all(&ctx->int_req_complete); rwref_put(&ctx->ch_state_lhb2); rwref_read_put(&xprt_ctx->xprt_state_lhb0); glink_put_ch_ctx(ctx); return ret; } EXPORT_SYMBOL(glink_close); /** * glink_tx_pkt_release() - Release a packet's transmit information * @tx_pkt_ref: Packet information which needs to be released. * * This function is called when all the references to a packet information * is dropped. */ static void glink_tx_pkt_release(struct rwref_lock *tx_pkt_ref) { struct glink_core_tx_pkt *tx_info = container_of(tx_pkt_ref, struct glink_core_tx_pkt, pkt_ref); if (!list_empty(&tx_info->list_done)) list_del_init(&tx_info->list_done); if (!list_empty(&tx_info->list_node)) list_del_init(&tx_info->list_node); if (tx_info->free_buf) kfree(tx_info->data); kfree(tx_info); } /** * glink_tx_common() - Common TX implementation * * @handle: handle returned by glink_open() * @pkt_priv: opaque data value that will be returned to client with * notify_tx_done notification * @data: pointer to the data * @size: size of data * @vbuf_provider: Virtual Address-space Buffer Provider for the tx buffer. * @vbuf_provider: Physical Address-space Buffer Provider for the tx buffer. * @tx_flags: Flags to indicate transmit options * * Return: -EINVAL for invalid handle; -EBUSY if channel isn't ready for * transmit operation (not fully opened); -EAGAIN if remote side * has not provided a receive intent that is big enough. */ static int glink_tx_common(void *handle, void *pkt_priv, void *data, void *iovec, size_t size, void * (*vbuf_provider)(void *iovec, size_t offset, size_t *size), void * (*pbuf_provider)(void *iovec, size_t offset, size_t *size), uint32_t tx_flags) { struct channel_ctx *ctx = (struct channel_ctx *)handle; uint32_t riid; int ret = 0; struct glink_core_tx_pkt *tx_info; size_t intent_size; bool is_atomic = tx_flags & (GLINK_TX_SINGLE_THREADED | GLINK_TX_ATOMIC); unsigned long flags; void *cookie = NULL; if (!size) return -EINVAL; ret = glink_get_ch_ctx(ctx); if (ret) return ret; rwref_read_get_atomic(&ctx->ch_state_lhb2, is_atomic); if (!(vbuf_provider || pbuf_provider)) { ret = -EINVAL; goto glink_tx_common_err; } if (!ch_is_fully_opened(ctx)) { ret = -EBUSY; goto glink_tx_common_err; } if (size > GLINK_MAX_PKT_SIZE) { ret = -EINVAL; goto glink_tx_common_err; } if (unlikely(tx_flags & GLINK_TX_TRACER_PKT)) { if (!(ctx->transport_ptr->capabilities & GCAP_TRACER_PKT)) { ret = -EOPNOTSUPP; goto glink_tx_common_err; } tracer_pkt_log_event(data, GLINK_CORE_TX); } /* find matching rx intent (best-fit algorithm for now) */ if (ch_pop_remote_rx_intent(ctx, size, &riid, &intent_size, &cookie)) { if (!(tx_flags & GLINK_TX_REQ_INTENT)) { /* no rx intent available */ GLINK_ERR_CH(ctx, "%s: R[%u]:%zu Intent not present for lcid\n", __func__, riid, size); ret = -EAGAIN; goto glink_tx_common_err; } if (is_atomic && !(ctx->transport_ptr->capabilities & GCAP_AUTO_QUEUE_RX_INT)) { GLINK_ERR_CH(ctx, "%s: Cannot request intent in atomic context\n", __func__); ret = -EINVAL; goto glink_tx_common_err; } /* request intent of correct size */ reinit_completion(&ctx->int_req_ack_complete); ret = ctx->transport_ptr->ops->tx_cmd_rx_intent_req( ctx->transport_ptr->ops, ctx->lcid, size); if (ret) { GLINK_ERR_CH(ctx, "%s: Request intent failed %d\n", __func__, ret); goto glink_tx_common_err; } while (ch_pop_remote_rx_intent(ctx, size, &riid, &intent_size, &cookie)) { rwref_read_put(&ctx->ch_state_lhb2); if (is_atomic) { GLINK_ERR_CH(ctx, "%s Intent of size %zu not ready\n", __func__, size); ret = -EAGAIN; goto glink_tx_common_err_2; } if (ctx->transport_ptr->local_state == GLINK_XPRT_DOWN || !ch_is_fully_opened(ctx)) { GLINK_ERR_CH(ctx, "%s: Channel closed while waiting for intent\n", __func__); ret = -EBUSY; goto glink_tx_common_err_2; } /* wait for the remote intent req ack */ if (!wait_for_completion_timeout( &ctx->int_req_ack_complete, ctx->rx_intent_req_timeout_jiffies)) { GLINK_ERR_CH(ctx, "%s: Intent request ack with size: %zu not granted for lcid\n", __func__, size); ret = -ETIMEDOUT; goto glink_tx_common_err_2; } if (!ctx->int_req_ack) { GLINK_ERR_CH(ctx, "%s: Intent Request with size: %zu %s", __func__, size, "not granted for lcid\n"); ret = -EAGAIN; goto glink_tx_common_err_2; } /* wait for the rx_intent from remote side */ if (!wait_for_completion_timeout( &ctx->int_req_complete, ctx->rx_intent_req_timeout_jiffies)) { GLINK_ERR_CH(ctx, "%s: Intent request with size: %zu not granted for lcid\n", __func__, size); ret = -ETIMEDOUT; goto glink_tx_common_err_2; } reinit_completion(&ctx->int_req_complete); rwref_read_get(&ctx->ch_state_lhb2); } } if (!is_atomic) { spin_lock_irqsave(&ctx->transport_ptr->tx_ready_lock_lhb3, flags); glink_pm_qos_vote(ctx->transport_ptr); spin_unlock_irqrestore(&ctx->transport_ptr->tx_ready_lock_lhb3, flags); } GLINK_INFO_PERF_CH(ctx, "%s: R[%u]:%zu data[%p], size[%zu]. TID %u\n", __func__, riid, intent_size, data ? data : iovec, size, current->pid); tx_info = kzalloc(sizeof(struct glink_core_tx_pkt), is_atomic ? GFP_ATOMIC : GFP_KERNEL); if (!tx_info) { GLINK_ERR_CH(ctx, "%s: No memory for allocation\n", __func__); ch_push_remote_rx_intent(ctx, intent_size, riid, cookie); ret = -ENOMEM; goto glink_tx_common_err; } rwref_lock_init(&tx_info->pkt_ref, glink_tx_pkt_release); INIT_LIST_HEAD(&tx_info->list_done); INIT_LIST_HEAD(&tx_info->list_node); tx_info->pkt_priv = pkt_priv; tx_info->data = data; tx_info->riid = riid; tx_info->rcid = ctx->rcid; tx_info->size = size; tx_info->size_remaining = size; tx_info->tracer_pkt = tx_flags & GLINK_TX_TRACER_PKT ? true : false; tx_info->iovec = iovec ? iovec : (void *)tx_info; tx_info->free_buf = iovec ? false : true; tx_info->vprovider = vbuf_provider; tx_info->pprovider = pbuf_provider; tx_info->intent_size = intent_size; tx_info->cookie = cookie; /* schedule packet for transmit */ if ((tx_flags & GLINK_TX_SINGLE_THREADED) && (ctx->transport_ptr->capabilities & GCAP_INTENTLESS)) ret = xprt_single_threaded_tx(ctx->transport_ptr, ctx, tx_info); else xprt_schedule_tx(ctx->transport_ptr, ctx, tx_info); glink_tx_common_err: rwref_read_put(&ctx->ch_state_lhb2); glink_tx_common_err_2: glink_put_ch_ctx(ctx); return ret; } /** * glink_tx() - Transmit packet. * * @handle: handle returned by glink_open() * @pkt_priv: opaque data value that will be returned to client with * notify_tx_done notification * @data: pointer to the data * @size: size of data * @tx_flags: Flags to specify transmit specific options * * Return: -EINVAL for invalid handle; -EBUSY if channel isn't ready for * transmit operation (not fully opened); -EAGAIN if remote side * has not provided a receive intent that is big enough. */ int glink_tx(void *handle, void *pkt_priv, void *data, size_t size, uint32_t tx_flags) { void *data_tmp = kzalloc(size, GFP_KERNEL); if (!data_tmp) return -ENOMEM; memcpy(data_tmp, data, size); return glink_tx_common(handle, pkt_priv, data_tmp, NULL, size, tx_linear_vbuf_provider, NULL, tx_flags); } EXPORT_SYMBOL(glink_tx); /** * glink_queue_rx_intent() - Register an intent to receive data. * * @handle: handle returned by glink_open() * @pkt_priv: opaque data type that is returned when a packet is received * size: maximum size of data to receive * * Return: 0 for success; standard Linux error code for failure case */ int glink_queue_rx_intent(void *handle, const void *pkt_priv, size_t size) { struct channel_ctx *ctx = (struct channel_ctx *)handle; struct glink_core_rx_intent *intent_ptr; int ret = 0; ret = glink_get_ch_ctx(ctx); if (ret) return ret; if (!ch_is_fully_opened(ctx)) { /* Can only queue rx intents if channel is fully opened */ GLINK_ERR_CH(ctx, "%s: Channel is not fully opened\n", __func__); glink_put_ch_ctx(ctx); return -EBUSY; } intent_ptr = ch_push_local_rx_intent(ctx, pkt_priv, size); if (!intent_ptr) { GLINK_ERR_CH(ctx, "%s: Intent pointer allocation failed size[%zu]\n", __func__, size); glink_put_ch_ctx(ctx); return -ENOMEM; } GLINK_DBG_CH(ctx, "%s: L[%u]:%zu\n", __func__, intent_ptr->id, intent_ptr->intent_size); if (ctx->transport_ptr->capabilities & GCAP_INTENTLESS) { glink_put_ch_ctx(ctx); return ret; } /* notify remote side of rx intent */ ret = ctx->transport_ptr->ops->tx_cmd_local_rx_intent( ctx->transport_ptr->ops, ctx->lcid, size, intent_ptr->id); if (ret) /* unable to transmit, dequeue intent */ ch_remove_local_rx_intent(ctx, intent_ptr->id); glink_put_ch_ctx(ctx); return ret; } EXPORT_SYMBOL(glink_queue_rx_intent); /** * glink_rx_intent_exists() - Check if an intent exists. * * @handle: handle returned by glink_open() * @size: size of an intent to check or 0 for any intent * * Return: TRUE if an intent exists with greater than or equal to the size * else FALSE */ bool glink_rx_intent_exists(void *handle, size_t size) { struct channel_ctx *ctx = (struct channel_ctx *)handle; struct glink_core_rx_intent *intent; unsigned long flags; int ret; if (!ctx || !ch_is_fully_opened(ctx)) return false; ret = glink_get_ch_ctx(ctx); if (ret) return false; spin_lock_irqsave(&ctx->local_rx_intent_lst_lock_lhc1, flags); list_for_each_entry(intent, &ctx->local_rx_intent_list, list) { if (size <= intent->intent_size) { spin_unlock_irqrestore( &ctx->local_rx_intent_lst_lock_lhc1, flags); glink_put_ch_ctx(ctx); return true; } } spin_unlock_irqrestore(&ctx->local_rx_intent_lst_lock_lhc1, flags); glink_put_ch_ctx(ctx); return false; } EXPORT_SYMBOL(glink_rx_intent_exists); /** * glink_rx_done() - Return receive buffer to remote side. * * @handle: handle returned by glink_open() * @ptr: data pointer provided in the notify_rx() call * @reuse: if true, receive intent is re-used * * Return: 0 for success; standard Linux error code for failure case */ int glink_rx_done(void *handle, const void *ptr, bool reuse) { struct channel_ctx *ctx = (struct channel_ctx *)handle; struct glink_core_rx_intent *liid_ptr; uint32_t id; int ret = 0; ret = glink_get_ch_ctx(ctx); if (ret) return ret; liid_ptr = ch_get_local_rx_intent_notified(ctx, ptr); if (IS_ERR_OR_NULL(liid_ptr)) { /* invalid pointer */ GLINK_ERR_CH(ctx, "%s: Invalid pointer %p\n", __func__, ptr); glink_put_ch_ctx(ctx); return -EINVAL; } GLINK_INFO_PERF_CH(ctx, "%s: L[%u]: data[%p]. TID %u\n", __func__, liid_ptr->id, ptr, current->pid); id = liid_ptr->id; if (reuse) { ret = ctx->transport_ptr->ops->reuse_rx_intent( ctx->transport_ptr->ops, liid_ptr); if (ret) { GLINK_ERR_CH(ctx, "%s: Intent reuse err %d for %p\n", __func__, ret, ptr); ret = -ENOBUFS; reuse = false; ctx->transport_ptr->ops->deallocate_rx_intent( ctx->transport_ptr->ops, liid_ptr); } } else { ctx->transport_ptr->ops->deallocate_rx_intent( ctx->transport_ptr->ops, liid_ptr); } ch_remove_local_rx_intent_notified(ctx, liid_ptr, reuse); /* send rx done */ ctx->transport_ptr->ops->tx_cmd_local_rx_done(ctx->transport_ptr->ops, ctx->lcid, id, reuse); glink_put_ch_ctx(ctx); return ret; } EXPORT_SYMBOL(glink_rx_done); /** * glink_txv() - Transmit a packet in vector form. * * @handle: handle returned by glink_open() * @pkt_priv: opaque data value that will be returned to client with * notify_tx_done notification * @iovec: pointer to the vector (must remain valid until notify_tx_done * notification) * @size: size of data/vector * @vbuf_provider: Client provided helper function to iterate the vector * in physical address space * @pbuf_provider: Client provided helper function to iterate the vector * in virtual address space * @tx_flags: Flags to specify transmit specific options * * Return: -EINVAL for invalid handle; -EBUSY if channel isn't ready for * transmit operation (not fully opened); -EAGAIN if remote side has * not provided a receive intent that is big enough. */ int glink_txv(void *handle, void *pkt_priv, void *iovec, size_t size, void * (*vbuf_provider)(void *iovec, size_t offset, size_t *size), void * (*pbuf_provider)(void *iovec, size_t offset, size_t *size), uint32_t tx_flags) { return glink_tx_common(handle, pkt_priv, NULL, iovec, size, vbuf_provider, pbuf_provider, tx_flags); } EXPORT_SYMBOL(glink_txv); /** * glink_sigs_set() - Set the local signals for the GLINK channel * * @handle: handle returned by glink_open() * @sigs: modified signal value * * Return: 0 for success; standard Linux error code for failure case */ int glink_sigs_set(void *handle, uint32_t sigs) { struct channel_ctx *ctx = (struct channel_ctx *)handle; int ret; ret = glink_get_ch_ctx(ctx); if (ret) return ret; if (!ch_is_fully_opened(ctx)) { GLINK_ERR_CH(ctx, "%s: Channel is not fully opened\n", __func__); glink_put_ch_ctx(ctx); return -EBUSY; } ctx->lsigs = sigs; ret = ctx->transport_ptr->ops->tx_cmd_set_sigs(ctx->transport_ptr->ops, ctx->lcid, ctx->lsigs); GLINK_INFO_CH(ctx, "%s: Sent SIGNAL SET command\n", __func__); glink_put_ch_ctx(ctx); return ret; } EXPORT_SYMBOL(glink_sigs_set); /** * glink_sigs_local_get() - Get the local signals for the GLINK channel * * handle: handle returned by glink_open() * sigs: Pointer to hold the signals * * Return: 0 for success; standard Linux error code for failure case */ int glink_sigs_local_get(void *handle, uint32_t *sigs) { struct channel_ctx *ctx = (struct channel_ctx *)handle; int ret; if (!sigs) return -EINVAL; ret = glink_get_ch_ctx(ctx); if (ret) return ret; if (!ch_is_fully_opened(ctx)) { GLINK_ERR_CH(ctx, "%s: Channel is not fully opened\n", __func__); glink_put_ch_ctx(ctx); return -EBUSY; } *sigs = ctx->lsigs; glink_put_ch_ctx(ctx); return 0; } EXPORT_SYMBOL(glink_sigs_local_get); /** * glink_sigs_remote_get() - Get the Remote signals for the GLINK channel * * handle: handle returned by glink_open() * sigs: Pointer to hold the signals * * Return: 0 for success; standard Linux error code for failure case */ int glink_sigs_remote_get(void *handle, uint32_t *sigs) { struct channel_ctx *ctx = (struct channel_ctx *)handle; int ret; if (!sigs) return -EINVAL; ret = glink_get_ch_ctx(ctx); if (ret) return ret; if (!ch_is_fully_opened(ctx)) { GLINK_ERR_CH(ctx, "%s: Channel is not fully opened\n", __func__); glink_put_ch_ctx(ctx); return -EBUSY; } *sigs = ctx->rsigs; glink_put_ch_ctx(ctx); return 0; } EXPORT_SYMBOL(glink_sigs_remote_get); /** * glink_register_link_state_cb() - Register for link state notification * @link_info: Data structure containing the link identification and callback. * @priv: Private information to be passed with the callback. * * This function is used to register a notifier to receive the updates about a * link's/transport's state. This notifier needs to be registered first before * an attempt to open a channel. * * Return: a reference to the notifier handle. */ void *glink_register_link_state_cb(struct glink_link_info *link_info, void *priv) { struct link_state_notifier_info *notif_info; if (!link_info || !link_info->glink_link_state_notif_cb) return ERR_PTR(-EINVAL); notif_info = kzalloc(sizeof(*notif_info), GFP_KERNEL); if (!notif_info) { GLINK_ERR("%s: Error allocating link state notifier info\n", __func__); return ERR_PTR(-ENOMEM); } if (link_info->transport) strlcpy(notif_info->transport, link_info->transport, GLINK_NAME_SIZE); if (link_info->edge) strlcpy(notif_info->edge, link_info->edge, GLINK_NAME_SIZE); notif_info->priv = priv; notif_info->glink_link_state_notif_cb = link_info->glink_link_state_notif_cb; mutex_lock(&link_state_notifier_lock_lha1); list_add_tail(¬if_info->list, &link_state_notifier_list); mutex_unlock(&link_state_notifier_lock_lha1); notif_if_up_all_xprts(notif_info); return notif_info; } EXPORT_SYMBOL(glink_register_link_state_cb); /** * glink_unregister_link_state_cb() - Unregister the link state notification * notif_handle: Handle to be unregistered. * * This function is used to unregister a notifier to stop receiving the updates * about a link's/ transport's state. */ void glink_unregister_link_state_cb(void *notif_handle) { struct link_state_notifier_info *notif_info, *tmp_notif_info; if (IS_ERR_OR_NULL(notif_handle)) return; mutex_lock(&link_state_notifier_lock_lha1); list_for_each_entry_safe(notif_info, tmp_notif_info, &link_state_notifier_list, list) { if (notif_info == notif_handle) { list_del(¬if_info->list); mutex_unlock(&link_state_notifier_lock_lha1); kfree(notif_info); return; } } mutex_unlock(&link_state_notifier_lock_lha1); return; } EXPORT_SYMBOL(glink_unregister_link_state_cb); /** * glink_qos_latency() - Register the latency QoS requirement * @handle: Channel handle in which the latency is required. * @latency_us: Latency requirement in units of micro-seconds. * @pkt_size: Worst case packet size for which the latency is required. * * This function is used to register the latency requirement for a channel * and ensures that the latency requirement for this channel is met without * impacting the existing latency requirements of other channels. * * Return: 0 if QoS request is achievable, standard Linux error codes on error */ int glink_qos_latency(void *handle, unsigned long latency_us, size_t pkt_size) { struct channel_ctx *ctx = (struct channel_ctx *)handle; int ret; unsigned long req_rate_kBps; if (!latency_us || !pkt_size) return -EINVAL; ret = glink_get_ch_ctx(ctx); if (ret) return ret; if (!ch_is_fully_opened(ctx)) { GLINK_ERR_CH(ctx, "%s: Channel is not fully opened\n", __func__); glink_put_ch_ctx(ctx); return -EBUSY; } req_rate_kBps = glink_qos_calc_rate_kBps(pkt_size, latency_us); ret = glink_qos_assign_priority(ctx, req_rate_kBps); if (ret < 0) GLINK_ERR_CH(ctx, "%s: QoS %lu:%zu cannot be met\n", __func__, latency_us, pkt_size); glink_put_ch_ctx(ctx); return ret; } EXPORT_SYMBOL(glink_qos_latency); /** * glink_qos_cancel() - Cancel or unregister the QoS request * @handle: Channel handle for which the QoS request is cancelled. * * This function is used to cancel/unregister the QoS requests for a channel. * * Return: 0 on success, standard Linux error codes on failure */ int glink_qos_cancel(void *handle) { struct channel_ctx *ctx = (struct channel_ctx *)handle; int ret; ret = glink_get_ch_ctx(ctx); if (ret) return ret; if (!ch_is_fully_opened(ctx)) { GLINK_ERR_CH(ctx, "%s: Channel is not fully opened\n", __func__); glink_put_ch_ctx(ctx); return -EBUSY; } ret = glink_qos_reset_priority(ctx); glink_put_ch_ctx(ctx); return ret; } EXPORT_SYMBOL(glink_qos_cancel); /** * glink_qos_start() - Start of the transmission requiring QoS * @handle: Channel handle in which the transmit activity is performed. * * This function is called by the clients to indicate G-Link regarding the * start of the transmission which requires a certain QoS. The clients * must account for the QoS ramp time to ensure meeting the QoS. * * Return: 0 on success, standard Linux error codes on failure */ int glink_qos_start(void *handle) { struct channel_ctx *ctx = (struct channel_ctx *)handle; int ret; unsigned long flags; ret = glink_get_ch_ctx(ctx); if (ret) return ret; if (!ch_is_fully_opened(ctx)) { GLINK_ERR_CH(ctx, "%s: Channel is not fully opened\n", __func__); glink_put_ch_ctx(ctx); return -EBUSY; } spin_lock_irqsave(&ctx->transport_ptr->tx_ready_lock_lhb3, flags); spin_lock(&ctx->tx_lists_lock_lhc3); ret = glink_qos_add_ch_tx_intent(ctx); spin_unlock(&ctx->tx_lists_lock_lhc3); spin_unlock_irqrestore(&ctx->transport_ptr->tx_ready_lock_lhb3, flags); glink_put_ch_ctx(ctx); return ret; } EXPORT_SYMBOL(glink_qos_start); /** * glink_qos_get_ramp_time() - Get the QoS ramp time * @handle: Channel handle for which the QoS ramp time is required. * @pkt_size: Worst case packet size. * * This function is called by the clients to obtain the ramp time required * to meet the QoS requirements. * * Return: QoS ramp time is returned in units of micro-seconds on success, * standard Linux error codes cast to unsigned long on error. */ unsigned long glink_qos_get_ramp_time(void *handle, size_t pkt_size) { struct channel_ctx *ctx = (struct channel_ctx *)handle; int ret; ret = glink_get_ch_ctx(ctx); if (ret) return (unsigned long)ret; if (!ch_is_fully_opened(ctx)) { GLINK_ERR_CH(ctx, "%s: Channel is not fully opened\n", __func__); glink_put_ch_ctx(ctx); return (unsigned long)-EBUSY; } glink_put_ch_ctx(ctx); return ctx->transport_ptr->ops->get_power_vote_ramp_time( ctx->transport_ptr->ops, glink_prio_to_power_state(ctx->transport_ptr, ctx->initial_priority)); } EXPORT_SYMBOL(glink_qos_get_ramp_time); /** * glink_rpm_rx_poll() - Poll and receive any available events * @handle: Channel handle in which this operation is performed. * * This function is used to poll and receive events and packets while the * receive interrupt from RPM is disabled. * * Note that even if a return value > 0 is returned indicating that some events * were processed, clients should only use the notification functions passed * into glink_open() to determine if an entire packet has been received since * some events may be internal details that are not visible to clients. * * Return: 0 for no packets available; > 0 for events available; standard * Linux error codes on failure. */ int glink_rpm_rx_poll(void *handle) { struct channel_ctx *ctx = (struct channel_ctx *)handle; if (!ctx) return -EINVAL; if (!ch_is_fully_opened(ctx)) return -EBUSY; if (!ctx->transport_ptr || !(ctx->transport_ptr->capabilities & GCAP_INTENTLESS)) return -EOPNOTSUPP; return ctx->transport_ptr->ops->poll(ctx->transport_ptr->ops, ctx->lcid); } EXPORT_SYMBOL(glink_rpm_rx_poll); /** * glink_rpm_mask_rx_interrupt() - Mask or unmask the RPM receive interrupt * @handle: Channel handle in which this operation is performed. * @mask: Flag to mask or unmask the interrupt. * @pstruct: Pointer to any platform specific data. * * This function is used to mask or unmask the receive interrupt from RPM. * "mask" set to true indicates masking the interrupt and when set to false * indicates unmasking the interrupt. * * Return: 0 on success, standard Linux error codes on failure. */ int glink_rpm_mask_rx_interrupt(void *handle, bool mask, void *pstruct) { struct channel_ctx *ctx = (struct channel_ctx *)handle; if (!ctx) return -EINVAL; if (!ch_is_fully_opened(ctx)) return -EBUSY; if (!ctx->transport_ptr || !(ctx->transport_ptr->capabilities & GCAP_INTENTLESS)) return -EOPNOTSUPP; return ctx->transport_ptr->ops->mask_rx_irq(ctx->transport_ptr->ops, ctx->lcid, mask, pstruct); } EXPORT_SYMBOL(glink_rpm_mask_rx_interrupt); /** * glink_wait_link_down() - Get status of link * @handle: Channel handle in which this operation is performed * * This function will query the transport for its status, to allow clients to * proceed in cleanup operations. */ int glink_wait_link_down(void *handle) { struct channel_ctx *ctx = (struct channel_ctx *)handle; int ret; ret = glink_get_ch_ctx(ctx); if (ret) return ret; if (!ctx->transport_ptr) { glink_put_ch_ctx(ctx); return -EOPNOTSUPP; } glink_put_ch_ctx(ctx); return ctx->transport_ptr->ops->wait_link_down(ctx->transport_ptr->ops); } EXPORT_SYMBOL(glink_wait_link_down); /** * glink_xprt_ctx_release - Free the transport context * @ch_st_lock: handle to the rwref_lock associated with the transport * * This should only be called when the reference count associated with the * transport goes to zero. */ void glink_xprt_ctx_release(struct rwref_lock *xprt_st_lock) { struct glink_dbgfs xprt_rm_dbgfs; struct glink_core_xprt_ctx *xprt_ctx = container_of(xprt_st_lock, struct glink_core_xprt_ctx, xprt_state_lhb0); GLINK_INFO("%s: freeing transport [%s->%s]context\n", __func__, xprt_ctx->name, xprt_ctx->edge); xprt_rm_dbgfs.curr_name = xprt_ctx->name; xprt_rm_dbgfs.par_name = "xprt"; glink_debugfs_remove_recur(&xprt_rm_dbgfs); GLINK_INFO("%s: xprt debugfs removec\n", __func__); rwref_put(&xprt_ctx->edge_ctx->edge_ref_lock_lhd1); kthread_stop(xprt_ctx->tx_task); xprt_ctx->tx_task = NULL; glink_core_deinit_xprt_qos_cfg(xprt_ctx); kfree(xprt_ctx); xprt_ctx = NULL; } /** * glink_dummy_xprt_ctx_release - free the dummy transport context * @xprt_st_lock: Handle to the rwref_lock associated with the transport. * * The release function is called when all the channels on this dummy * transport are closed and the reference count goes to zero. */ static void glink_dummy_xprt_ctx_release(struct rwref_lock *xprt_st_lock) { struct glink_core_xprt_ctx *xprt_ctx = container_of(xprt_st_lock, struct glink_core_xprt_ctx, xprt_state_lhb0); GLINK_INFO("%s: freeing transport [%s->%s]context\n", __func__, xprt_ctx->name, xprt_ctx->edge); kfree(xprt_ctx->ops); xprt_ctx->ops = NULL; kfree(xprt_ctx); } /** * glink_xprt_name_to_id() - convert transport name to id * @name: Name of the transport. * @id: Assigned id. * * Return: 0 on success or standard Linux error code. */ int glink_xprt_name_to_id(const char *name, uint16_t *id) { if (!strcmp(name, "smem")) { *id = SMEM_XPRT_ID; return 0; } if (!strcmp(name, "bgcom")) { *id = SPIV2_XPRT_ID; return 0; } if (!strcmp(name, "mailbox")) { *id = SMEM_XPRT_ID; return 0; } if (!strcmp(name, "smd_trans")) { *id = SMD_TRANS_XPRT_ID; return 0; } if (!strcmp(name, "lloop")) { *id = LLOOP_XPRT_ID; return 0; } if (!strcmp(name, "mock")) { *id = MOCK_XPRT_ID; return 0; } if (!strcmp(name, "mock_low")) { *id = MOCK_XPRT_LOW_ID; return 0; } if (!strcmp(name, "mock_high")) { *id = MOCK_XPRT_HIGH_ID; return 0; } return -ENODEV; } EXPORT_SYMBOL(glink_xprt_name_to_id); /** * of_get_glink_core_qos_cfg() - Parse the qos related dt entries * @phandle: The handle to the qos related node in DT. * @cfg: The transport configuration to be filled. * * Return: 0 on Success, standard Linux error otherwise. */ int of_get_glink_core_qos_cfg(struct device_node *phandle, struct glink_core_transport_cfg *cfg) { int rc, i; char *key; uint32_t num_flows; uint32_t *arr32; if (!phandle) { GLINK_ERR("%s: phandle is NULL\n", __func__); return -EINVAL; } key = "qcom,mtu-size"; rc = of_property_read_u32(phandle, key, (uint32_t *)&cfg->mtu); if (rc) { GLINK_ERR("%s: missing key %s\n", __func__, key); return -ENODEV; } key = "qcom,tput-stats-cycle"; rc = of_property_read_u32(phandle, key, &cfg->token_count); if (rc) { GLINK_ERR("%s: missing key %s\n", __func__, key); rc = -ENODEV; goto error; } key = "qcom,flow-info"; if (!of_find_property(phandle, key, &num_flows)) { GLINK_ERR("%s: missing key %s\n", __func__, key); rc = -ENODEV; goto error; } num_flows /= sizeof(uint32_t); if (num_flows % 2) { GLINK_ERR("%s: Invalid flow info length\n", __func__); rc = -EINVAL; goto error; } num_flows /= 2; cfg->num_flows = num_flows; cfg->flow_info = kmalloc_array(num_flows, sizeof(*(cfg->flow_info)), GFP_KERNEL); if (!cfg->flow_info) { GLINK_ERR("%s: Memory allocation for flow info failed\n", __func__); rc = -ENOMEM; goto error; } arr32 = kmalloc_array(num_flows * 2, sizeof(uint32_t), GFP_KERNEL); if (!arr32) { GLINK_ERR("%s: Memory allocation for temporary array failed\n", __func__); rc = -ENOMEM; goto temp_mem_alloc_fail; } of_property_read_u32_array(phandle, key, arr32, num_flows * 2); for (i = 0; i < num_flows; i++) { cfg->flow_info[i].mtu_tx_time_us = arr32[2 * i]; cfg->flow_info[i].power_state = arr32[2 * i + 1]; } kfree(arr32); of_node_put(phandle); return 0; temp_mem_alloc_fail: kfree(cfg->flow_info); error: cfg->mtu = 0; cfg->token_count = 0; cfg->num_flows = 0; cfg->flow_info = NULL; return rc; } EXPORT_SYMBOL(of_get_glink_core_qos_cfg); /** * glink_core_init_xprt_qos_cfg() - Initialize a transport's QoS configuration * @xprt_ptr: Transport to be initialized with QoS configuration. * @cfg: Data structure containing QoS configuration. * * This function is used during the transport registration to initialize it * with QoS configuration. * * Return: 0 on success, standard Linux error codes on failure. */ static int glink_core_init_xprt_qos_cfg(struct glink_core_xprt_ctx *xprt_ptr, struct glink_core_transport_cfg *cfg) { int i; struct sched_param param = { .sched_priority = GLINK_KTHREAD_PRIO }; xprt_ptr->mtu = cfg->mtu ? cfg->mtu : GLINK_QOS_DEF_MTU; xprt_ptr->num_priority = cfg->num_flows ? cfg->num_flows : GLINK_QOS_DEF_NUM_PRIORITY; xprt_ptr->token_count = cfg->token_count ? cfg->token_count : GLINK_QOS_DEF_NUM_TOKENS; xprt_ptr->prio_bin = kzalloc(xprt_ptr->num_priority * sizeof(struct glink_qos_priority_bin), GFP_KERNEL); if (xprt_ptr->num_priority > 1) sched_setscheduler(xprt_ptr->tx_task, SCHED_FIFO, ¶m); if (!xprt_ptr->prio_bin) { GLINK_ERR("%s: unable to allocate priority bins\n", __func__); return -ENOMEM; } for (i = 1; i < xprt_ptr->num_priority; i++) { xprt_ptr->prio_bin[i].max_rate_kBps = glink_qos_calc_rate_kBps(xprt_ptr->mtu, cfg->flow_info[i].mtu_tx_time_us); xprt_ptr->prio_bin[i].power_state = cfg->flow_info[i].power_state; INIT_LIST_HEAD(&xprt_ptr->prio_bin[i].tx_ready); } xprt_ptr->prio_bin[0].max_rate_kBps = 0; if (cfg->flow_info) xprt_ptr->prio_bin[0].power_state = cfg->flow_info[0].power_state; INIT_LIST_HEAD(&xprt_ptr->prio_bin[0].tx_ready); xprt_ptr->threshold_rate_kBps = xprt_ptr->prio_bin[xprt_ptr->num_priority - 1].max_rate_kBps; return 0; } /** * glink_core_deinit_xprt_qos_cfg() - Reset a transport's QoS configuration * @xprt_ptr: Transport to be deinitialized. * * This function is used during the time of transport unregistration to * de-initialize the QoS configuration from a transport. */ static void glink_core_deinit_xprt_qos_cfg(struct glink_core_xprt_ctx *xprt_ptr) { kfree(xprt_ptr->prio_bin); xprt_ptr->prio_bin = NULL; xprt_ptr->mtu = 0; xprt_ptr->num_priority = 0; xprt_ptr->token_count = 0; xprt_ptr->threshold_rate_kBps = 0; } /** * glink_core_register_transport() - register a new transport * @if_ptr: The interface to the transport. * @cfg: Description and configuration of the transport. * * Return: 0 on success, EINVAL for invalid input. */ int glink_core_register_transport(struct glink_transport_if *if_ptr, struct glink_core_transport_cfg *cfg) { struct glink_core_xprt_ctx *xprt_ptr; size_t len; uint16_t id; int ret; char log_name[GLINK_NAME_SIZE*2+2] = {0}; if (!if_ptr || !cfg || !cfg->name || !cfg->edge) return -EINVAL; len = strlen(cfg->name); if (len == 0 || len >= GLINK_NAME_SIZE) return -EINVAL; len = strlen(cfg->edge); if (len == 0 || len >= GLINK_NAME_SIZE) return -EINVAL; if (cfg->versions_entries < 1) return -EINVAL; ret = glink_xprt_name_to_id(cfg->name, &id); if (ret) return ret; xprt_ptr = kzalloc(sizeof(struct glink_core_xprt_ctx), GFP_KERNEL); if (xprt_ptr == NULL) return -ENOMEM; xprt_ptr->id = id; rwref_lock_init(&xprt_ptr->xprt_state_lhb0, glink_xprt_ctx_release); strlcpy(xprt_ptr->name, cfg->name, GLINK_NAME_SIZE); strlcpy(xprt_ptr->edge, cfg->edge, GLINK_NAME_SIZE); xprt_ptr->versions = cfg->versions; xprt_ptr->versions_entries = cfg->versions_entries; xprt_ptr->local_version_idx = cfg->versions_entries - 1; xprt_ptr->remote_version_idx = cfg->versions_entries - 1; xprt_ptr->edge_ctx = edge_name_to_ctx_create(xprt_ptr); if (!xprt_ptr->edge_ctx) { kfree(xprt_ptr); return -ENOMEM; } xprt_ptr->l_features = cfg->versions[cfg->versions_entries - 1].features; if (!if_ptr->poll) if_ptr->poll = dummy_poll; if (!if_ptr->mask_rx_irq) if_ptr->mask_rx_irq = dummy_mask_rx_irq; if (!if_ptr->reuse_rx_intent) if_ptr->reuse_rx_intent = dummy_reuse_rx_intent; if (!if_ptr->wait_link_down) if_ptr->wait_link_down = dummy_wait_link_down; if (!if_ptr->tx_cmd_tracer_pkt) if_ptr->tx_cmd_tracer_pkt = dummy_tx_cmd_tracer_pkt; if (!if_ptr->get_power_vote_ramp_time) if_ptr->get_power_vote_ramp_time = dummy_get_power_vote_ramp_time; if (!if_ptr->power_vote) if_ptr->power_vote = dummy_power_vote; if (!if_ptr->power_unvote) if_ptr->power_unvote = dummy_power_unvote; xprt_ptr->capabilities = 0; xprt_ptr->ops = if_ptr; spin_lock_init(&xprt_ptr->xprt_ctx_lock_lhb1); xprt_ptr->next_lcid = 1; /* 0 reserved for default unconfigured */ INIT_LIST_HEAD(&xprt_ptr->free_lcid_list); xprt_ptr->max_cid = cfg->max_cid; xprt_ptr->max_iid = cfg->max_iid; xprt_ptr->local_state = GLINK_XPRT_DOWN; xprt_ptr->remote_neg_completed = false; INIT_LIST_HEAD(&xprt_ptr->channels); INIT_LIST_HEAD(&xprt_ptr->notified); spin_lock_init(&xprt_ptr->tx_ready_lock_lhb3); mutex_init(&xprt_ptr->xprt_dbgfs_lock_lhb4); init_kthread_work(&xprt_ptr->tx_kwork, tx_func); init_kthread_worker(&xprt_ptr->tx_wq); xprt_ptr->tx_task = kthread_run(kthread_worker_fn, &xprt_ptr->tx_wq, "%s_%s_glink_tx", xprt_ptr->edge, xprt_ptr->name); if (IS_ERR_OR_NULL(xprt_ptr->tx_task)) { GLINK_ERR("%s: unable to run thread\n", __func__); kfree(xprt_ptr); return -ENOMEM; } ret = glink_core_init_xprt_qos_cfg(xprt_ptr, cfg); if (ret < 0) { kfree(xprt_ptr); return ret; } INIT_DELAYED_WORK(&xprt_ptr->pm_qos_work, glink_pm_qos_cancel_worker); pm_qos_add_request(&xprt_ptr->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE); if_ptr->glink_core_priv = xprt_ptr; if_ptr->glink_core_if_ptr = &core_impl; mutex_lock(&transport_list_lock_lha0); list_add_tail(&xprt_ptr->list_node, &transport_list); mutex_unlock(&transport_list_lock_lha0); glink_debugfs_add_xprt(xprt_ptr); snprintf(log_name, sizeof(log_name), "%s_%s", xprt_ptr->edge, xprt_ptr->name); xprt_ptr->log_ctx = ipc_log_context_create(NUM_LOG_PAGES, log_name, 0); if (!xprt_ptr->log_ctx) { #ifdef CONFIG_IPC_LOGGING GLINK_ERR("%s: unable to create log context for [%s:%s]\n", __func__, xprt_ptr->edge, xprt_ptr->name); #else GLINK_ERR("%s: IPC Logging disabled\n", __func__); #endif } return 0; } EXPORT_SYMBOL(glink_core_register_transport); /** * glink_core_unregister_transport() - unregister a transport * * @if_ptr: The interface to the transport. */ void glink_core_unregister_transport(struct glink_transport_if *if_ptr) { struct glink_core_xprt_ctx *xprt_ptr = if_ptr->glink_core_priv; GLINK_DBG_XPRT(xprt_ptr, "%s: destroying transport\n", __func__); if (xprt_ptr->local_state != GLINK_XPRT_DOWN) { GLINK_ERR_XPRT(xprt_ptr, "%s: link_down should have been called before this\n", __func__); return; } mutex_lock(&transport_list_lock_lha0); list_del(&xprt_ptr->list_node); mutex_unlock(&transport_list_lock_lha0); flush_delayed_work(&xprt_ptr->pm_qos_work); pm_qos_remove_request(&xprt_ptr->pm_qos_req); ipc_log_context_destroy(xprt_ptr->log_ctx); xprt_ptr->log_ctx = NULL; rwref_put(&xprt_ptr->xprt_state_lhb0); } EXPORT_SYMBOL(glink_core_unregister_transport); /** * glink_core_link_up() - transport link-up notification * * @if_ptr: pointer to transport interface */ static void glink_core_link_up(struct glink_transport_if *if_ptr) { struct glink_core_xprt_ctx *xprt_ptr = if_ptr->glink_core_priv; /* start local negotiation */ xprt_ptr->local_state = GLINK_XPRT_NEGOTIATING; xprt_ptr->local_version_idx = xprt_ptr->versions_entries - 1; xprt_ptr->l_features = xprt_ptr->versions[xprt_ptr->local_version_idx].features; if_ptr->tx_cmd_version(if_ptr, xprt_ptr->versions[xprt_ptr->local_version_idx].version, xprt_ptr->versions[xprt_ptr->local_version_idx].features); pr_emerg("%s glink is up\n", __func__); } /** * glink_core_link_down() - transport link-down notification * * @if_ptr: pointer to transport interface */ static void glink_core_link_down(struct glink_transport_if *if_ptr) { struct glink_core_xprt_ctx *xprt_ptr = if_ptr->glink_core_priv; rwref_write_get(&xprt_ptr->xprt_state_lhb0); xprt_ptr->next_lcid = 1; xprt_ptr->local_state = GLINK_XPRT_DOWN; xprt_ptr->local_version_idx = xprt_ptr->versions_entries - 1; xprt_ptr->remote_version_idx = xprt_ptr->versions_entries - 1; xprt_ptr->l_features = xprt_ptr->versions[xprt_ptr->local_version_idx].features; xprt_ptr->remote_neg_completed = false; rwref_write_put(&xprt_ptr->xprt_state_lhb0); GLINK_DBG_XPRT(xprt_ptr, "%s: Flushing work from tx_wq. Thread: %u\n", __func__, current->pid); flush_kthread_worker(&xprt_ptr->tx_wq); glink_core_channel_cleanup(xprt_ptr); check_link_notifier_and_notify(xprt_ptr, GLINK_LINK_STATE_DOWN); pr_emerg("%s glink is down\n", __func__); } /** * glink_create_dummy_xprt_ctx() - create a dummy transport that replaces all * the transport interface functions with a dummy * @orig_xprt_ctx: Pointer to the original transport context. * * The dummy transport is used only when it is swapped with the actual transport * pointer in ssr/unregister case. * * Return: Pointer to dummy transport context. */ static struct glink_core_xprt_ctx *glink_create_dummy_xprt_ctx( struct glink_core_xprt_ctx *orig_xprt_ctx) { struct glink_core_xprt_ctx *xprt_ptr; struct glink_transport_if *if_ptr; xprt_ptr = kzalloc(sizeof(*xprt_ptr), GFP_KERNEL); if (!xprt_ptr) return ERR_PTR(-ENOMEM); if_ptr = kmalloc(sizeof(*if_ptr), GFP_KERNEL); if (!if_ptr) { kfree(xprt_ptr); return ERR_PTR(-ENOMEM); } rwref_lock_init(&xprt_ptr->xprt_state_lhb0, glink_dummy_xprt_ctx_release); strlcpy(xprt_ptr->name, "dummy", GLINK_NAME_SIZE); strlcpy(xprt_ptr->edge, orig_xprt_ctx->edge, GLINK_NAME_SIZE); if_ptr->poll = dummy_poll; if_ptr->mask_rx_irq = dummy_mask_rx_irq; if_ptr->reuse_rx_intent = dummy_reuse_rx_intent; if_ptr->wait_link_down = dummy_wait_link_down; if_ptr->allocate_rx_intent = dummy_allocate_rx_intent; if_ptr->deallocate_rx_intent = orig_xprt_ctx->ops->deallocate_rx_intent; if_ptr->tx_cmd_local_rx_intent = dummy_tx_cmd_local_rx_intent; if_ptr->tx_cmd_local_rx_done = dummy_tx_cmd_local_rx_done; if_ptr->tx = dummy_tx; if_ptr->tx_cmd_rx_intent_req = dummy_tx_cmd_rx_intent_req; if_ptr->tx_cmd_remote_rx_intent_req_ack = dummy_tx_cmd_remote_rx_intent_req_ack; if_ptr->tx_cmd_set_sigs = dummy_tx_cmd_set_sigs; if_ptr->tx_cmd_ch_open = dummy_tx_cmd_ch_open; if_ptr->tx_cmd_ch_remote_open_ack = dummy_tx_cmd_ch_remote_open_ack; if_ptr->tx_cmd_ch_close = dummy_tx_cmd_ch_close; if_ptr->tx_cmd_ch_remote_close_ack = dummy_tx_cmd_ch_remote_close_ack; if_ptr->tx_cmd_tracer_pkt = dummy_tx_cmd_tracer_pkt; if_ptr->get_power_vote_ramp_time = dummy_get_power_vote_ramp_time; if_ptr->power_vote = dummy_power_vote; if_ptr->power_unvote = dummy_power_unvote; xprt_ptr->ops = if_ptr; xprt_ptr->log_ctx = log_ctx; spin_lock_init(&xprt_ptr->xprt_ctx_lock_lhb1); INIT_LIST_HEAD(&xprt_ptr->free_lcid_list); xprt_ptr->local_state = GLINK_XPRT_DOWN; xprt_ptr->remote_neg_completed = false; INIT_LIST_HEAD(&xprt_ptr->channels); xprt_ptr->dummy_in_use = true; INIT_LIST_HEAD(&xprt_ptr->notified); spin_lock_init(&xprt_ptr->tx_ready_lock_lhb3); mutex_init(&xprt_ptr->xprt_dbgfs_lock_lhb4); return xprt_ptr; } static struct channel_ctx *get_first_ch_ctx( struct glink_core_xprt_ctx *xprt_ctx) { unsigned long flags; struct channel_ctx *ctx; spin_lock_irqsave(&xprt_ctx->xprt_ctx_lock_lhb1, flags); if (!list_empty(&xprt_ctx->channels)) { ctx = list_first_entry(&xprt_ctx->channels, struct channel_ctx, port_list_node); rwref_get(&ctx->ch_state_lhb2); } else { ctx = NULL; } spin_unlock_irqrestore(&xprt_ctx->xprt_ctx_lock_lhb1, flags); return ctx; } static void glink_core_move_ch_node(struct glink_core_xprt_ctx *xprt_ptr, struct glink_core_xprt_ctx *dummy_xprt_ctx, struct channel_ctx *ctx) { unsigned long flags, d_flags; spin_lock_irqsave(&dummy_xprt_ctx->xprt_ctx_lock_lhb1, d_flags); spin_lock_irqsave(&xprt_ptr->xprt_ctx_lock_lhb1, flags); rwref_get(&dummy_xprt_ctx->xprt_state_lhb0); list_move_tail(&ctx->port_list_node, &dummy_xprt_ctx->channels); spin_unlock_irqrestore(&xprt_ptr->xprt_ctx_lock_lhb1, flags); spin_unlock_irqrestore(&dummy_xprt_ctx->xprt_ctx_lock_lhb1, d_flags); } /** * glink_core_channel_cleanup() - cleanup all channels for the transport * * @xprt_ptr: pointer to transport context * * This function should be called either from link_down or ssr */ static void glink_core_channel_cleanup(struct glink_core_xprt_ctx *xprt_ptr) { unsigned long flags, d_flags; struct channel_ctx *ctx; struct channel_lcid *temp_lcid, *temp_lcid1; struct glink_core_xprt_ctx *dummy_xprt_ctx; dummy_xprt_ctx = glink_create_dummy_xprt_ctx(xprt_ptr); if (IS_ERR_OR_NULL(dummy_xprt_ctx)) { GLINK_ERR("%s: Dummy Transport creation failed\n", __func__); return; } rwref_read_get(&dummy_xprt_ctx->xprt_state_lhb0); rwref_read_get(&xprt_ptr->xprt_state_lhb0); ctx = get_first_ch_ctx(xprt_ptr); while (ctx) { rwref_write_get_atomic(&ctx->ch_state_lhb2, true); if (ctx->local_open_state == GLINK_CHANNEL_OPENED || ctx->local_open_state == GLINK_CHANNEL_OPENING) { ctx->transport_ptr = dummy_xprt_ctx; glink_core_move_ch_node(xprt_ptr, dummy_xprt_ctx, ctx); } else { /* local state is in either CLOSED or CLOSING */ glink_core_remote_close_common(ctx, true); if (ctx->local_open_state == GLINK_CHANNEL_CLOSING) glink_core_ch_close_ack_common(ctx, true); /* Channel should be fully closed now. Delete here */ if (ch_is_fully_closed(ctx)) glink_delete_ch_from_list(ctx, false); } rwref_put(&ctx->ch_state_lhb2); rwref_write_put(&ctx->ch_state_lhb2); ctx = get_first_ch_ctx(xprt_ptr); } spin_lock_irqsave(&xprt_ptr->xprt_ctx_lock_lhb1, flags); list_for_each_entry_safe(temp_lcid, temp_lcid1, &xprt_ptr->free_lcid_list, list_node) { list_del(&temp_lcid->list_node); kfree(&temp_lcid->list_node); } spin_unlock_irqrestore(&xprt_ptr->xprt_ctx_lock_lhb1, flags); rwref_read_put(&xprt_ptr->xprt_state_lhb0); spin_lock_irqsave(&dummy_xprt_ctx->xprt_ctx_lock_lhb1, d_flags); dummy_xprt_ctx->dummy_in_use = false; while (!list_empty(&dummy_xprt_ctx->channels)) { ctx = list_first_entry(&dummy_xprt_ctx->channels, struct channel_ctx, port_list_node); list_move_tail(&ctx->port_list_node, &dummy_xprt_ctx->notified); rwref_get(&ctx->ch_state_lhb2); spin_unlock_irqrestore(&dummy_xprt_ctx->xprt_ctx_lock_lhb1, d_flags); glink_core_remote_close_common(ctx, false); spin_lock_irqsave(&dummy_xprt_ctx->xprt_ctx_lock_lhb1, d_flags); rwref_put(&ctx->ch_state_lhb2); } spin_unlock_irqrestore(&dummy_xprt_ctx->xprt_ctx_lock_lhb1, d_flags); rwref_read_put(&dummy_xprt_ctx->xprt_state_lhb0); } /** * glink_core_rx_cmd_version() - receive version/features from remote system * * @if_ptr: pointer to transport interface * @r_version: remote version * @r_features: remote features * * This function is called in response to a remote-initiated version/feature * negotiation sequence. */ static void glink_core_rx_cmd_version(struct glink_transport_if *if_ptr, uint32_t r_version, uint32_t r_features) { struct glink_core_xprt_ctx *xprt_ptr = if_ptr->glink_core_priv; const struct glink_core_version *versions = xprt_ptr->versions; bool neg_complete = false; uint32_t l_version; if (xprt_is_fully_opened(xprt_ptr)) { GLINK_ERR_XPRT(xprt_ptr, "%s: Negotiation already complete\n", __func__); return; } l_version = versions[xprt_ptr->remote_version_idx].version; GLINK_INFO_XPRT(xprt_ptr, "%s: [local]%x:%08x [remote]%x:%08x\n", __func__, l_version, xprt_ptr->l_features, r_version, r_features); if (l_version > r_version) { /* Find matching version */ while (true) { uint32_t rver_idx; if (xprt_ptr->remote_version_idx == 0) { /* version negotiation failed */ GLINK_ERR_XPRT(xprt_ptr, "%s: Transport negotiation failed\n", __func__); l_version = 0; xprt_ptr->l_features = 0; break; } --xprt_ptr->remote_version_idx; rver_idx = xprt_ptr->remote_version_idx; if (versions[rver_idx].version <= r_version) { /* found a potential match */ l_version = versions[rver_idx].version; xprt_ptr->l_features = versions[rver_idx].features; break; } } } if (l_version == r_version) { GLINK_INFO_XPRT(xprt_ptr, "%s: Remote and local version are matched %x:%08x\n", __func__, r_version, r_features); if (xprt_ptr->l_features != r_features) { uint32_t rver_idx = xprt_ptr->remote_version_idx; xprt_ptr->l_features = versions[rver_idx] .negotiate_features(if_ptr, &xprt_ptr->versions[rver_idx], r_features); GLINK_INFO_XPRT(xprt_ptr, "%s: negotiate features %x:%08x\n", __func__, l_version, xprt_ptr->l_features); } neg_complete = true; } if_ptr->tx_cmd_version_ack(if_ptr, l_version, xprt_ptr->l_features); if (neg_complete) { GLINK_INFO_XPRT(xprt_ptr, "%s: Remote negotiation complete %x:%08x\n", __func__, l_version, xprt_ptr->l_features); if (xprt_ptr->local_state == GLINK_XPRT_OPENED) { xprt_ptr->capabilities = if_ptr->set_version(if_ptr, l_version, xprt_ptr->l_features); } if_ptr->glink_core_priv->remote_neg_completed = true; if (xprt_is_fully_opened(xprt_ptr)) check_link_notifier_and_notify(xprt_ptr, GLINK_LINK_STATE_UP); } } /** * glink_core_rx_cmd_version_ack() - receive negotiation ack from remote system * * @if_ptr: pointer to transport interface * @r_version: remote version response * @r_features: remote features response * * This function is called in response to a local-initiated version/feature * negotiation sequence and is the counter-offer from the remote side based * upon the initial version and feature set requested. */ static void glink_core_rx_cmd_version_ack(struct glink_transport_if *if_ptr, uint32_t r_version, uint32_t r_features) { struct glink_core_xprt_ctx *xprt_ptr = if_ptr->glink_core_priv; const struct glink_core_version *versions = xprt_ptr->versions; uint32_t l_version; bool neg_complete = false; if (xprt_is_fully_opened(xprt_ptr)) { GLINK_ERR_XPRT(xprt_ptr, "%s: Negotiation already complete\n", __func__); return; } l_version = versions[xprt_ptr->local_version_idx].version; GLINK_INFO_XPRT(xprt_ptr, "%s: [local]%x:%08x [remote]%x:%08x\n", __func__, l_version, xprt_ptr->l_features, r_version, r_features); if (l_version > r_version) { /* find matching version */ while (true) { uint32_t lver_idx = xprt_ptr->local_version_idx; if (xprt_ptr->local_version_idx == 0) { /* version negotiation failed */ xprt_ptr->local_state = GLINK_XPRT_FAILED; GLINK_ERR_XPRT(xprt_ptr, "%s: Transport negotiation failed\n", __func__); l_version = 0; xprt_ptr->l_features = 0; break; } --xprt_ptr->local_version_idx; lver_idx = xprt_ptr->local_version_idx; if (versions[lver_idx].version <= r_version) { /* found a potential match */ l_version = versions[lver_idx].version; xprt_ptr->l_features = versions[lver_idx].features; break; } } } else if (l_version == r_version) { if (xprt_ptr->l_features != r_features) { /* version matches, negotiate features */ uint32_t lver_idx = xprt_ptr->local_version_idx; xprt_ptr->l_features = versions[lver_idx] .negotiate_features(if_ptr, &versions[lver_idx], r_features); GLINK_INFO_XPRT(xprt_ptr, "%s: negotiation features %x:%08x\n", __func__, l_version, xprt_ptr->l_features); } else { neg_complete = true; } } else { /* * r_version > l_version * * Remote responded with a version greater than what we * requested which is invalid and is treated as failure of the * negotiation algorithm. */ GLINK_ERR_XPRT(xprt_ptr, "%s: [local]%x:%08x [remote]%x:%08x neg failure\n", __func__, l_version, xprt_ptr->l_features, r_version, r_features); xprt_ptr->local_state = GLINK_XPRT_FAILED; l_version = 0; xprt_ptr->l_features = 0; } if (neg_complete) { /* negotiation complete */ GLINK_INFO_XPRT(xprt_ptr, "%s: Local negotiation complete %x:%08x\n", __func__, l_version, xprt_ptr->l_features); if (xprt_ptr->remote_neg_completed) { xprt_ptr->capabilities = if_ptr->set_version(if_ptr, l_version, xprt_ptr->l_features); } xprt_ptr->local_state = GLINK_XPRT_OPENED; if (xprt_is_fully_opened(xprt_ptr)) check_link_notifier_and_notify(xprt_ptr, GLINK_LINK_STATE_UP); } else { if_ptr->tx_cmd_version(if_ptr, l_version, xprt_ptr->l_features); } } /** * find_l_ctx_get() - find a local channel context based on a remote one * @r_ctx: The remote channel to use as a lookup key. * * If the channel is found, the reference count is incremented to ensure the * lifetime of the channel context. The caller must call rwref_put() when done. * * Return: The corresponding local ctx or NULL is not found. */ static struct channel_ctx *find_l_ctx_get(struct channel_ctx *r_ctx) { struct glink_core_xprt_ctx *xprt; struct channel_ctx *ctx; unsigned long flags; struct channel_ctx *l_ctx = NULL; mutex_lock(&transport_list_lock_lha0); list_for_each_entry(xprt, &transport_list, list_node) if (!strcmp(r_ctx->transport_ptr->edge, xprt->edge)) { rwref_write_get(&xprt->xprt_state_lhb0); if (xprt->local_state != GLINK_XPRT_OPENED) { rwref_write_put(&xprt->xprt_state_lhb0); continue; } spin_lock_irqsave(&xprt->xprt_ctx_lock_lhb1, flags); list_for_each_entry(ctx, &xprt->channels, port_list_node) if (!strcmp(ctx->name, r_ctx->name) && ctx->local_xprt_req && ctx->local_xprt_resp) { l_ctx = ctx; rwref_get(&l_ctx->ch_state_lhb2); } spin_unlock_irqrestore(&xprt->xprt_ctx_lock_lhb1, flags); rwref_write_put(&xprt->xprt_state_lhb0); } mutex_unlock(&transport_list_lock_lha0); return l_ctx; } /** * find_r_ctx_get() - find a remote channel context based on a local one * @l_ctx: The local channel to use as a lookup key. * * If the channel is found, the reference count is incremented to ensure the * lifetime of the channel context. The caller must call rwref_put() when done. * * Return: The corresponding remote ctx or NULL is not found. */ static struct channel_ctx *find_r_ctx_get(struct channel_ctx *l_ctx) { struct glink_core_xprt_ctx *xprt; struct channel_ctx *ctx; unsigned long flags; struct channel_ctx *r_ctx = NULL; mutex_lock(&transport_list_lock_lha0); list_for_each_entry(xprt, &transport_list, list_node) if (!strcmp(l_ctx->transport_ptr->edge, xprt->edge)) { rwref_write_get(&xprt->xprt_state_lhb0); if (xprt->local_state != GLINK_XPRT_OPENED) { rwref_write_put(&xprt->xprt_state_lhb0); continue; } spin_lock_irqsave(&xprt->xprt_ctx_lock_lhb1, flags); list_for_each_entry(ctx, &xprt->channels, port_list_node) if (!strcmp(ctx->name, l_ctx->name) && ctx->remote_xprt_req && ctx->remote_xprt_resp) { r_ctx = ctx; rwref_get(&r_ctx->ch_state_lhb2); } spin_unlock_irqrestore(&xprt->xprt_ctx_lock_lhb1, flags); rwref_write_put(&xprt->xprt_state_lhb0); } mutex_unlock(&transport_list_lock_lha0); return r_ctx; } /** * will_migrate() - will a channel migrate to a different transport * @l_ctx: The local channel to migrate. * @r_ctx: The remote channel to migrate. * * One of the channel contexts can be NULL if not known, but at least one ctx * must be provided. * * Return: Bool indicating if migration will occur. */ static bool will_migrate(struct channel_ctx *l_ctx, struct channel_ctx *r_ctx) { uint16_t new_xprt; bool migrate = false; if (!r_ctx) r_ctx = find_r_ctx_get(l_ctx); else rwref_get(&r_ctx->ch_state_lhb2); if (!r_ctx) return migrate; if (!l_ctx) l_ctx = find_l_ctx_get(r_ctx); else rwref_get(&l_ctx->ch_state_lhb2); if (!l_ctx) goto exit; if (l_ctx->local_xprt_req == r_ctx->remote_xprt_req && l_ctx->local_xprt_req == l_ctx->transport_ptr->id) goto exit; if (l_ctx->no_migrate) goto exit; if (l_ctx->local_xprt_req > r_ctx->transport_ptr->id) l_ctx->local_xprt_req = r_ctx->transport_ptr->id; if (ch_is_fully_opened(l_ctx) && (l_ctx->transport_ptr->id == l_ctx->local_xprt_req)) goto exit; new_xprt = max(l_ctx->local_xprt_req, r_ctx->remote_xprt_req); if (new_xprt == l_ctx->transport_ptr->id) goto exit; migrate = true; exit: if (l_ctx) rwref_put(&l_ctx->ch_state_lhb2); if (r_ctx) rwref_put(&r_ctx->ch_state_lhb2); return migrate; } /** * ch_migrate() - migrate a channel to a different transport * @l_ctx: The local channel to migrate. * @r_ctx: The remote channel to migrate. * * One of the channel contexts can be NULL if not known, but at least one ctx * must be provided. * * Return: Bool indicating if migration occurred. */ static bool ch_migrate(struct channel_ctx *l_ctx, struct channel_ctx *r_ctx) { uint16_t new_xprt; struct glink_core_xprt_ctx *xprt; unsigned long flags; struct channel_lcid *flcid; uint16_t best_xprt = USHRT_MAX; struct channel_ctx *ctx_clone; bool migrated = false; if (!r_ctx) r_ctx = find_r_ctx_get(l_ctx); else rwref_get(&r_ctx->ch_state_lhb2); if (!r_ctx) return migrated; if (!l_ctx) l_ctx = find_l_ctx_get(r_ctx); else rwref_get(&l_ctx->ch_state_lhb2); if (!l_ctx) { rwref_put(&r_ctx->ch_state_lhb2); return migrated; } if (ch_is_fully_opened(l_ctx) && (l_ctx->transport_ptr->id == l_ctx->local_xprt_req)) { rwref_put(&l_ctx->ch_state_lhb2); rwref_put(&r_ctx->ch_state_lhb2); return migrated; } if (l_ctx->local_xprt_req == r_ctx->remote_xprt_req && l_ctx->local_xprt_req == l_ctx->transport_ptr->id) goto exit; if (l_ctx->no_migrate) goto exit; if (l_ctx->local_xprt_req > r_ctx->transport_ptr->id) l_ctx->local_xprt_req = r_ctx->transport_ptr->id; new_xprt = max(l_ctx->local_xprt_req, r_ctx->remote_xprt_req); if (new_xprt == l_ctx->transport_ptr->id) goto exit; ctx_clone = kmalloc(sizeof(*ctx_clone), GFP_KERNEL); if (!ctx_clone) goto exit; mutex_lock(&transport_list_lock_lha0); list_for_each_entry(xprt, &transport_list, list_node) if (!strcmp(l_ctx->transport_ptr->edge, xprt->edge)) if (xprt->id == new_xprt) break; mutex_unlock(&transport_list_lock_lha0); spin_lock_irqsave(&l_ctx->transport_ptr->xprt_ctx_lock_lhb1, flags); list_del_init(&l_ctx->port_list_node); spin_unlock_irqrestore(&l_ctx->transport_ptr->xprt_ctx_lock_lhb1, flags); mutex_lock(&l_ctx->transport_ptr->xprt_dbgfs_lock_lhb4); glink_debugfs_remove_channel(l_ctx, l_ctx->transport_ptr); mutex_unlock(&l_ctx->transport_ptr->xprt_dbgfs_lock_lhb4); memcpy(ctx_clone, l_ctx, sizeof(*ctx_clone)); ctx_clone->local_xprt_req = 0; ctx_clone->local_xprt_resp = 0; ctx_clone->remote_xprt_req = 0; ctx_clone->remote_xprt_resp = 0; ctx_clone->notify_state = NULL; ctx_clone->local_open_state = GLINK_CHANNEL_CLOSING; rwref_lock_init(&ctx_clone->ch_state_lhb2, glink_ch_ctx_release); init_completion(&ctx_clone->int_req_ack_complete); init_completion(&ctx_clone->int_req_complete); spin_lock_init(&ctx_clone->local_rx_intent_lst_lock_lhc1); spin_lock_init(&ctx_clone->rmt_rx_intent_lst_lock_lhc2); INIT_LIST_HEAD(&ctx_clone->tx_ready_list_node); INIT_LIST_HEAD(&ctx_clone->local_rx_intent_list); INIT_LIST_HEAD(&ctx_clone->local_rx_intent_ntfy_list); INIT_LIST_HEAD(&ctx_clone->local_rx_intent_free_list); INIT_LIST_HEAD(&ctx_clone->rmt_rx_intent_list); INIT_LIST_HEAD(&ctx_clone->tx_active); spin_lock_init(&ctx_clone->tx_pending_rmt_done_lock_lhc4); INIT_LIST_HEAD(&ctx_clone->tx_pending_remote_done); spin_lock_init(&ctx_clone->tx_lists_lock_lhc3); spin_lock_irqsave(&l_ctx->transport_ptr->xprt_ctx_lock_lhb1, flags); list_add_tail(&ctx_clone->port_list_node, &l_ctx->transport_ptr->channels); spin_unlock_irqrestore(&l_ctx->transport_ptr->xprt_ctx_lock_lhb1, flags); l_ctx->transport_ptr->ops->tx_cmd_ch_close(l_ctx->transport_ptr->ops, l_ctx->lcid); l_ctx->transport_ptr = xprt; l_ctx->local_xprt_req = 0; l_ctx->local_xprt_resp = 0; if (new_xprt != r_ctx->transport_ptr->id || l_ctx == r_ctx) { if (new_xprt != r_ctx->transport_ptr->id) { r_ctx->local_xprt_req = 0; r_ctx->local_xprt_resp = 0; r_ctx->remote_xprt_req = 0; r_ctx->remote_xprt_resp = 0; } l_ctx->remote_xprt_req = 0; l_ctx->remote_xprt_resp = 0; l_ctx->remote_opened = false; rwref_write_get(&xprt->xprt_state_lhb0); spin_lock_irqsave(&xprt->xprt_ctx_lock_lhb1, flags); if (list_empty(&xprt->free_lcid_list)) { l_ctx->lcid = xprt->next_lcid++; } else { flcid = list_first_entry(&xprt->free_lcid_list, struct channel_lcid, list_node); l_ctx->lcid = flcid->lcid; list_del(&flcid->list_node); kfree(flcid); } list_add_tail(&l_ctx->port_list_node, &xprt->channels); spin_unlock_irqrestore(&xprt->xprt_ctx_lock_lhb1, flags); rwref_write_put(&xprt->xprt_state_lhb0); } else { l_ctx->lcid = r_ctx->lcid; l_ctx->rcid = r_ctx->rcid; l_ctx->remote_opened = r_ctx->remote_opened; l_ctx->remote_xprt_req = r_ctx->remote_xprt_req; l_ctx->remote_xprt_resp = r_ctx->remote_xprt_resp; glink_delete_ch_from_list(r_ctx, false); spin_lock_irqsave(&xprt->xprt_ctx_lock_lhb1, flags); list_add_tail(&l_ctx->port_list_node, &xprt->channels); spin_unlock_irqrestore(&xprt->xprt_ctx_lock_lhb1, flags); } mutex_lock(&xprt->xprt_dbgfs_lock_lhb4); glink_debugfs_add_channel(l_ctx, xprt); mutex_unlock(&xprt->xprt_dbgfs_lock_lhb4); mutex_lock(&transport_list_lock_lha0); list_for_each_entry(xprt, &transport_list, list_node) if (!strcmp(l_ctx->transport_ptr->edge, xprt->edge)) if (xprt->id < best_xprt) best_xprt = xprt->id; mutex_unlock(&transport_list_lock_lha0); l_ctx->local_open_state = GLINK_CHANNEL_OPENING; l_ctx->local_xprt_req = best_xprt; l_ctx->transport_ptr->ops->tx_cmd_ch_open(l_ctx->transport_ptr->ops, l_ctx->lcid, l_ctx->name, best_xprt); migrated = true; exit: rwref_put(&l_ctx->ch_state_lhb2); rwref_put(&r_ctx->ch_state_lhb2); return migrated; } /** * calculate_xprt_resp() - calculate the response to a remote xprt request * @r_ctx: The channel the remote xprt request is for. * * Return: The calculated response. */ static uint16_t calculate_xprt_resp(struct channel_ctx *r_ctx) { struct channel_ctx *l_ctx; l_ctx = find_l_ctx_get(r_ctx); if (!l_ctx) { r_ctx->remote_xprt_resp = r_ctx->transport_ptr->id; } else if (r_ctx->remote_xprt_req == r_ctx->transport_ptr->id) { r_ctx->remote_xprt_resp = r_ctx->remote_xprt_req; } else { if (!l_ctx->local_xprt_req) r_ctx->remote_xprt_resp = r_ctx->remote_xprt_req; else if (l_ctx->no_migrate) r_ctx->remote_xprt_resp = l_ctx->local_xprt_req; else r_ctx->remote_xprt_resp = max(l_ctx->local_xprt_req, r_ctx->remote_xprt_req); } if (l_ctx) rwref_put(&l_ctx->ch_state_lhb2); return r_ctx->remote_xprt_resp; } /** * glink_core_rx_cmd_ch_remote_open() - Remote-initiated open command * * @if_ptr: Pointer to transport instance * @rcid: Remote Channel ID * @name: Channel name * @req_xprt: Requested transport to migrate to */ static void glink_core_rx_cmd_ch_remote_open(struct glink_transport_if *if_ptr, uint32_t rcid, const char *name, uint16_t req_xprt) { struct channel_ctx *ctx; uint16_t xprt_resp; bool do_migrate; glink_core_migration_edge_lock(if_ptr->glink_core_priv); ctx = ch_name_to_ch_ctx_create(if_ptr->glink_core_priv, name); if (ctx == NULL) { GLINK_ERR_XPRT(if_ptr->glink_core_priv, "%s: invalid rcid %u received, name '%s'\n", __func__, rcid, name); glink_core_migration_edge_unlock(if_ptr->glink_core_priv); return; } /* port already exists */ if (ctx->remote_opened) { GLINK_ERR_CH(ctx, "%s: Duplicate remote open for rcid %u, name '%s'\n", __func__, rcid, name); glink_core_migration_edge_unlock(if_ptr->glink_core_priv); return; } ctx->remote_opened = true; ch_add_rcid(if_ptr->glink_core_priv, ctx, rcid); ctx->transport_ptr = if_ptr->glink_core_priv; ctx->remote_xprt_req = req_xprt; xprt_resp = calculate_xprt_resp(ctx); do_migrate = will_migrate(NULL, ctx); GLINK_INFO_CH(ctx, "%s: remote: CLOSED->OPENED ; xprt req:resp %u:%u\n", __func__, req_xprt, xprt_resp); if_ptr->tx_cmd_ch_remote_open_ack(if_ptr, rcid, xprt_resp); if (!do_migrate && ch_is_fully_opened(ctx)) ctx->notify_state(ctx, ctx->user_priv, GLINK_CONNECTED); if (do_migrate) ch_migrate(NULL, ctx); glink_core_migration_edge_unlock(if_ptr->glink_core_priv); } /** * glink_core_rx_cmd_ch_open_ack() - Receive ack to previously sent open request * * if_ptr: Pointer to transport instance * lcid: Local Channel ID * @xprt_resp: Response to the transport migration request */ static void glink_core_rx_cmd_ch_open_ack(struct glink_transport_if *if_ptr, uint32_t lcid, uint16_t xprt_resp) { struct channel_ctx *ctx; glink_core_migration_edge_lock(if_ptr->glink_core_priv); ctx = xprt_lcid_to_ch_ctx_get(if_ptr->glink_core_priv, lcid); if (!ctx) { /* unknown LCID received - this shouldn't happen */ GLINK_ERR_XPRT(if_ptr->glink_core_priv, "%s: invalid lcid %u received\n", __func__, (unsigned)lcid); glink_core_migration_edge_unlock(if_ptr->glink_core_priv); return; } if (ctx->local_open_state != GLINK_CHANNEL_OPENING) { GLINK_ERR_CH(ctx, "%s: unexpected open ack receive for lcid. Current state: %u. Thread: %u\n", __func__, ctx->local_open_state, current->pid); rwref_put(&ctx->ch_state_lhb2); glink_core_migration_edge_unlock(if_ptr->glink_core_priv); return; } ctx->local_xprt_resp = xprt_resp; if (!ch_migrate(ctx, NULL)) { ctx->local_open_state = GLINK_CHANNEL_OPENED; GLINK_INFO_PERF_CH(ctx, "%s: local:GLINK_CHANNEL_OPENING_WAIT->GLINK_CHANNEL_OPENED\n", __func__); if (ch_is_fully_opened(ctx)) { ctx->notify_state(ctx, ctx->user_priv, GLINK_CONNECTED); GLINK_INFO_PERF_CH(ctx, "%s: notify state: GLINK_CONNECTED\n", __func__); } } rwref_put(&ctx->ch_state_lhb2); glink_core_migration_edge_unlock(if_ptr->glink_core_priv); } /** * glink_core_rx_cmd_ch_remote_close() - Receive remote close command * * if_ptr: Pointer to transport instance * rcid: Remote Channel ID */ static void glink_core_rx_cmd_ch_remote_close( struct glink_transport_if *if_ptr, uint32_t rcid) { struct channel_ctx *ctx; bool is_ch_fully_closed; struct glink_core_xprt_ctx *xprt_ptr = if_ptr->glink_core_priv; ctx = xprt_rcid_to_ch_ctx_get(if_ptr->glink_core_priv, rcid); if (!ctx) { /* unknown LCID received - this shouldn't happen */ GLINK_ERR_XPRT(if_ptr->glink_core_priv, "%s: invalid rcid %u received\n", __func__, (unsigned)rcid); return; } if (!ctx->remote_opened) { GLINK_ERR_CH(ctx, "%s: unexpected remote close receive for rcid %u\n", __func__, (unsigned)rcid); rwref_put(&ctx->ch_state_lhb2); return; } GLINK_INFO_CH(ctx, "%s: remote: OPENED->CLOSED\n", __func__); is_ch_fully_closed = glink_core_remote_close_common(ctx, false); ctx->pending_delete = true; if_ptr->tx_cmd_ch_remote_close_ack(if_ptr, rcid); if (is_ch_fully_closed) { glink_delete_ch_from_list(ctx, true); flush_kthread_worker(&xprt_ptr->tx_wq); } rwref_put(&ctx->ch_state_lhb2); } /** * glink_core_rx_cmd_ch_close_ack() - Receive locally-request close ack * * if_ptr: Pointer to transport instance * lcid: Local Channel ID */ static void glink_core_rx_cmd_ch_close_ack(struct glink_transport_if *if_ptr, uint32_t lcid) { struct channel_ctx *ctx; bool is_ch_fully_closed; struct glink_core_xprt_ctx *xprt_ptr = if_ptr->glink_core_priv; ctx = xprt_lcid_to_ch_ctx_get(if_ptr->glink_core_priv, lcid); if (!ctx) { /* unknown LCID received - this shouldn't happen */ GLINK_ERR_XPRT(if_ptr->glink_core_priv, "%s: invalid lcid %u received\n", __func__, (unsigned)lcid); return; } if (ctx->local_open_state != GLINK_CHANNEL_CLOSING) { GLINK_ERR_CH(ctx, "%s: unexpected close ack receive for lcid %u\n", __func__, (unsigned)lcid); rwref_put(&ctx->ch_state_lhb2); return; } is_ch_fully_closed = glink_core_ch_close_ack_common(ctx, false); if (is_ch_fully_closed) { glink_delete_ch_from_list(ctx, true); flush_kthread_worker(&xprt_ptr->tx_wq); } rwref_put(&ctx->ch_state_lhb2); } /** * glink_core_remote_rx_intent_put() - Receive remove intent * * @if_ptr: Pointer to transport instance * @rcid: Remote Channel ID * @riid: Remote Intent ID * @size: Size of the remote intent ID */ static void glink_core_remote_rx_intent_put(struct glink_transport_if *if_ptr, uint32_t rcid, uint32_t riid, size_t size) { struct channel_ctx *ctx; ctx = xprt_rcid_to_ch_ctx_get(if_ptr->glink_core_priv, rcid); if (!ctx) { /* unknown rcid received - this shouldn't happen */ GLINK_ERR_XPRT(if_ptr->glink_core_priv, "%s: invalid rcid received %u\n", __func__, (unsigned)rcid); return; } ch_push_remote_rx_intent(ctx, size, riid, NULL); rwref_put(&ctx->ch_state_lhb2); } /** * glink_core_remote_rx_intent_put_cookie() - Receive remove intent * * @if_ptr: Pointer to transport instance * @rcid: Remote Channel ID * @riid: Remote Intent ID * @size: Size of the remote intent ID * @cookie: Transport-specific cookie to cache */ static void glink_core_remote_rx_intent_put_cookie( struct glink_transport_if *if_ptr, uint32_t rcid, uint32_t riid, size_t size, void *cookie) { struct channel_ctx *ctx; ctx = xprt_rcid_to_ch_ctx_get(if_ptr->glink_core_priv, rcid); if (!ctx) { /* unknown rcid received - this shouldn't happen */ GLINK_ERR_XPRT(if_ptr->glink_core_priv, "%s: invalid rcid received %u\n", __func__, (unsigned)rcid); return; } ch_push_remote_rx_intent(ctx, size, riid, cookie); rwref_put(&ctx->ch_state_lhb2); } /** * glink_core_rx_cmd_remote_rx_intent_req() - Receive a request for rx_intent * from remote side * if_ptr: Pointer to the transport interface * rcid: Remote channel ID * size: size of the intent * * The function searches for the local channel to which the request for * rx_intent has arrived and informs this request to the local channel through * notify_rx_intent_req callback registered by the local channel. */ static void glink_core_rx_cmd_remote_rx_intent_req( struct glink_transport_if *if_ptr, uint32_t rcid, size_t size) { struct channel_ctx *ctx; bool cb_ret; ctx = xprt_rcid_to_ch_ctx_get(if_ptr->glink_core_priv, rcid); if (!ctx) { GLINK_ERR_XPRT(if_ptr->glink_core_priv, "%s: invalid rcid received %u\n", __func__, (unsigned)rcid); return; } if (!ctx->notify_rx_intent_req) { GLINK_ERR_CH(ctx, "%s: Notify function not defined for local channel", __func__); rwref_put(&ctx->ch_state_lhb2); return; } cb_ret = ctx->notify_rx_intent_req(ctx, ctx->user_priv, size); if_ptr->tx_cmd_remote_rx_intent_req_ack(if_ptr, ctx->lcid, cb_ret); rwref_put(&ctx->ch_state_lhb2); } /** * glink_core_rx_cmd_remote_rx_intent_req_ack()- Receive ack from remote side * for a local rx_intent request * if_ptr: Pointer to the transport interface * rcid: Remote channel ID * size: size of the intent * * This function receives the ack for rx_intent request from local channel. */ static void glink_core_rx_cmd_rx_intent_req_ack(struct glink_transport_if *if_ptr, uint32_t rcid, bool granted) { struct channel_ctx *ctx; ctx = xprt_rcid_to_ch_ctx_get(if_ptr->glink_core_priv, rcid); if (!ctx) { GLINK_ERR_XPRT(if_ptr->glink_core_priv, "%s: Invalid rcid received %u\n", __func__, (unsigned)rcid); return; } ctx->int_req_ack = granted; complete_all(&ctx->int_req_ack_complete); rwref_put(&ctx->ch_state_lhb2); } /** * glink_core_rx_get_pkt_ctx() - lookup RX intent structure * * if_ptr: Pointer to the transport interface * rcid: Remote channel ID * liid: Local RX Intent ID * * Note that this function is designed to always be followed by a call to * glink_core_rx_put_pkt_ctx() to complete an RX operation by the transport. * * Return: Pointer to RX intent structure (or NULL if none found) */ static struct glink_core_rx_intent *glink_core_rx_get_pkt_ctx( struct glink_transport_if *if_ptr, uint32_t rcid, uint32_t liid) { struct channel_ctx *ctx; struct glink_core_rx_intent *intent_ptr; ctx = xprt_rcid_to_ch_ctx_get(if_ptr->glink_core_priv, rcid); if (!ctx) { /* unknown LCID received - this shouldn't happen */ GLINK_ERR_XPRT(if_ptr->glink_core_priv, "%s: invalid rcid received %u\n", __func__, (unsigned)rcid); return NULL; } /* match pending intent */ intent_ptr = ch_get_local_rx_intent(ctx, liid); if (intent_ptr == NULL) { GLINK_ERR_CH(ctx, "%s: L[%u]: No matching rx intent\n", __func__, liid); rwref_put(&ctx->ch_state_lhb2); return NULL; } rwref_put(&ctx->ch_state_lhb2); return intent_ptr; } /** * glink_core_rx_put_pkt_ctx() - lookup RX intent structure * * if_ptr: Pointer to the transport interface * rcid: Remote channel ID * intent_ptr: Pointer to the RX intent * complete: Packet has been completely received * * Note that this function should always be preceded by a call to * glink_core_rx_get_pkt_ctx(). */ void glink_core_rx_put_pkt_ctx(struct glink_transport_if *if_ptr, uint32_t rcid, struct glink_core_rx_intent *intent_ptr, bool complete) { struct channel_ctx *ctx; if (!complete) { GLINK_DBG_XPRT(if_ptr->glink_core_priv, "%s: rcid[%u] liid[%u] pkt_size[%zu] write_offset[%zu] Fragment received\n", __func__, rcid, intent_ptr->id, intent_ptr->pkt_size, intent_ptr->write_offset); return; } /* packet complete */ ctx = xprt_rcid_to_ch_ctx_get(if_ptr->glink_core_priv, rcid); if (!ctx) { /* unknown LCID received - this shouldn't happen */ GLINK_ERR_XPRT(if_ptr->glink_core_priv, "%s: invalid rcid received %u\n", __func__, (unsigned)rcid); return; } if (unlikely(intent_ptr->tracer_pkt)) { tracer_pkt_log_event(intent_ptr->data, GLINK_CORE_RX); ch_set_local_rx_intent_notified(ctx, intent_ptr); if (ctx->notify_rx_tracer_pkt) ctx->notify_rx_tracer_pkt(ctx, ctx->user_priv, intent_ptr->pkt_priv, intent_ptr->data, intent_ptr->pkt_size); rwref_put(&ctx->ch_state_lhb2); return; } GLINK_PERF_CH(ctx, "%s: L[%u]: data[%p] size[%zu]\n", __func__, intent_ptr->id, intent_ptr->data ? intent_ptr->data : intent_ptr->iovec, intent_ptr->write_offset); if (!intent_ptr->data && !ctx->notify_rxv) { /* Received a vector, but client can't handle a vector */ intent_ptr->bounce_buf = linearize_vector(intent_ptr->iovec, intent_ptr->pkt_size, intent_ptr->vprovider, intent_ptr->pprovider); if (IS_ERR_OR_NULL(intent_ptr->bounce_buf)) { GLINK_ERR_XPRT(if_ptr->glink_core_priv, "%s: Error %ld linearizing vector\n", __func__, PTR_ERR(intent_ptr->bounce_buf)); BUG(); rwref_put(&ctx->ch_state_lhb2); return; } } ch_set_local_rx_intent_notified(ctx, intent_ptr); if (ctx->notify_rx && (intent_ptr->data || intent_ptr->bounce_buf)) { ctx->notify_rx(ctx, ctx->user_priv, intent_ptr->pkt_priv, intent_ptr->data ? intent_ptr->data : intent_ptr->bounce_buf, intent_ptr->pkt_size); } else if (ctx->notify_rxv) { ctx->notify_rxv(ctx, ctx->user_priv, intent_ptr->pkt_priv, intent_ptr->iovec, intent_ptr->pkt_size, intent_ptr->vprovider, intent_ptr->pprovider); } else { GLINK_ERR_XPRT(if_ptr->glink_core_priv, "%s: Unable to process rx data\n", __func__); BUG(); } rwref_put(&ctx->ch_state_lhb2); } /** * glink_core_rx_cmd_tx_done() - Receive Transmit Done Command * @xprt_ptr: Transport to send packet on. * @rcid: Remote channel ID * @riid: Remote intent ID * @reuse: Reuse the consumed intent */ void glink_core_rx_cmd_tx_done(struct glink_transport_if *if_ptr, uint32_t rcid, uint32_t riid, bool reuse) { struct channel_ctx *ctx; struct glink_core_tx_pkt *tx_pkt; unsigned long flags; size_t intent_size; void *cookie; ctx = xprt_rcid_to_ch_ctx_get(if_ptr->glink_core_priv, rcid); if (!ctx) { /* unknown RCID received - this shouldn't happen */ GLINK_ERR_XPRT(if_ptr->glink_core_priv, "%s: invalid rcid %u received\n", __func__, rcid); return; } spin_lock_irqsave(&ctx->tx_lists_lock_lhc3, flags); tx_pkt = ch_get_tx_pending_remote_done(ctx, riid); if (IS_ERR_OR_NULL(tx_pkt)) { /* * FUTURE - in the case of a zero-copy transport, this is a * fatal protocol failure since memory corruption could occur * in this case. Prevent this by adding code in glink_close() * to recall any buffers in flight / wait for them to be * returned. */ GLINK_ERR_CH(ctx, "%s: R[%u]: No matching tx\n", __func__, (unsigned)riid); spin_unlock_irqrestore(&ctx->tx_lists_lock_lhc3, flags); rwref_put(&ctx->ch_state_lhb2); return; } /* notify client */ ctx->notify_tx_done(ctx, ctx->user_priv, tx_pkt->pkt_priv, tx_pkt->data ? tx_pkt->data : tx_pkt->iovec); intent_size = tx_pkt->intent_size; cookie = tx_pkt->cookie; ch_remove_tx_pending_remote_done(ctx, tx_pkt); spin_unlock_irqrestore(&ctx->tx_lists_lock_lhc3, flags); if (reuse) ch_push_remote_rx_intent(ctx, intent_size, riid, cookie); rwref_put(&ctx->ch_state_lhb2); } /** * xprt_schedule_tx() - Schedules packet for transmit. * @xprt_ptr: Transport to send packet on. * @ch_ptr: Channel to send packet on. * @tx_info: Packet to transmit. */ static void xprt_schedule_tx(struct glink_core_xprt_ctx *xprt_ptr, struct channel_ctx *ch_ptr, struct glink_core_tx_pkt *tx_info) { unsigned long flags; if (unlikely(xprt_ptr->local_state == GLINK_XPRT_DOWN)) { GLINK_ERR_CH(ch_ptr, "%s: Error XPRT is down\n", __func__); if (tx_info->free_buf) kfree(tx_info->data); kfree(tx_info); return; } spin_lock_irqsave(&xprt_ptr->tx_ready_lock_lhb3, flags); if (unlikely(!ch_is_fully_opened(ch_ptr))) { spin_unlock_irqrestore(&xprt_ptr->tx_ready_lock_lhb3, flags); GLINK_ERR_CH(ch_ptr, "%s: Channel closed before tx\n", __func__); if (tx_info->free_buf) kfree(tx_info->data); kfree(tx_info); return; } if (list_empty(&ch_ptr->tx_ready_list_node)) list_add_tail(&ch_ptr->tx_ready_list_node, &xprt_ptr->prio_bin[ch_ptr->curr_priority].tx_ready); spin_lock(&ch_ptr->tx_lists_lock_lhc3); list_add_tail(&tx_info->list_node, &ch_ptr->tx_active); glink_qos_do_ch_tx(ch_ptr); if (unlikely(tx_info->tracer_pkt)) tracer_pkt_log_event((void *)(tx_info->data), GLINK_QUEUE_TO_SCHEDULER); spin_unlock(&ch_ptr->tx_lists_lock_lhc3); spin_unlock_irqrestore(&xprt_ptr->tx_ready_lock_lhb3, flags); queue_kthread_work(&xprt_ptr->tx_wq, &xprt_ptr->tx_kwork); } /** * xprt_single_threaded_tx() - Transmit in the context of sender. * @xprt_ptr: Transport to send packet on. * @ch_ptr: Channel to send packet on. * @tx_info: Packet to transmit. */ static int xprt_single_threaded_tx(struct glink_core_xprt_ctx *xprt_ptr, struct channel_ctx *ch_ptr, struct glink_core_tx_pkt *tx_info) { int ret; unsigned long flags; spin_lock_irqsave(&ch_ptr->tx_pending_rmt_done_lock_lhc4, flags); do { ret = xprt_ptr->ops->tx(ch_ptr->transport_ptr->ops, ch_ptr->lcid, tx_info); } while (ret == -EAGAIN); if (ret < 0 || tx_info->size_remaining) { GLINK_ERR_CH(ch_ptr, "%s: Error %d writing data\n", __func__, ret); if (tx_info->free_buf) kfree(tx_info->data); kfree(tx_info); } else { list_add_tail(&tx_info->list_done, &ch_ptr->tx_pending_remote_done); ret = 0; } spin_unlock_irqrestore(&ch_ptr->tx_pending_rmt_done_lock_lhc4, flags); return ret; } /** * glink_scheduler_eval_prio() - Evaluate the channel priority * @ctx: Channel whose priority is evaluated. * @xprt_ctx: Transport in which the channel is part of. * * This function is called by the packet scheduler to measure the traffic * rate observed in the channel and compare it against the traffic rate * requested by the channel. The comparison result is used to evaluate the * priority of the channel. */ static void glink_scheduler_eval_prio(struct channel_ctx *ctx, struct glink_core_xprt_ctx *xprt_ctx) { unsigned long token_end_time; unsigned long token_consume_time, rem; unsigned long obs_rate_kBps; if (ctx->initial_priority == 0) return; if (ctx->token_count) return; token_end_time = arch_counter_get_cntpct(); token_consume_time = NSEC_PER_SEC; rem = do_div(token_consume_time, arch_timer_get_rate()); token_consume_time = (token_end_time - ctx->token_start_time) * token_consume_time; rem = do_div(token_consume_time, 1000); obs_rate_kBps = glink_qos_calc_rate_kBps(ctx->txd_len, token_consume_time); if (obs_rate_kBps > ctx->req_rate_kBps) { GLINK_INFO_CH(ctx, "%s: Obs. Rate (%lu) > Req. Rate (%lu)\n", __func__, obs_rate_kBps, ctx->req_rate_kBps); glink_qos_update_ch_prio(ctx, 0); } else { glink_qos_update_ch_prio(ctx, ctx->initial_priority); } ctx->token_count = xprt_ctx->token_count; ctx->txd_len = 0; ctx->token_start_time = arch_counter_get_cntpct(); } /** * glink_scheduler_tx() - Transmit operation by the scheduler * @ctx: Channel which is scheduled for transmission. * @xprt_ctx: Transport context in which the transmission is performed. * * This function is called by the scheduler after scheduling a channel for * transmission over the transport. * * Return: return value as returned by the transport on success, * standard Linux error codes on failure. */ static int glink_scheduler_tx(struct channel_ctx *ctx, struct glink_core_xprt_ctx *xprt_ctx) { unsigned long flags; struct glink_core_tx_pkt *tx_info, *temp_tx_info; size_t txd_len = 0; size_t tx_len = 0; uint32_t num_pkts = 0; int ret = -EINVAL; spin_lock_irqsave(&ctx->tx_lists_lock_lhc3, flags); while (txd_len < xprt_ctx->mtu && !list_empty(&ctx->tx_active)) { tx_info = list_first_entry(&ctx->tx_active, struct glink_core_tx_pkt, list_node); rwref_get(&tx_info->pkt_ref); spin_lock(&ctx->tx_pending_rmt_done_lock_lhc4); if (list_empty(&tx_info->list_done)) list_add(&tx_info->list_done, &ctx->tx_pending_remote_done); spin_unlock(&ctx->tx_pending_rmt_done_lock_lhc4); spin_unlock_irqrestore(&ctx->tx_lists_lock_lhc3, flags); if (unlikely(tx_info->tracer_pkt)) { tracer_pkt_log_event((void *)(tx_info->data), GLINK_SCHEDULER_TX); ret = xprt_ctx->ops->tx_cmd_tracer_pkt(xprt_ctx->ops, ctx->lcid, tx_info); } else { tx_len = tx_info->size_remaining < (xprt_ctx->mtu - txd_len) ? tx_info->size_remaining : (xprt_ctx->mtu - txd_len); tx_info->tx_len = tx_len; ret = xprt_ctx->ops->tx(xprt_ctx->ops, ctx->lcid, tx_info); } spin_lock_irqsave(&ctx->tx_lists_lock_lhc3, flags); if (!list_empty(&ctx->tx_active)) { /* * Verify if same tx_info still exist in tx_active * list and is not removed during tx operation. * It can happen if SSR and tx done both happen * before tx_lists_lock_lhc3 is taken. */ temp_tx_info = list_first_entry(&ctx->tx_active, struct glink_core_tx_pkt, list_node); if (temp_tx_info != tx_info) continue; } else { break; } if (ret == -EAGAIN) { /* * transport unable to send at the moment and will call * tx_resume() when it can send again. */ rwref_put(&tx_info->pkt_ref); break; } else if (ret < 0) { /* * General failure code that indicates that the * transport is unable to recover. In this case, the * communication failure will be detected at a higher * level and a subsystem restart of the affected system * will be triggered. */ GLINK_ERR_XPRT(xprt_ctx, "%s: unrecoverable xprt failure %d\n", __func__, ret); rwref_put(&tx_info->pkt_ref); break; } else if (!ret && tx_info->size_remaining) { /* * Transport unable to send any data on this channel. * Break out of the loop so that the scheduler can * continue with the next channel. */ rwref_put(&tx_info->pkt_ref); break; } else { txd_len += tx_len; } if (!tx_info->size_remaining) { num_pkts++; list_del_init(&tx_info->list_node); } rwref_put(&tx_info->pkt_ref); } ctx->txd_len += txd_len; if (txd_len) { if (num_pkts >= ctx->token_count) ctx->token_count = 0; else if (num_pkts) ctx->token_count -= num_pkts; else ctx->token_count--; } spin_unlock_irqrestore(&ctx->tx_lists_lock_lhc3, flags); return ret; } /**Actual Transmit function **/ static void tx_func(struct kthread_work *work) { struct channel_ctx *ch_ptr; uint32_t prio; uint32_t tx_ready_head_prio; int ret; struct channel_ctx *tx_ready_head = NULL; bool transmitted_successfully = true; unsigned long flags; struct glink_core_xprt_ctx *xprt_ptr = container_of(work, struct glink_core_xprt_ctx, tx_kwork); GLINK_PERF("%s: worker starting\n", __func__); while (1) { prio = xprt_ptr->num_priority - 1; spin_lock_irqsave(&xprt_ptr->tx_ready_lock_lhb3, flags); while (list_empty(&xprt_ptr->prio_bin[prio].tx_ready)) { if (prio == 0) { spin_unlock_irqrestore( &xprt_ptr->tx_ready_lock_lhb3, flags); return; } prio--; } glink_pm_qos_vote(xprt_ptr); ch_ptr = list_first_entry(&xprt_ptr->prio_bin[prio].tx_ready, struct channel_ctx, tx_ready_list_node); rwref_get(&ch_ptr->ch_state_lhb2); spin_unlock_irqrestore(&xprt_ptr->tx_ready_lock_lhb3, flags); if (tx_ready_head == NULL || tx_ready_head_prio < prio) { tx_ready_head = ch_ptr; tx_ready_head_prio = prio; } if (ch_ptr == tx_ready_head && !transmitted_successfully) { GLINK_ERR_XPRT(xprt_ptr, "%s: Unable to send data on this transport.\n", __func__); rwref_put(&ch_ptr->ch_state_lhb2); break; } transmitted_successfully = false; ret = glink_scheduler_tx(ch_ptr, xprt_ptr); if (ret == -EAGAIN) { /* * transport unable to send at the moment and will call * tx_resume() when it can send again. */ rwref_put(&ch_ptr->ch_state_lhb2); break; } else if (ret < 0) { /* * General failure code that indicates that the * transport is unable to recover. In this case, the * communication failure will be detected at a higher * level and a subsystem restart of the affected system * will be triggered. */ GLINK_ERR_XPRT(xprt_ptr, "%s: unrecoverable xprt failure %d\n", __func__, ret); rwref_put(&ch_ptr->ch_state_lhb2); break; } else if (!ret) { /* * Transport unable to send any data on this channel, * but didn't return an error. Move to the next channel * and continue. */ spin_lock_irqsave(&xprt_ptr->tx_ready_lock_lhb3, flags); list_rotate_left(&xprt_ptr->prio_bin[prio].tx_ready); spin_unlock_irqrestore(&xprt_ptr->tx_ready_lock_lhb3, flags); rwref_put(&ch_ptr->ch_state_lhb2); continue; } spin_lock_irqsave(&xprt_ptr->tx_ready_lock_lhb3, flags); spin_lock(&ch_ptr->tx_lists_lock_lhc3); glink_scheduler_eval_prio(ch_ptr, xprt_ptr); if (list_empty(&ch_ptr->tx_active)) { list_del_init(&ch_ptr->tx_ready_list_node); glink_qos_done_ch_tx(ch_ptr); } spin_unlock(&ch_ptr->tx_lists_lock_lhc3); spin_unlock_irqrestore(&xprt_ptr->tx_ready_lock_lhb3, flags); tx_ready_head = NULL; transmitted_successfully = true; rwref_put(&ch_ptr->ch_state_lhb2); } glink_pm_qos_unvote(xprt_ptr); GLINK_PERF("%s: worker exiting\n", __func__); } static void glink_core_tx_resume(struct glink_transport_if *if_ptr) { struct glink_core_xprt_ctx *xprt_ptr = if_ptr->glink_core_priv; queue_kthread_work(&xprt_ptr->tx_wq, &xprt_ptr->tx_kwork); } /** * glink_pm_qos_vote() - Add Power Management QoS Vote * @xprt_ptr: Transport for power vote * * Note - must be called with tx_ready_lock_lhb3 locked. */ static void glink_pm_qos_vote(struct glink_core_xprt_ctx *xprt_ptr) { if (glink_pm_qos && !xprt_ptr->qos_req_active) { GLINK_PERF("%s: qos vote %u us\n", __func__, glink_pm_qos); pm_qos_update_request(&xprt_ptr->pm_qos_req, glink_pm_qos); xprt_ptr->qos_req_active = true; } xprt_ptr->tx_path_activity = true; } /** * glink_pm_qos_unvote() - Schedule Power Management QoS Vote Removal * @xprt_ptr: Transport for power vote removal * * Note - must be called with tx_ready_lock_lhb3 locked. */ static void glink_pm_qos_unvote(struct glink_core_xprt_ctx *xprt_ptr) { xprt_ptr->tx_path_activity = false; if (xprt_ptr->qos_req_active) { GLINK_PERF("%s: qos unvote\n", __func__); schedule_delayed_work(&xprt_ptr->pm_qos_work, msecs_to_jiffies(GLINK_PM_QOS_HOLDOFF_MS)); } } /** * glink_pm_qos_cancel_worker() - Remove Power Management QoS Vote * @work: Delayed work structure * * Removes PM QoS vote if no additional transmit activity has occurred between * the unvote and when this worker runs. */ static void glink_pm_qos_cancel_worker(struct work_struct *work) { struct glink_core_xprt_ctx *xprt_ptr; unsigned long flags; xprt_ptr = container_of(to_delayed_work(work), struct glink_core_xprt_ctx, pm_qos_work); spin_lock_irqsave(&xprt_ptr->tx_ready_lock_lhb3, flags); if (!xprt_ptr->tx_path_activity) { /* no more tx activity */ GLINK_PERF("%s: qos off\n", __func__); pm_qos_update_request(&xprt_ptr->pm_qos_req, PM_QOS_DEFAULT_VALUE); xprt_ptr->qos_req_active = false; } xprt_ptr->tx_path_activity = false; spin_unlock_irqrestore(&xprt_ptr->tx_ready_lock_lhb3, flags); } /** * glink_core_rx_cmd_remote_sigs() - Receive remote channel signal command * * if_ptr: Pointer to transport instance * rcid: Remote Channel ID */ static void glink_core_rx_cmd_remote_sigs(struct glink_transport_if *if_ptr, uint32_t rcid, uint32_t sigs) { struct channel_ctx *ctx; uint32_t old_sigs; ctx = xprt_rcid_to_ch_ctx_get(if_ptr->glink_core_priv, rcid); if (!ctx) { /* unknown LCID received - this shouldn't happen */ GLINK_ERR_XPRT(if_ptr->glink_core_priv, "%s: invalid rcid %u received\n", __func__, (unsigned)rcid); return; } if (!ch_is_fully_opened(ctx)) { GLINK_ERR_CH(ctx, "%s: Channel is not fully opened\n", __func__); rwref_put(&ctx->ch_state_lhb2); return; } old_sigs = ctx->rsigs; ctx->rsigs = sigs; if (ctx->notify_rx_sigs) { ctx->notify_rx_sigs(ctx, ctx->user_priv, old_sigs, ctx->rsigs); GLINK_INFO_CH(ctx, "%s: notify rx sigs old:0x%x new:0x%x\n", __func__, old_sigs, ctx->rsigs); } rwref_put(&ctx->ch_state_lhb2); } static struct glink_core_if core_impl = { .link_up = glink_core_link_up, .link_down = glink_core_link_down, .rx_cmd_version = glink_core_rx_cmd_version, .rx_cmd_version_ack = glink_core_rx_cmd_version_ack, .rx_cmd_ch_remote_open = glink_core_rx_cmd_ch_remote_open, .rx_cmd_ch_open_ack = glink_core_rx_cmd_ch_open_ack, .rx_cmd_ch_remote_close = glink_core_rx_cmd_ch_remote_close, .rx_cmd_ch_close_ack = glink_core_rx_cmd_ch_close_ack, .rx_get_pkt_ctx = glink_core_rx_get_pkt_ctx, .rx_put_pkt_ctx = glink_core_rx_put_pkt_ctx, .rx_cmd_remote_rx_intent_put = glink_core_remote_rx_intent_put, .rx_cmd_remote_rx_intent_put_cookie = glink_core_remote_rx_intent_put_cookie, .rx_cmd_remote_rx_intent_req = glink_core_rx_cmd_remote_rx_intent_req, .rx_cmd_rx_intent_req_ack = glink_core_rx_cmd_rx_intent_req_ack, .rx_cmd_tx_done = glink_core_rx_cmd_tx_done, .tx_resume = glink_core_tx_resume, .rx_cmd_remote_sigs = glink_core_rx_cmd_remote_sigs, }; /** * glink_xprt_ctx_iterator_init() - Initializes the transport context list iterator * @xprt_i: pointer to the transport context iterator. * * This function acquires the transport context lock which must then be * released by glink_xprt_ctx_iterator_end() */ void glink_xprt_ctx_iterator_init(struct xprt_ctx_iterator *xprt_i) { if (xprt_i == NULL) return; mutex_lock(&transport_list_lock_lha0); xprt_i->xprt_list = &transport_list; xprt_i->i_curr = list_entry(&transport_list, struct glink_core_xprt_ctx, list_node); } EXPORT_SYMBOL(glink_xprt_ctx_iterator_init); /** * glink_xprt_ctx_iterator_end() - Ends the transport context list iteration * @xprt_i: pointer to the transport context iterator. */ void glink_xprt_ctx_iterator_end(struct xprt_ctx_iterator *xprt_i) { if (xprt_i == NULL) return; xprt_i->xprt_list = NULL; xprt_i->i_curr = NULL; mutex_unlock(&transport_list_lock_lha0); } EXPORT_SYMBOL(glink_xprt_ctx_iterator_end); /** * glink_xprt_ctx_iterator_next() - iterates element by element in transport context list * @xprt_i: pointer to the transport context iterator. * * Return: pointer to the transport context structure */ struct glink_core_xprt_ctx *glink_xprt_ctx_iterator_next( struct xprt_ctx_iterator *xprt_i) { struct glink_core_xprt_ctx *xprt_ctx = NULL; if (xprt_i == NULL) return xprt_ctx; if (list_empty(xprt_i->xprt_list)) return xprt_ctx; list_for_each_entry_continue(xprt_i->i_curr, xprt_i->xprt_list, list_node) { xprt_ctx = xprt_i->i_curr; break; } return xprt_ctx; } EXPORT_SYMBOL(glink_xprt_ctx_iterator_next); /** * glink_get_xprt_name() - get the transport name * @xprt_ctx: pointer to the transport context. * * Return: name of the transport */ char *glink_get_xprt_name(struct glink_core_xprt_ctx *xprt_ctx) { if (xprt_ctx == NULL) return NULL; return xprt_ctx->name; } EXPORT_SYMBOL(glink_get_xprt_name); /** * glink_get_xprt_name() - get the name of the remote processor/edge * of the transport * @xprt_ctx: pointer to the transport context. * * Return: Name of the remote processor/edge */ char *glink_get_xprt_edge_name(struct glink_core_xprt_ctx *xprt_ctx) { if (xprt_ctx == NULL) return NULL; return xprt_ctx->edge; } EXPORT_SYMBOL(glink_get_xprt_edge_name); /** * glink_get_xprt_state() - get the state of the transport * @xprt_ctx: pointer to the transport context. * * Return: Name of the transport state, NULL in case of invalid input */ const char *glink_get_xprt_state(struct glink_core_xprt_ctx *xprt_ctx) { if (xprt_ctx == NULL) return NULL; return glink_get_xprt_state_string(xprt_ctx->local_state); } EXPORT_SYMBOL(glink_get_xprt_state); /** * glink_get_xprt_version_features() - get the version and feature set * of local transport in glink * @xprt_ctx: pointer to the transport context. * * Return: pointer to the glink_core_version */ const struct glink_core_version *glink_get_xprt_version_features( struct glink_core_xprt_ctx *xprt_ctx) { const struct glink_core_version *ver = NULL; if (xprt_ctx == NULL) return ver; ver = &xprt_ctx->versions[xprt_ctx->local_version_idx]; return ver; } EXPORT_SYMBOL(glink_get_xprt_version_features); /** * glink_ch_ctx_iterator_init() - Initializes the channel context list iterator * @ch_iter: pointer to the channel context iterator. * xprt: pointer to the transport context that holds the channel list * * This function acquires the channel context lock which must then be * released by glink_ch_ctx_iterator_end() */ void glink_ch_ctx_iterator_init(struct ch_ctx_iterator *ch_iter, struct glink_core_xprt_ctx *xprt) { unsigned long flags; if (ch_iter == NULL || xprt == NULL) return; spin_lock_irqsave(&xprt->xprt_ctx_lock_lhb1, flags); ch_iter->ch_list = &(xprt->channels); ch_iter->i_curr = list_entry(&(xprt->channels), struct channel_ctx, port_list_node); ch_iter->ch_list_flags = flags; } EXPORT_SYMBOL(glink_ch_ctx_iterator_init); /** * glink_ch_ctx_iterator_end() - Ends the channel context list iteration * @ch_iter: pointer to the channel context iterator. */ void glink_ch_ctx_iterator_end(struct ch_ctx_iterator *ch_iter, struct glink_core_xprt_ctx *xprt) { if (ch_iter == NULL || xprt == NULL) return; spin_unlock_irqrestore(&xprt->xprt_ctx_lock_lhb1, ch_iter->ch_list_flags); ch_iter->ch_list = NULL; ch_iter->i_curr = NULL; } EXPORT_SYMBOL(glink_ch_ctx_iterator_end); /** * glink_ch_ctx_iterator_next() - iterates element by element in channel context list * @c_i: pointer to the channel context iterator. * * Return: pointer to the channel context structure */ struct channel_ctx *glink_ch_ctx_iterator_next(struct ch_ctx_iterator *c_i) { struct channel_ctx *ch_ctx = NULL; if (c_i == NULL) return ch_ctx; if (list_empty(c_i->ch_list)) return ch_ctx; list_for_each_entry_continue(c_i->i_curr, c_i->ch_list, port_list_node) { ch_ctx = c_i->i_curr; break; } return ch_ctx; } EXPORT_SYMBOL(glink_ch_ctx_iterator_next); /** * glink_get_ch_name() - get the channel name * @ch_ctx: pointer to the channel context. * * Return: name of the channel, NULL in case of invalid input */ char *glink_get_ch_name(struct channel_ctx *ch_ctx) { if (ch_ctx == NULL) return NULL; return ch_ctx->name; } EXPORT_SYMBOL(glink_get_ch_name); /** * glink_get_ch_edge_name() - get the edge on whcih channel is created * @ch_ctx: pointer to the channel context. * * Return: name of the edge, NULL in case of invalid input */ char *glink_get_ch_edge_name(struct channel_ctx *ch_ctx) { if (ch_ctx == NULL) return NULL; return ch_ctx->transport_ptr->edge; } EXPORT_SYMBOL(glink_get_ch_edge_name); /** * glink_get_ch_lcid() - get the local channel ID * @c_i: pointer to the channel context. * * Return: local channel id, -EINVAL in case of invalid input */ int glink_get_ch_lcid(struct channel_ctx *ch_ctx) { if (ch_ctx == NULL) return -EINVAL; return ch_ctx->lcid; } EXPORT_SYMBOL(glink_get_ch_lcid); /** * glink_get_ch_rcid() - get the remote channel ID * @ch_ctx: pointer to the channel context. * * Return: remote channel id, -EINVAL in case of invalid input */ int glink_get_ch_rcid(struct channel_ctx *ch_ctx) { if (ch_ctx == NULL) return -EINVAL; return ch_ctx->rcid; } EXPORT_SYMBOL(glink_get_ch_rcid); /** * glink_get_ch_lstate() - get the local channel state * @ch_ctx: pointer to the channel context. * * Return: Name of the local channel state, NUll in case of invalid input */ const char *glink_get_ch_lstate(struct channel_ctx *ch_ctx) { if (ch_ctx == NULL) return NULL; return glink_get_ch_state_string(ch_ctx->local_open_state); } EXPORT_SYMBOL(glink_get_ch_lstate); /** * glink_get_ch_rstate() - get the remote channel state * @ch_ctx: pointer to the channel context. * * Return: true if remote side is opened false otherwise */ bool glink_get_ch_rstate(struct channel_ctx *ch_ctx) { if (ch_ctx == NULL) return NULL; return ch_ctx->remote_opened; } EXPORT_SYMBOL(glink_get_ch_rstate); /** * glink_get_ch_xprt_name() - get the name of the transport to which * the channel belongs * @ch_ctx: pointer to the channel context. * * Return: name of the export, NULL in case of invalid input */ char *glink_get_ch_xprt_name(struct channel_ctx *ch_ctx) { if (ch_ctx == NULL) return NULL; return ch_ctx->transport_ptr->name; } EXPORT_SYMBOL(glink_get_ch_xprt_name); /** * glink_get_tx_pkt_count() - get the total number of packets sent * through this channel * @ch_ctx: pointer to the channel context. * * Return: number of packets transmitted, -EINVAL in case of invalid input */ int glink_get_ch_tx_pkt_count(struct channel_ctx *ch_ctx) { if (ch_ctx == NULL) return -EINVAL; /* FUTURE: packet stats not yet implemented */ return -ENOSYS; } EXPORT_SYMBOL(glink_get_ch_tx_pkt_count); /** * glink_get_ch_rx_pkt_count() - get the total number of packets * recieved at this channel * @ch_ctx: pointer to the channel context. * * Return: number of packets recieved, -EINVAL in case of invalid input */ int glink_get_ch_rx_pkt_count(struct channel_ctx *ch_ctx) { if (ch_ctx == NULL) return -EINVAL; /* FUTURE: packet stats not yet implemented */ return -ENOSYS; } EXPORT_SYMBOL(glink_get_ch_rx_pkt_count); /** * glink_get_ch_lintents_queued() - get the total number of intents queued * at local side * @ch_ctx: pointer to the channel context. * * Return: number of intents queued, -EINVAL in case of invalid input */ int glink_get_ch_lintents_queued(struct channel_ctx *ch_ctx) { struct glink_core_rx_intent *intent; int ilrx_count = 0; if (ch_ctx == NULL) return -EINVAL; list_for_each_entry(intent, &ch_ctx->local_rx_intent_list, list) ilrx_count++; return ilrx_count; } EXPORT_SYMBOL(glink_get_ch_lintents_queued); /** * glink_get_ch_rintents_queued() - get the total number of intents queued * from remote side * @ch_ctx: pointer to the channel context. * * Return: number of intents queued, -EINVAL in case of invalid input */ int glink_get_ch_rintents_queued(struct channel_ctx *ch_ctx) { struct glink_core_rx_intent *intent; int irrx_count = 0; if (ch_ctx == NULL) return -EINVAL; list_for_each_entry(intent, &ch_ctx->rmt_rx_intent_list, list) irrx_count++; return irrx_count; } EXPORT_SYMBOL(glink_get_ch_rintents_queued); /** * glink_get_ch_intent_info() - get the intent details of a channel * @ch_ctx: pointer to the channel context. * ch_ctx_i: pointer to a structure that will contain intent details * * This function is used to get all the channel intent details including locks. */ void glink_get_ch_intent_info(struct channel_ctx *ch_ctx, struct glink_ch_intent_info *ch_ctx_i) { if (ch_ctx == NULL || ch_ctx_i == NULL) return; ch_ctx_i->li_lst_lock = &ch_ctx->local_rx_intent_lst_lock_lhc1; ch_ctx_i->li_avail_list = &ch_ctx->local_rx_intent_list; ch_ctx_i->li_used_list = &ch_ctx->local_rx_intent_ntfy_list; ch_ctx_i->ri_lst_lock = &ch_ctx->rmt_rx_intent_lst_lock_lhc2; ch_ctx_i->ri_list = &ch_ctx->rmt_rx_intent_list; } EXPORT_SYMBOL(glink_get_ch_intent_info); /** * glink_get_debug_mask() - Return debug mask attribute * * Return: debug mask attribute */ unsigned glink_get_debug_mask(void) { return glink_debug_mask; } EXPORT_SYMBOL(glink_get_debug_mask); /** * glink_get_log_ctx() - Return log context for other GLINK modules. * * Return: Log context or NULL if none. */ void *glink_get_log_ctx(void) { return log_ctx; } EXPORT_SYMBOL(glink_get_log_ctx); /** * glink_get_xprt_log_ctx() - Return log context for GLINK xprts. * * Return: Log context or NULL if none. */ void *glink_get_xprt_log_ctx(struct glink_core_xprt_ctx *xprt) { if (xprt) return xprt->log_ctx; else return NULL; } EXPORT_SYMBOL(glink_get_xprt_log_ctx); static int glink_init(void) { log_ctx = ipc_log_context_create(NUM_LOG_PAGES, "glink", 0); if (!log_ctx) { #ifdef CONFIG_IPC_LOGGING GLINK_ERR("%s: unable to create log context\n", __func__); #else GLINK_ERR("%s: IPC Logging Disabled\n", __func__); #endif } glink_debugfs_init(); return 0; } arch_initcall(glink_init); MODULE_DESCRIPTION("MSM Generic Link (G-Link) Transport"); MODULE_LICENSE("GPL v2");