/* Copyright (c) 2012-2016, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_TRACE_RPM #define CREATE_TRACE_POINTS #include #endif struct msm_rpm_notifier_data { uint32_t rsc_type; uint32_t rsc_id; uint32_t key; uint32_t size; uint8_t *value; }; /* Debug Definitions */ enum { MSM_RPM_LOG_REQUEST_PRETTY = BIT(0), MSM_RPM_LOG_REQUEST_RAW = BIT(1), MSM_RPM_LOG_REQUEST_SHOW_MSG_ID = BIT(2), }; static int msm_rpm_debug_mask; module_param_named( debug_mask, msm_rpm_debug_mask, int, S_IRUGO | S_IWUSR ); struct glink_apps_rpm_data { const char *name; const char *edge; const char *xprt; void *glink_handle; struct glink_link_info *link_info; struct glink_open_config *open_cfg; struct work_struct work; spinlock_t glink_lock_write; spinlock_t glink_lock_read; }; static struct glink_apps_rpm_data *glink_data; #define DEFAULT_BUFFER_SIZE 256 #define DEBUG_PRINT_BUFFER_SIZE 512 #define MAX_SLEEP_BUFFER 128 #define GFP_FLAG(noirq) (noirq ? GFP_ATOMIC : GFP_NOFS) #define INV_RSC "resource does not exist" #define ERR "err\0" #define MAX_ERR_BUFFER_SIZE 128 #define MAX_WAIT_ON_ACK 24 #define INIT_ERROR 1 static ATOMIC_NOTIFIER_HEAD(msm_rpm_sleep_notifier); static bool standalone; static int probe_status = -EPROBE_DEFER; int msm_rpm_register_notifier(struct notifier_block *nb) { return atomic_notifier_chain_register(&msm_rpm_sleep_notifier, nb); } int msm_rpm_unregister_notifier(struct notifier_block *nb) { return atomic_notifier_chain_unregister(&msm_rpm_sleep_notifier, nb); } enum { MSM_RPM_MSG_REQUEST_TYPE = 0, MSM_RPM_MSG_TYPE_NR, }; static const uint32_t msm_rpm_request_service[MSM_RPM_MSG_TYPE_NR] = { 0x716572, /* 'req\0' */ }; /*the order of fields matter and reflect the order expected by the RPM*/ struct rpm_request_header { uint32_t service_type; uint32_t request_len; }; struct rpm_message_header { uint32_t msg_id; enum msm_rpm_set set; uint32_t resource_type; uint32_t resource_id; uint32_t data_len; }; struct kvp { unsigned int k; unsigned int s; }; struct msm_rpm_kvp_data { uint32_t key; uint32_t nbytes; /* number of bytes */ uint8_t *value; bool valid; }; struct slp_buf { struct rb_node node; char ubuf[MAX_SLEEP_BUFFER]; char *buf; bool valid; }; static struct rb_root tr_root = RB_ROOT; static int (*msm_rpm_send_buffer)(char *buf, uint32_t size, bool noirq); static int msm_rpm_glink_send_buffer(char *buf, uint32_t size, bool noirq); static uint32_t msm_rpm_get_next_msg_id(void); static inline unsigned int get_rsc_type(char *buf) { struct rpm_message_header *h; h = (struct rpm_message_header *) (buf + sizeof(struct rpm_request_header)); return h->resource_type; } static inline unsigned int get_rsc_id(char *buf) { struct rpm_message_header *h; h = (struct rpm_message_header *) (buf + sizeof(struct rpm_request_header)); return h->resource_id; } #define get_data_len(buf) \ (((struct rpm_message_header *) \ (buf + sizeof(struct rpm_request_header)))->data_len) #define get_req_len(buf) \ (((struct rpm_request_header *)(buf))->request_len) #define get_msg_id(buf) \ (((struct rpm_message_header *) \ (buf + sizeof(struct rpm_request_header)))->msg_id) static inline int get_buf_len(char *buf) { return get_req_len(buf) + sizeof(struct rpm_request_header); } static inline struct kvp *get_first_kvp(char *buf) { return (struct kvp *)(buf + sizeof(struct rpm_request_header) + sizeof(struct rpm_message_header)); } static inline struct kvp *get_next_kvp(struct kvp *k) { return (struct kvp *)((void *)k + sizeof(*k) + k->s); } static inline void *get_data(struct kvp *k) { return (void *)k + sizeof(*k); } static void delete_kvp(char *msg, struct kvp *d) { struct kvp *n; int dec; uint32_t size; n = get_next_kvp(d); dec = (void *)n - (void *)d; size = get_data_len(msg) - ((void *)n - (void *)get_first_kvp(msg)); memcpy((void *)d, (void *)n, size); get_data_len(msg) -= dec; get_req_len(msg) -= dec; } static inline void update_kvp_data(struct kvp *dest, struct kvp *src) { memcpy(get_data(dest), get_data(src), src->s); } static void add_kvp(char *buf, struct kvp *n) { uint32_t inc = sizeof(*n) + n->s; BUG_ON((get_req_len(buf) + inc) > MAX_SLEEP_BUFFER); memcpy(buf + get_buf_len(buf), n, inc); get_data_len(buf) += inc; get_req_len(buf) += inc; } static struct slp_buf *tr_search(struct rb_root *root, char *slp) { unsigned int type = get_rsc_type(slp); unsigned int id = get_rsc_id(slp); struct rb_node *node = root->rb_node; while (node) { struct slp_buf *cur = rb_entry(node, struct slp_buf, node); unsigned int ctype = get_rsc_type(cur->buf); unsigned int cid = get_rsc_id(cur->buf); if (type < ctype) node = node->rb_left; else if (type > ctype) node = node->rb_right; else if (id < cid) node = node->rb_left; else if (id > cid) node = node->rb_right; else return cur; } return NULL; } static int tr_insert(struct rb_root *root, struct slp_buf *slp) { unsigned int type = get_rsc_type(slp->buf); unsigned int id = get_rsc_id(slp->buf); struct rb_node **node = &(root->rb_node), *parent = NULL; while (*node) { struct slp_buf *curr = rb_entry(*node, struct slp_buf, node); unsigned int ctype = get_rsc_type(curr->buf); unsigned int cid = get_rsc_id(curr->buf); parent = *node; if (type < ctype) node = &((*node)->rb_left); else if (type > ctype) node = &((*node)->rb_right); else if (id < cid) node = &((*node)->rb_left); else if (id > cid) node = &((*node)->rb_right); else return -EINVAL; } rb_link_node(&slp->node, parent, node); rb_insert_color(&slp->node, root); slp->valid = true; return 0; } #define for_each_kvp(buf, k) \ for (k = (struct kvp *)get_first_kvp(buf); \ ((void *)k - (void *)get_first_kvp(buf)) < get_data_len(buf);\ k = get_next_kvp(k)) static void tr_update(struct slp_buf *s, char *buf) { struct kvp *e, *n; for_each_kvp(buf, n) { bool found = false; for_each_kvp(s->buf, e) { if (n->k == e->k) { found = true; if (n->s == e->s) { void *e_data = get_data(e); void *n_data = get_data(n); if (memcmp(e_data, n_data, n->s)) { update_kvp_data(e, n); s->valid = true; } } else { delete_kvp(s->buf, e); add_kvp(s->buf, n); s->valid = true; } break; } } if (!found) { add_kvp(s->buf, n); s->valid = true; } } } static atomic_t msm_rpm_msg_id = ATOMIC_INIT(0); struct msm_rpm_request { struct rpm_request_header req_hdr; struct rpm_message_header msg_hdr; struct msm_rpm_kvp_data *kvp; uint32_t num_elements; uint32_t write_idx; uint8_t *buf; uint32_t numbytes; }; /* * Data related to message acknowledgment */ LIST_HEAD(msm_rpm_wait_list); struct msm_rpm_wait_data { struct list_head list; uint32_t msg_id; bool ack_recd; int errno; struct completion ack; }; DEFINE_SPINLOCK(msm_rpm_list_lock); struct msm_rpm_ack_msg { uint32_t req; uint32_t req_len; uint32_t rsc_id; uint32_t msg_len; uint32_t id_ack; }; LIST_HEAD(msm_rpm_ack_list); static inline uint32_t msm_rpm_get_msg_id_from_ack(uint8_t *buf) { return ((struct msm_rpm_ack_msg *)buf)->id_ack; } static inline int msm_rpm_get_error_from_ack(uint8_t *buf) { uint8_t *tmp; uint32_t req_len = ((struct msm_rpm_ack_msg *)buf)->req_len; struct msm_rpm_ack_msg *tmp_buf = (struct msm_rpm_ack_msg *)buf; int rc = -ENODEV; req_len -= sizeof(struct msm_rpm_ack_msg); req_len += 2 * sizeof(uint32_t); if (!req_len) return 0; pr_err("%s:rpm returned error or nack req_len: %d id_ack: %d\n", __func__, tmp_buf->req_len, tmp_buf->id_ack); tmp = buf + sizeof(struct msm_rpm_ack_msg); if (memcmp(tmp, ERR, sizeof(uint32_t))) { pr_err("%s rpm returned error\n", __func__); WARN_ON(1); } tmp += 2 * sizeof(uint32_t); if (!(memcmp(tmp, INV_RSC, min_t(uint32_t, req_len, sizeof(INV_RSC))-1))) { pr_err("%s(): RPM NACK Unsupported resource\n", __func__); rc = -EINVAL; } else { pr_err("%s(): RPM NACK Invalid header\n", __func__); } return rc; } int msm_rpm_smd_buffer_request(struct msm_rpm_request *cdata, uint32_t size, gfp_t flag) { struct slp_buf *slp; static DEFINE_SPINLOCK(slp_buffer_lock); unsigned long flags; char *buf; buf = cdata->buf; if (size > MAX_SLEEP_BUFFER) return -ENOMEM; spin_lock_irqsave(&slp_buffer_lock, flags); slp = tr_search(&tr_root, buf); if (!slp) { slp = kzalloc(sizeof(struct slp_buf), GFP_ATOMIC); if (!slp) { spin_unlock_irqrestore(&slp_buffer_lock, flags); return -ENOMEM; } slp->buf = PTR_ALIGN(&slp->ubuf[0], sizeof(u32)); memcpy(slp->buf, buf, size); if (tr_insert(&tr_root, slp)) pr_err("Error updating sleep request\n"); } else { /* handle unsent requests */ tr_update(slp, buf); } #ifdef CONFIG_TRACE_RPM trace_rpm_smd_sleep_set(cdata->msg_hdr.msg_id, cdata->msg_hdr.resource_type, cdata->msg_hdr.resource_id); #endif spin_unlock_irqrestore(&slp_buffer_lock, flags); return 0; } static void msm_rpm_print_sleep_buffer(struct slp_buf *s) { char buf[DEBUG_PRINT_BUFFER_SIZE + 1] = {0}; int pos; int buflen = DEBUG_PRINT_BUFFER_SIZE; char ch[5] = {0}; u32 type; struct kvp *e; if (!s) return; if (!s->valid) return; type = get_rsc_type(s->buf); memcpy(ch, &type, sizeof(u32)); pos = scnprintf(buf, buflen, "Sleep request type = 0x%08x(%s)", get_rsc_type(s->buf), ch); pos += scnprintf(buf + pos, buflen - pos, " id = 0%x", get_rsc_id(s->buf)); for_each_kvp(s->buf, e) { uint32_t i; char *data = get_data(e); memcpy(ch, &e->k, sizeof(u32)); pos += scnprintf(buf + pos, buflen - pos, "\n\t\tkey = 0x%08x(%s)", e->k, ch); pos += scnprintf(buf + pos, buflen - pos, " sz= %d data =", e->s); for (i = 0; i < e->s; i++) pos += scnprintf(buf + pos, buflen - pos, " 0x%02X", data[i]); } pos += scnprintf(buf + pos, buflen - pos, "\n"); printk(buf); } static int msm_rpm_glink_rx_poll(void *glink_handle) { int ret; ret = glink_rpm_rx_poll(glink_handle); if (ret >= 0) /* * Sleep for 50us at a time before checking * for packet availability. The 50us is based * on the the time rpm could take to process * and send an ack for the sleep set request. */ udelay(50); else pr_err("Not receieve an ACK from RPM. ret = %d\n", ret); return ret; } /* * Returns * = 0 on successful reads * > 0 on successful reads with no further data * standard Linux error codes on failure. */ static int msm_rpm_read_sleep_ack(void) { return msm_rpm_glink_rx_poll(glink_data->glink_handle); } static int msm_rpm_flush_requests(bool print) { struct rb_node *t; int ret; int count = 0; for (t = rb_first(&tr_root); t; t = rb_next(t)) { struct slp_buf *s = rb_entry(t, struct slp_buf, node); if (!s->valid) continue; if (print) msm_rpm_print_sleep_buffer(s); get_msg_id(s->buf) = msm_rpm_get_next_msg_id(); ret = msm_rpm_glink_send_buffer(s->buf, get_buf_len(s->buf), true); WARN_ON(ret != get_buf_len(s->buf)); #ifdef CONFIG_TRACE_RPM trace_rpm_smd_send_sleep_set(get_msg_id(s->buf), get_rsc_type(s->buf), get_rsc_id(s->buf)); #endif s->valid = false; count++; /* * RPM acks need to be handled here if we have sent 24 * messages such that we do not overrun SMD buffer. Since * we expect only sleep sets at this point (RPM PC would be * disallowed if we had pending active requests), we need not * process these sleep set acks. */ if (count >= MAX_WAIT_ON_ACK) { int ret = msm_rpm_read_sleep_ack(); if (ret >= 0) count--; else return ret; } } return 0; } static void msm_rpm_notify_sleep_chain(struct rpm_message_header *hdr, struct msm_rpm_kvp_data *kvp) { struct msm_rpm_notifier_data notif; notif.rsc_type = hdr->resource_type; notif.rsc_id = hdr->resource_id; notif.key = kvp->key; notif.size = kvp->nbytes; notif.value = kvp->value; atomic_notifier_call_chain(&msm_rpm_sleep_notifier, 0, ¬if); } static int msm_rpm_add_kvp_data_common(struct msm_rpm_request *handle, uint32_t key, const uint8_t *data, int size, bool noirq) { uint32_t i; uint32_t data_size, msg_size; if (probe_status) return probe_status; if (!handle || !data) { pr_err("%s(): Invalid handle/data\n", __func__); return -EINVAL; } if (size < 0) return -EINVAL; data_size = ALIGN(size, SZ_4); msg_size = data_size + sizeof(struct rpm_request_header); for (i = 0; i < handle->write_idx; i++) { if (handle->kvp[i].key != key) continue; if (handle->kvp[i].nbytes != data_size) { kfree(handle->kvp[i].value); handle->kvp[i].value = NULL; } else { if (!memcmp(handle->kvp[i].value, data, data_size)) return 0; } break; } if (i >= handle->num_elements) { pr_err("Number of resources exceeds max allocated\n"); return -ENOMEM; } if (i == handle->write_idx) handle->write_idx++; if (!handle->kvp[i].value) { handle->kvp[i].value = kzalloc(data_size, GFP_FLAG(noirq)); if (!handle->kvp[i].value) { pr_err("Failed malloc\n"); return -ENOMEM; } } else { /* We enter the else case, if a key already exists but the * data doesn't match. In which case, we should zero the data * out. */ memset(handle->kvp[i].value, 0, data_size); } if (!handle->kvp[i].valid) handle->msg_hdr.data_len += msg_size; else handle->msg_hdr.data_len += (data_size - handle->kvp[i].nbytes); handle->kvp[i].nbytes = data_size; handle->kvp[i].key = key; memcpy(handle->kvp[i].value, data, size); handle->kvp[i].valid = true; return 0; } static struct msm_rpm_request *msm_rpm_create_request_common( enum msm_rpm_set set, uint32_t rsc_type, uint32_t rsc_id, int num_elements, bool noirq) { struct msm_rpm_request *cdata; if (probe_status) return ERR_PTR(probe_status); cdata = kzalloc(sizeof(struct msm_rpm_request), GFP_FLAG(noirq)); if (!cdata) { pr_err("Cannot allocate memory for client data\n"); goto cdata_alloc_fail; } cdata->msg_hdr.set = set; cdata->msg_hdr.resource_type = rsc_type; cdata->msg_hdr.resource_id = rsc_id; cdata->msg_hdr.data_len = 0; cdata->num_elements = num_elements; cdata->write_idx = 0; cdata->kvp = kzalloc(sizeof(struct msm_rpm_kvp_data) * num_elements, GFP_FLAG(noirq)); if (!cdata->kvp) { pr_warn("%s(): Cannot allocate memory for key value data\n", __func__); goto kvp_alloc_fail; } cdata->buf = kzalloc(DEFAULT_BUFFER_SIZE, GFP_FLAG(noirq)); if (!cdata->buf) goto buf_alloc_fail; cdata->numbytes = DEFAULT_BUFFER_SIZE; return cdata; buf_alloc_fail: kfree(cdata->kvp); kvp_alloc_fail: kfree(cdata); cdata_alloc_fail: return NULL; } void msm_rpm_free_request(struct msm_rpm_request *handle) { int i; if (!handle) return; for (i = 0; i < handle->num_elements; i++) kfree(handle->kvp[i].value); kfree(handle->kvp); kfree(handle->buf); kfree(handle); } EXPORT_SYMBOL(msm_rpm_free_request); struct msm_rpm_request *msm_rpm_create_request( enum msm_rpm_set set, uint32_t rsc_type, uint32_t rsc_id, int num_elements) { return msm_rpm_create_request_common(set, rsc_type, rsc_id, num_elements, false); } EXPORT_SYMBOL(msm_rpm_create_request); struct msm_rpm_request *msm_rpm_create_request_noirq( enum msm_rpm_set set, uint32_t rsc_type, uint32_t rsc_id, int num_elements) { return msm_rpm_create_request_common(set, rsc_type, rsc_id, num_elements, true); } EXPORT_SYMBOL(msm_rpm_create_request_noirq); int msm_rpm_add_kvp_data(struct msm_rpm_request *handle, uint32_t key, const uint8_t *data, int size) { return msm_rpm_add_kvp_data_common(handle, key, data, size, false); } EXPORT_SYMBOL(msm_rpm_add_kvp_data); int msm_rpm_add_kvp_data_noirq(struct msm_rpm_request *handle, uint32_t key, const uint8_t *data, int size) { return msm_rpm_add_kvp_data_common(handle, key, data, size, true); } EXPORT_SYMBOL(msm_rpm_add_kvp_data_noirq); bool msm_rpm_waiting_for_ack(void) { bool ret; unsigned long flags; spin_lock_irqsave(&msm_rpm_list_lock, flags); ret = list_empty(&msm_rpm_wait_list); spin_unlock_irqrestore(&msm_rpm_list_lock, flags); return !ret; } static struct msm_rpm_wait_data *msm_rpm_get_entry_from_msg_id(uint32_t msg_id) { struct list_head *ptr; struct msm_rpm_wait_data *elem = NULL; unsigned long flags; spin_lock_irqsave(&msm_rpm_list_lock, flags); list_for_each(ptr, &msm_rpm_wait_list) { elem = list_entry(ptr, struct msm_rpm_wait_data, list); if (elem && (elem->msg_id == msg_id)) break; elem = NULL; } spin_unlock_irqrestore(&msm_rpm_list_lock, flags); return elem; } static uint32_t msm_rpm_get_next_msg_id(void) { uint32_t id; /* * A message id of 0 is used by the driver to indicate a error * condition. The RPM driver uses a id of 1 to indicate unsent data * when the data sent over hasn't been modified. This isn't a error * scenario and wait for ack returns a success when the message id is 1. */ do { id = atomic_inc_return(&msm_rpm_msg_id); } while ((id == 0) || (id == 1) || msm_rpm_get_entry_from_msg_id(id)); return id; } static int msm_rpm_add_wait_list(uint32_t msg_id) { unsigned long flags; struct msm_rpm_wait_data *data = kzalloc(sizeof(struct msm_rpm_wait_data), GFP_ATOMIC); if (!data) return -ENOMEM; init_completion(&data->ack); data->ack_recd = false; data->msg_id = msg_id; data->errno = INIT_ERROR; spin_lock_irqsave(&msm_rpm_list_lock, flags); list_add(&data->list, &msm_rpm_wait_list); spin_unlock_irqrestore(&msm_rpm_list_lock, flags); return 0; } static void msm_rpm_free_list_entry(struct msm_rpm_wait_data *elem) { unsigned long flags; spin_lock_irqsave(&msm_rpm_list_lock, flags); list_del(&elem->list); spin_unlock_irqrestore(&msm_rpm_list_lock, flags); kfree(elem); } static void msm_rpm_process_ack(uint32_t msg_id, int errno) { struct list_head *ptr; struct msm_rpm_wait_data *elem = NULL; unsigned long flags; spin_lock_irqsave(&msm_rpm_list_lock, flags); list_for_each(ptr, &msm_rpm_wait_list) { elem = list_entry(ptr, struct msm_rpm_wait_data, list); if (elem && (elem->msg_id == msg_id)) { elem->errno = errno; elem->ack_recd = true; complete(&elem->ack); break; } elem = NULL; } #ifdef CONFIG_TRACE_RPM /* Special case where the sleep driver doesn't * wait for ACKs. This would decrease the latency involved with * entering RPM assisted power collapse. */ if (!elem) trace_rpm_smd_ack_recvd(0, msg_id, 0xDEADBEEF); #endif spin_unlock_irqrestore(&msm_rpm_list_lock, flags); } struct msm_rpm_kvp_packet { uint32_t id; uint32_t len; uint32_t val; }; static void msm_rpm_log_request(struct msm_rpm_request *cdata) { char buf[DEBUG_PRINT_BUFFER_SIZE]; size_t buflen = DEBUG_PRINT_BUFFER_SIZE; char name[5]; u32 value; uint32_t i; int j, prev_valid; int valid_count = 0; int pos = 0; name[4] = 0; for (i = 0; i < cdata->write_idx; i++) if (cdata->kvp[i].valid) valid_count++; pos += scnprintf(buf + pos, buflen - pos, "%sRPM req: ", KERN_INFO); if (msm_rpm_debug_mask & MSM_RPM_LOG_REQUEST_SHOW_MSG_ID) pos += scnprintf(buf + pos, buflen - pos, "msg_id=%u, ", cdata->msg_hdr.msg_id); pos += scnprintf(buf + pos, buflen - pos, "s=%s", (cdata->msg_hdr.set == MSM_RPM_CTX_ACTIVE_SET ? "act" : "slp")); if ((msm_rpm_debug_mask & MSM_RPM_LOG_REQUEST_PRETTY) && (msm_rpm_debug_mask & MSM_RPM_LOG_REQUEST_RAW)) { /* Both pretty and raw formatting */ memcpy(name, &cdata->msg_hdr.resource_type, sizeof(uint32_t)); pos += scnprintf(buf + pos, buflen - pos, ", rsc_type=0x%08X (%s), rsc_id=%u; ", cdata->msg_hdr.resource_type, name, cdata->msg_hdr.resource_id); for (i = 0, prev_valid = 0; i < cdata->write_idx; i++) { if (!cdata->kvp[i].valid) continue; memcpy(name, &cdata->kvp[i].key, sizeof(uint32_t)); pos += scnprintf(buf + pos, buflen - pos, "[key=0x%08X (%s), value=%s", cdata->kvp[i].key, name, (cdata->kvp[i].nbytes ? "0x" : "null")); for (j = 0; j < cdata->kvp[i].nbytes; j++) pos += scnprintf(buf + pos, buflen - pos, "%02X ", cdata->kvp[i].value[j]); if (cdata->kvp[i].nbytes) pos += scnprintf(buf + pos, buflen - pos, "("); for (j = 0; j < cdata->kvp[i].nbytes; j += 4) { value = 0; memcpy(&value, &cdata->kvp[i].value[j], min_t(uint32_t, sizeof(uint32_t), cdata->kvp[i].nbytes - j)); pos += scnprintf(buf + pos, buflen - pos, "%u", value); if (j + 4 < cdata->kvp[i].nbytes) pos += scnprintf(buf + pos, buflen - pos, " "); } if (cdata->kvp[i].nbytes) pos += scnprintf(buf + pos, buflen - pos, ")"); pos += scnprintf(buf + pos, buflen - pos, "]"); if (prev_valid + 1 < valid_count) pos += scnprintf(buf + pos, buflen - pos, ", "); prev_valid++; } } else if (msm_rpm_debug_mask & MSM_RPM_LOG_REQUEST_PRETTY) { /* Pretty formatting only */ memcpy(name, &cdata->msg_hdr.resource_type, sizeof(uint32_t)); pos += scnprintf(buf + pos, buflen - pos, " %s %u; ", name, cdata->msg_hdr.resource_id); for (i = 0, prev_valid = 0; i < cdata->write_idx; i++) { if (!cdata->kvp[i].valid) continue; memcpy(name, &cdata->kvp[i].key, sizeof(uint32_t)); pos += scnprintf(buf + pos, buflen - pos, "%s=%s", name, (cdata->kvp[i].nbytes ? "" : "null")); for (j = 0; j < cdata->kvp[i].nbytes; j += 4) { value = 0; memcpy(&value, &cdata->kvp[i].value[j], min_t(uint32_t, sizeof(uint32_t), cdata->kvp[i].nbytes - j)); pos += scnprintf(buf + pos, buflen - pos, "%u", value); if (j + 4 < cdata->kvp[i].nbytes) pos += scnprintf(buf + pos, buflen - pos, " "); } if (prev_valid + 1 < valid_count) pos += scnprintf(buf + pos, buflen - pos, ", "); prev_valid++; } } else { /* Raw formatting only */ pos += scnprintf(buf + pos, buflen - pos, ", rsc_type=0x%08X, rsc_id=%u; ", cdata->msg_hdr.resource_type, cdata->msg_hdr.resource_id); for (i = 0, prev_valid = 0; i < cdata->write_idx; i++) { if (!cdata->kvp[i].valid) continue; pos += scnprintf(buf + pos, buflen - pos, "[key=0x%08X, value=%s", cdata->kvp[i].key, (cdata->kvp[i].nbytes ? "0x" : "null")); for (j = 0; j < cdata->kvp[i].nbytes; j++) { pos += scnprintf(buf + pos, buflen - pos, "%02X", cdata->kvp[i].value[j]); if (j + 1 < cdata->kvp[i].nbytes) pos += scnprintf(buf + pos, buflen - pos, " "); } pos += scnprintf(buf + pos, buflen - pos, "]"); if (prev_valid + 1 < valid_count) pos += scnprintf(buf + pos, buflen - pos, ", "); prev_valid++; } } pos += scnprintf(buf + pos, buflen - pos, "\n"); printk(buf); } static int msm_rpm_glink_send_buffer(char *buf, uint32_t size, bool noirq) { int ret; unsigned long flags; int timeout = 50; spin_lock_irqsave(&glink_data->glink_lock_write, flags); do { ret = glink_tx(glink_data->glink_handle, buf, buf, size, GLINK_TX_SINGLE_THREADED); if (ret == -EBUSY || ret == -ENOSPC) { if (!noirq) { spin_unlock_irqrestore( &glink_data->glink_lock_write, flags); cpu_relax(); spin_lock_irqsave( &glink_data->glink_lock_write, flags); } else { udelay(5); } timeout--; } else { ret = 0; } } while (ret && timeout); spin_unlock_irqrestore(&glink_data->glink_lock_write, flags); if (!timeout) return 0; else return size; } static int msm_rpm_send_data(struct msm_rpm_request *cdata, int msg_type, bool noirq, bool noack) { uint8_t *tmpbuff; int ret; uint32_t i; uint32_t msg_size; int req_hdr_sz, msg_hdr_sz; if (probe_status) return probe_status; if (!cdata->msg_hdr.data_len) return 1; req_hdr_sz = sizeof(cdata->req_hdr); msg_hdr_sz = sizeof(cdata->msg_hdr); cdata->req_hdr.service_type = msm_rpm_request_service[msg_type]; cdata->req_hdr.request_len = cdata->msg_hdr.data_len + msg_hdr_sz; msg_size = cdata->req_hdr.request_len + req_hdr_sz; /* populate data_len */ if (msg_size > cdata->numbytes) { kfree(cdata->buf); cdata->numbytes = msg_size; cdata->buf = kzalloc(msg_size, GFP_FLAG(noirq)); } if (!cdata->buf) { pr_err("Failed malloc\n"); return 0; } tmpbuff = cdata->buf; tmpbuff += req_hdr_sz + msg_hdr_sz; for (i = 0; (i < cdata->write_idx); i++) { /* Sanity check */ BUG_ON((tmpbuff - cdata->buf) > cdata->numbytes); if (!cdata->kvp[i].valid) continue; memcpy(tmpbuff, &cdata->kvp[i].key, sizeof(uint32_t)); tmpbuff += sizeof(uint32_t); memcpy(tmpbuff, &cdata->kvp[i].nbytes, sizeof(uint32_t)); tmpbuff += sizeof(uint32_t); memcpy(tmpbuff, cdata->kvp[i].value, cdata->kvp[i].nbytes); tmpbuff += cdata->kvp[i].nbytes; if (cdata->msg_hdr.set == MSM_RPM_CTX_SLEEP_SET) msm_rpm_notify_sleep_chain(&cdata->msg_hdr, &cdata->kvp[i]); } memcpy(cdata->buf, &cdata->req_hdr, req_hdr_sz + msg_hdr_sz); if ((cdata->msg_hdr.set == MSM_RPM_CTX_SLEEP_SET) && !msm_rpm_smd_buffer_request(cdata, msg_size, GFP_FLAG(noirq))) return 1; cdata->msg_hdr.msg_id = msm_rpm_get_next_msg_id(); memcpy(cdata->buf + req_hdr_sz, &cdata->msg_hdr, msg_hdr_sz); if (msm_rpm_debug_mask & (MSM_RPM_LOG_REQUEST_PRETTY | MSM_RPM_LOG_REQUEST_RAW)) msm_rpm_log_request(cdata); if (standalone) { for (i = 0; (i < cdata->write_idx); i++) cdata->kvp[i].valid = false; cdata->msg_hdr.data_len = 0; ret = cdata->msg_hdr.msg_id; return ret; } if (!noack) msm_rpm_add_wait_list(cdata->msg_hdr.msg_id); ret = msm_rpm_send_buffer(&cdata->buf[0], msg_size, noirq); if (ret == msg_size) { for (i = 0; (i < cdata->write_idx); i++) cdata->kvp[i].valid = false; cdata->msg_hdr.data_len = 0; ret = cdata->msg_hdr.msg_id; #ifdef CONFIG_TRACE_RPM trace_rpm_smd_send_active_set(cdata->msg_hdr.msg_id, cdata->msg_hdr.resource_type, cdata->msg_hdr.resource_id); #endif } else if (ret < msg_size) { struct msm_rpm_wait_data *rc; ret = 0; pr_err("Failed to write data msg_size:%d ret:%d msg_id:%d\n", msg_size, ret, cdata->msg_hdr.msg_id); rc = msm_rpm_get_entry_from_msg_id(cdata->msg_hdr.msg_id); if (rc) msm_rpm_free_list_entry(rc); } return ret; } static int _msm_rpm_send_request(struct msm_rpm_request *handle, bool noack) { int ret; static DEFINE_MUTEX(send_mtx); mutex_lock(&send_mtx); ret = msm_rpm_send_data(handle, MSM_RPM_MSG_REQUEST_TYPE, false, noack); mutex_unlock(&send_mtx); return ret; } int msm_rpm_send_request(struct msm_rpm_request *handle) { return _msm_rpm_send_request(handle, false); } EXPORT_SYMBOL(msm_rpm_send_request); int msm_rpm_send_request_noirq(struct msm_rpm_request *handle) { return msm_rpm_send_data(handle, MSM_RPM_MSG_REQUEST_TYPE, true, false); } EXPORT_SYMBOL(msm_rpm_send_request_noirq); void *msm_rpm_send_request_noack(struct msm_rpm_request *handle) { int ret; ret = _msm_rpm_send_request(handle, true); return ret < 0 ? ERR_PTR(ret) : NULL; } EXPORT_SYMBOL(msm_rpm_send_request_noack); int msm_rpm_wait_for_ack(uint32_t msg_id) { struct msm_rpm_wait_data *elem; int rc = 0; if (!msg_id) { pr_err("Invalid msg id\n"); return -ENOMEM; } if (msg_id == 1) return rc; if (standalone) return rc; elem = msm_rpm_get_entry_from_msg_id(msg_id); if (!elem) return rc; wait_for_completion(&elem->ack); #ifdef CONFIG_TRACE_RPM trace_rpm_smd_ack_recvd(0, msg_id, 0xDEADFEED); #endif rc = elem->errno; msm_rpm_free_list_entry(elem); return rc; } EXPORT_SYMBOL(msm_rpm_wait_for_ack); static void msm_rpm_glink_read_data_noirq(struct msm_rpm_wait_data *elem) { int ret; /* Use rx_poll method to read the message from RPM */ while (elem->errno) { ret = glink_rpm_rx_poll(glink_data->glink_handle); if (ret >= 0) { /* * We might have receieve the notification. * Now we have to check whether the notification * received is what we are interested? * Wait for few usec to get the notification * before re-trying the poll again. */ udelay(50); } else { pr_err("rx poll return error = %d\n", ret); } } } int msm_rpm_wait_for_ack_noirq(uint32_t msg_id) { struct msm_rpm_wait_data *elem; unsigned long flags; int rc = 0; if (!msg_id) { pr_err("Invalid msg id\n"); return -ENOMEM; } if (msg_id == 1) return 0; if (standalone) return 0; spin_lock_irqsave(&glink_data->glink_lock_read, flags); elem = msm_rpm_get_entry_from_msg_id(msg_id); if (!elem) /* Should this be a bug * Is it ok for another thread to read the msg? */ goto wait_ack_cleanup; if (elem->errno != INIT_ERROR) { rc = elem->errno; msm_rpm_free_list_entry(elem); goto wait_ack_cleanup; } msm_rpm_glink_read_data_noirq(elem); rc = elem->errno; msm_rpm_free_list_entry(elem); wait_ack_cleanup: spin_unlock_irqrestore(&glink_data->glink_lock_read, flags); return rc; } EXPORT_SYMBOL(msm_rpm_wait_for_ack_noirq); void *msm_rpm_send_message_noack(enum msm_rpm_set set, uint32_t rsc_type, uint32_t rsc_id, struct msm_rpm_kvp *kvp, int nelems) { int i, rc; struct msm_rpm_request *req = msm_rpm_create_request_common(set, rsc_type, rsc_id, nelems, false); if (IS_ERR(req)) return req; if (!req) return ERR_PTR(ENOMEM); for (i = 0; i < nelems; i++) { rc = msm_rpm_add_kvp_data(req, kvp[i].key, kvp[i].data, kvp[i].length); if (rc) goto bail; } rc = PTR_ERR(msm_rpm_send_request_noack(req)); bail: msm_rpm_free_request(req); return rc < 0 ? ERR_PTR(rc) : NULL; } EXPORT_SYMBOL(msm_rpm_send_message_noack); int msm_rpm_send_message(enum msm_rpm_set set, uint32_t rsc_type, uint32_t rsc_id, struct msm_rpm_kvp *kvp, int nelems) { int i, rc; struct msm_rpm_request *req = msm_rpm_create_request(set, rsc_type, rsc_id, nelems); if (IS_ERR(req)) return PTR_ERR(req); if (!req) return -ENOMEM; for (i = 0; i < nelems; i++) { rc = msm_rpm_add_kvp_data(req, kvp[i].key, kvp[i].data, kvp[i].length); if (rc) goto bail; } rc = msm_rpm_wait_for_ack(msm_rpm_send_request(req)); bail: msm_rpm_free_request(req); return rc; } EXPORT_SYMBOL(msm_rpm_send_message); int msm_rpm_send_message_noirq(enum msm_rpm_set set, uint32_t rsc_type, uint32_t rsc_id, struct msm_rpm_kvp *kvp, int nelems) { int i, rc; struct msm_rpm_request *req = msm_rpm_create_request_noirq(set, rsc_type, rsc_id, nelems); if (IS_ERR(req)) return PTR_ERR(req); if (!req) return -ENOMEM; for (i = 0; i < nelems; i++) { rc = msm_rpm_add_kvp_data_noirq(req, kvp[i].key, kvp[i].data, kvp[i].length); if (rc) goto bail; } rc = msm_rpm_wait_for_ack_noirq(msm_rpm_send_request_noirq(req)); bail: msm_rpm_free_request(req); return rc; } EXPORT_SYMBOL(msm_rpm_send_message_noirq); /** * During power collapse, the rpm driver disables the SMD interrupts to make * sure that the interrupt doesn't wakes us from sleep. */ int msm_rpm_enter_sleep(bool print, const struct cpumask *cpumask) { int ret = 0; if (standalone) return 0; ret = glink_rpm_mask_rx_interrupt(glink_data->glink_handle, true, (void *)cpumask); if (!ret) { ret = msm_rpm_flush_requests(print); if (ret) { glink_rpm_mask_rx_interrupt( glink_data->glink_handle, false, NULL); } } return ret; } EXPORT_SYMBOL(msm_rpm_enter_sleep); /** * When the system resumes from power collapse, the SMD interrupt disabled by * enter function has to reenabled to continue processing SMD message. */ void msm_rpm_exit_sleep(void) { int ret; if (standalone) return; do { ret = msm_rpm_read_sleep_ack(); } while (ret > 0); glink_rpm_mask_rx_interrupt(glink_data->glink_handle, false, NULL); } EXPORT_SYMBOL(msm_rpm_exit_sleep); /* * Whenever there is a data from RPM, notify_rx will be called. * This function is invoked either interrupt OR polling context. */ static void msm_rpm_trans_notify_rx(void *handle, const void *priv, const void *pkt_priv, const void *ptr, size_t size) { uint32_t msg_id; int errno; char buf[MAX_ERR_BUFFER_SIZE] = {0}; struct msm_rpm_wait_data *elem; static DEFINE_SPINLOCK(rx_notify_lock); unsigned long flags; if (!size) return; BUG_ON(size > MAX_ERR_BUFFER_SIZE); spin_lock_irqsave(&rx_notify_lock, flags); memcpy(buf, ptr, size); msg_id = msm_rpm_get_msg_id_from_ack(buf); errno = msm_rpm_get_error_from_ack(buf); elem = msm_rpm_get_entry_from_msg_id(msg_id); /* * It is applicable for sleep set requests * Sleep set requests are not added to the * wait queue list. Without this check we * run into NULL pointer deferrence issue. */ if (!elem) { spin_unlock_irqrestore(&rx_notify_lock, flags); glink_rx_done(handle, ptr, 0); return; } msm_rpm_process_ack(msg_id, errno); spin_unlock_irqrestore(&rx_notify_lock, flags); glink_rx_done(handle, ptr, 0); } static void msm_rpm_trans_notify_state(void *handle, const void *priv, unsigned event) { switch (event) { case GLINK_CONNECTED: glink_data->glink_handle = handle; if (IS_ERR_OR_NULL(glink_data->glink_handle)) { pr_err("glink_handle %d\n", (int)PTR_ERR(glink_data->glink_handle)); WARN_ON(1); } /* * Do not allow clients to send data to RPM until glink * is fully open. */ probe_status = 0; pr_info("glink config params: transport=%s, edge=%s, name=%s\n", glink_data->xprt, glink_data->edge, glink_data->name); break; default: pr_err("Unrecognized event %d\n", event); break; }; } static void msm_rpm_trans_notify_tx_done(void *handle, const void *priv, const void *pkt_priv, const void *ptr) { return; } static void msm_rpm_glink_open_work(struct work_struct *work) { pr_debug("Opening glink channel\n"); glink_data->glink_handle = glink_open(glink_data->open_cfg); if (IS_ERR_OR_NULL(glink_data->glink_handle)) { pr_err("Error: glink_open failed %d\n", (int)PTR_ERR(glink_data->glink_handle)); BUG_ON(1); } } static void msm_rpm_glink_notifier_cb(struct glink_link_state_cb_info *cb_info, void *priv) { struct glink_open_config *open_config; static bool first = true; if (!cb_info) { pr_err("Missing callback data\n"); return; } switch (cb_info->link_state) { case GLINK_LINK_STATE_UP: if (first) first = false; else break; open_config = kzalloc(sizeof(*open_config), GFP_KERNEL); if (!open_config) { pr_err("Could not allocate memory\n"); break; } glink_data->open_cfg = open_config; pr_debug("glink link state up cb receieved\n"); INIT_WORK(&glink_data->work, msm_rpm_glink_open_work); open_config->priv = glink_data; open_config->name = glink_data->name; open_config->edge = glink_data->edge; open_config->notify_rx = msm_rpm_trans_notify_rx; open_config->notify_tx_done = msm_rpm_trans_notify_tx_done; open_config->notify_state = msm_rpm_trans_notify_state; schedule_work(&glink_data->work); break; default: pr_err("Unrecognised state = %d\n", cb_info->link_state); break; }; } static int msm_rpm_glink_dt_parse(struct platform_device *pdev, struct glink_apps_rpm_data *glink_data) { char *key = NULL; int ret; if (!of_device_is_compatible(pdev->dev.of_node, "qcom,rpm-glink")) { pr_warn("qcom,rpm-glink compatible not matches\n"); ret = -EINVAL; return ret; } key = "qcom,glink-edge"; ret = of_property_read_string(pdev->dev.of_node, key, &glink_data->edge); if (ret) { pr_err("Failed to read node: %s, key=%s\n", pdev->dev.of_node->full_name, key); return ret; } key = "rpm-channel-name"; ret = of_property_read_string(pdev->dev.of_node, key, &glink_data->name); if (ret) pr_err("%s(): Failed to read node: %s, key=%s\n", __func__, pdev->dev.of_node->full_name, key); return ret; } static int msm_rpm_glink_link_setup(struct glink_apps_rpm_data *glink_data, struct platform_device *pdev) { struct glink_link_info *link_info; void *link_state_cb_handle; struct device *dev = &pdev->dev; int ret = 0; link_info = devm_kzalloc(dev, sizeof(struct glink_link_info), GFP_KERNEL); if (!link_info) { pr_err("Could not allocate memory\n"); ret = -ENOMEM; return ret; } glink_data->link_info = link_info; /* * Setup link info parameters */ link_info->edge = glink_data->edge; link_info->glink_link_state_notif_cb = msm_rpm_glink_notifier_cb; link_state_cb_handle = glink_register_link_state_cb(link_info, NULL); if (IS_ERR_OR_NULL(link_state_cb_handle)) { pr_err("Could not register cb\n"); ret = PTR_ERR(link_state_cb_handle); return ret; } spin_lock_init(&glink_data->glink_lock_read); spin_lock_init(&glink_data->glink_lock_write); return ret; } static int msm_rpm_dev_glink_probe(struct platform_device *pdev) { int ret = -ENOMEM; struct device *dev = &pdev->dev; glink_data = devm_kzalloc(dev, sizeof(*glink_data), GFP_KERNEL); if (!glink_data) { pr_err("Could not allocate memory\n"); return ret; } ret = msm_rpm_glink_dt_parse(pdev, glink_data); if (ret < 0) { devm_kfree(dev, glink_data); return ret; } ret = msm_rpm_glink_link_setup(glink_data, pdev); if (ret < 0) { /* * If the glink setup fails there is no * fall back mechanism to SMD. */ pr_err("GLINK setup fail ret = %d\n", ret); BUG_ON(1); } return ret; } static int msm_rpm_dev_probe(struct platform_device *pdev) { char *key = NULL; int ret = 0; /* * Check for standalone support */ key = "rpm-standalone"; standalone = of_property_read_bool(pdev->dev.of_node, key); if (standalone) { probe_status = ret; goto skip_init; } ret = msm_rpm_dev_glink_probe(pdev); if (!ret) { pr_info("APSS-RPM communication over GLINK\n"); msm_rpm_send_buffer = msm_rpm_glink_send_buffer; of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev); return ret; } else return -EINVAL; skip_init: of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev); if (standalone) pr_info("RPM running in standalone mode\n"); return 0; } static struct of_device_id msm_rpm_match_table[] = { {.compatible = "qcom,rpm-glink"}, {}, }; static struct platform_driver msm_rpm_device_driver = { .probe = msm_rpm_dev_probe, .driver = { .name = "rpm-glink", .owner = THIS_MODULE, .of_match_table = msm_rpm_match_table, }, }; int __init msm_rpm_driver_init(void) { static bool registered; if (registered) return 0; registered = true; return platform_driver_register(&msm_rpm_device_driver); } EXPORT_SYMBOL(msm_rpm_driver_init); arch_initcall(msm_rpm_driver_init);