/* * drivers/staging/android/ion/ion_system_heap.c * * Copyright (C) 2011 Google, Inc. * Copyright (c) 2011-2019, The Linux Foundation. All rights reserved. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include "ion.h" #include "ion_priv.h" #include #include #include static gfp_t high_order_gfp_flags = (GFP_HIGHUSER | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_RECLAIM; static gfp_t low_order_gfp_flags = (GFP_HIGHUSER | __GFP_NOWARN); #ifndef CONFIG_ALLOC_BUFFERS_IN_4K_CHUNKS static const unsigned int orders[] = {9, 8, 4, 0}; #else static const unsigned int orders[] = {0}; #endif static const int num_orders = ARRAY_SIZE(orders); static int order_to_index(unsigned int order) { int i; for (i = 0; i < num_orders; i++) if (order == orders[i]) return i; BUG(); return -1; } static unsigned int order_to_size(int order) { return PAGE_SIZE << order; } struct ion_system_heap { struct ion_heap heap; struct ion_page_pool **uncached_pools; struct ion_page_pool **cached_pools; struct ion_page_pool **secure_pools[VMID_LAST]; /* Prevents unnecessary page splitting */ struct mutex split_page_mutex; }; struct page_info { struct page *page; bool from_pool; unsigned int order; struct list_head list; }; /* * Used by ion_system_secure_heap only * Since no lock is held, results are approximate. */ size_t ion_system_heap_secure_page_pool_total(struct ion_heap *heap, int vmid_flags) { struct ion_system_heap *sys_heap; struct ion_page_pool *pool; size_t total = 0; int vmid, i; sys_heap = container_of(heap, struct ion_system_heap, heap); vmid = get_secure_vmid(vmid_flags); if (!is_secure_vmid_valid(vmid)) return 0; for (i = 0; i < num_orders; i++) { pool = sys_heap->secure_pools[vmid][i]; total += ion_page_pool_total(pool, true); } return total << PAGE_SHIFT; } static int ion_heap_is_system_heap_type(enum ion_heap_type type) { return type == ((enum ion_heap_type)ION_HEAP_TYPE_SYSTEM); } static struct page *alloc_buffer_page(struct ion_system_heap *heap, struct ion_buffer *buffer, unsigned long order, bool *from_pool) { bool cached = ion_buffer_cached(buffer); struct page *page; struct ion_page_pool *pool; int vmid = get_secure_vmid(buffer->flags); struct device *dev = heap->heap.priv; if (*from_pool) { if (vmid > 0) pool = heap->secure_pools[vmid][order_to_index(order)]; else if (!cached) pool = heap->uncached_pools[order_to_index(order)]; else pool = heap->cached_pools[order_to_index(order)]; page = ion_page_pool_alloc(pool, from_pool); } else { gfp_t gfp_mask = low_order_gfp_flags; if (order) gfp_mask = high_order_gfp_flags; page = alloc_pages(gfp_mask, order); if (page) ion_pages_sync_for_device(dev, page, PAGE_SIZE << order, DMA_BIDIRECTIONAL); } if (!page) return 0; return page; } /* * For secure pages that need to be freed and not added back to the pool; the * hyp_unassign should be called before calling this function */ static void free_buffer_page(struct ion_system_heap *heap, struct ion_buffer *buffer, struct page *page, unsigned int order) { bool cached = ion_buffer_cached(buffer); int vmid = get_secure_vmid(buffer->flags); if (!(buffer->flags & ION_FLAG_POOL_FORCE_ALLOC)) { struct ion_page_pool *pool; if (vmid > 0) pool = heap->secure_pools[vmid][order_to_index(order)]; else if (cached) pool = heap->cached_pools[order_to_index(order)]; else pool = heap->uncached_pools[order_to_index(order)]; if (buffer->private_flags & ION_PRIV_FLAG_SHRINKER_FREE) ion_page_pool_free_immediate(pool, page); else ion_page_pool_free(pool, page); } else { __free_pages(page, order); } } static struct page *alloc_from_secure_pool_order(struct ion_system_heap *heap, struct ion_buffer *buffer, unsigned long order) { int vmid = get_secure_vmid(buffer->flags); struct ion_page_pool *pool; if (!is_secure_vmid_valid(vmid)) return NULL; pool = heap->secure_pools[vmid][order_to_index(order)]; return ion_page_pool_alloc_pool_only(pool); } static struct page *split_page_from_secure_pool(struct ion_system_heap *heap, struct ion_buffer *buffer) { int i, j; struct page *page; unsigned int order; mutex_lock(&heap->split_page_mutex); /* * Someone may have just split a page and returned the unused portion * back to the pool, so try allocating from the pool one more time * before splitting. We want to maintain large pages sizes when * possible. */ page = alloc_from_secure_pool_order(heap, buffer, 0); if (page) goto got_page; for (i = num_orders - 2; i >= 0; i--) { order = orders[i]; page = alloc_from_secure_pool_order(heap, buffer, order); if (!page) continue; split_page(page, order); break; } /* * Return the remaining order-0 pages to the pool. * SetPagePrivate flag to mark memory as secure. */ if (page) { for (j = 1; j < (1 << order); j++) { SetPagePrivate(page + j); free_buffer_page(heap, buffer, page + j, 0); } } got_page: mutex_unlock(&heap->split_page_mutex); return page; } static struct page_info *alloc_largest_available(struct ion_system_heap *heap, struct ion_buffer *buffer, unsigned long size, unsigned int max_order) { struct page *page; struct page_info *info; int i; bool from_pool; info = kmalloc(sizeof(struct page_info), GFP_KERNEL); if (!info) return NULL; for (i = 0; i < num_orders; i++) { if (size < order_to_size(orders[i])) continue; if (max_order < orders[i]) continue; from_pool = !(buffer->flags & ION_FLAG_POOL_FORCE_ALLOC); page = alloc_buffer_page(heap, buffer, orders[i], &from_pool); if (!page) continue; info->page = page; info->order = orders[i]; info->from_pool = from_pool; INIT_LIST_HEAD(&info->list); return info; } kfree(info); return NULL; } static struct page_info *alloc_from_pool_preferred( struct ion_system_heap *heap, struct ion_buffer *buffer, unsigned long size, unsigned int max_order) { struct page *page; struct page_info *info; int i; if (buffer->flags & ION_FLAG_POOL_FORCE_ALLOC) goto force_alloc; info = kmalloc(sizeof(*info), GFP_KERNEL); if (!info) return NULL; for (i = 0; i < num_orders; i++) { if (size < order_to_size(orders[i])) continue; if (max_order < orders[i]) continue; page = alloc_from_secure_pool_order(heap, buffer, orders[i]); if (!page) continue; info->page = page; info->order = orders[i]; info->from_pool = true; INIT_LIST_HEAD(&info->list); return info; } page = split_page_from_secure_pool(heap, buffer); if (page) { info->page = page; info->order = 0; info->from_pool = true; INIT_LIST_HEAD(&info->list); return info; } kfree(info); force_alloc: return alloc_largest_available(heap, buffer, size, max_order); } static unsigned int process_info(struct page_info *info, struct scatterlist *sg, struct scatterlist *sg_sync, struct pages_mem *data, unsigned int i) { struct page *page = info->page; unsigned int j; if (sg_sync) { sg_set_page(sg_sync, page, (1 << info->order) * PAGE_SIZE, 0); sg_dma_address(sg_sync) = page_to_phys(page); } sg_set_page(sg, page, (1 << info->order) * PAGE_SIZE, 0); /* * This is not correct - sg_dma_address needs a dma_addr_t * that is valid for the the targeted device, but this works * on the currently targeted hardware. */ sg_dma_address(sg) = page_to_phys(page); if (data) { for (j = 0; j < (1 << info->order); ++j) data->pages[i++] = nth_page(page, j); } list_del(&info->list); kfree(info); return i; } static int ion_system_heap_allocate(struct ion_heap *heap, struct ion_buffer *buffer, unsigned long size, unsigned long align, unsigned long flags) { struct ion_system_heap *sys_heap = container_of(heap, struct ion_system_heap, heap); struct sg_table *table; struct sg_table table_sync; struct scatterlist *sg; struct scatterlist *sg_sync; int ret; struct list_head pages; struct list_head pages_from_pool; struct page_info *info, *tmp_info; int i = 0; unsigned int nents_sync = 0; unsigned long size_remaining = PAGE_ALIGN(size); unsigned int max_order = orders[0]; struct pages_mem data; unsigned int sz; int vmid = get_secure_vmid(buffer->flags); struct device *dev = heap->priv; if (ion_heap_is_system_heap_type(buffer->heap->type) && is_secure_vmid_valid(vmid)) { pr_info("%s: System heap doesn't support secure allocations\n", __func__); return -EINVAL; } if (align > PAGE_SIZE) return -EINVAL; if (size / PAGE_SIZE > totalram_pages / 2) return -ENOMEM; data.size = 0; INIT_LIST_HEAD(&pages); INIT_LIST_HEAD(&pages_from_pool); while (size_remaining > 0) { if (is_secure_vmid_valid(vmid)) info = alloc_from_pool_preferred( sys_heap, buffer, size_remaining, max_order); else info = alloc_largest_available( sys_heap, buffer, size_remaining, max_order); if (!info) goto err; sz = (1 << info->order) * PAGE_SIZE; if (info->from_pool) { list_add_tail(&info->list, &pages_from_pool); } else { list_add_tail(&info->list, &pages); data.size += sz; ++nents_sync; } size_remaining -= sz; max_order = info->order; i++; } ret = msm_ion_heap_alloc_pages_mem(&data); if (ret) goto err; table = kzalloc(sizeof(struct sg_table), GFP_KERNEL); if (!table) goto err_free_data_pages; ret = sg_alloc_table(table, i, GFP_KERNEL); if (ret) goto err1; if (nents_sync) { ret = sg_alloc_table(&table_sync, nents_sync, GFP_KERNEL); if (ret) goto err_free_sg; } i = 0; sg = table->sgl; sg_sync = table_sync.sgl; /* * We now have two separate lists. One list contains pages from the * pool and the other pages from buddy. We want to merge these * together while preserving the ordering of the pages (higher order * first). */ do { info = list_first_entry_or_null(&pages, struct page_info, list); tmp_info = list_first_entry_or_null(&pages_from_pool, struct page_info, list); if (info && tmp_info) { if (info->order >= tmp_info->order) { i = process_info(info, sg, sg_sync, &data, i); sg_sync = sg_next(sg_sync); } else { i = process_info(tmp_info, sg, 0, 0, i); } } else if (info) { i = process_info(info, sg, sg_sync, &data, i); sg_sync = sg_next(sg_sync); } else if (tmp_info) { i = process_info(tmp_info, sg, 0, 0, i); } else { BUG(); } sg = sg_next(sg); } while (sg); ret = msm_ion_heap_pages_zero(data.pages, data.size >> PAGE_SHIFT); if (ret) { pr_err("Unable to zero pages\n"); goto err_free_sg2; } if (nents_sync) { dma_sync_sg_for_device(dev, table_sync.sgl, table_sync.nents, DMA_BIDIRECTIONAL); if (vmid > 0) { ret = ion_system_secure_heap_assign_sg(&table_sync, vmid); if (ret) goto err_free_sg2; } } buffer->priv_virt = table; if (nents_sync) sg_free_table(&table_sync); msm_ion_heap_free_pages_mem(&data); return 0; err_free_sg2: /* We failed to zero buffers. Bypass pool */ buffer->private_flags |= ION_PRIV_FLAG_SHRINKER_FREE; if (vmid > 0) ion_system_secure_heap_unassign_sg(table, vmid); for_each_sg(table->sgl, sg, table->nents, i) free_buffer_page(sys_heap, buffer, sg_page(sg), get_order(sg->length)); if (nents_sync) sg_free_table(&table_sync); err_free_sg: sg_free_table(table); err1: kfree(table); err_free_data_pages: msm_ion_heap_free_pages_mem(&data); err: list_for_each_entry_safe(info, tmp_info, &pages, list) { free_buffer_page(sys_heap, buffer, info->page, info->order); kfree(info); } list_for_each_entry_safe(info, tmp_info, &pages_from_pool, list) { free_buffer_page(sys_heap, buffer, info->page, info->order); kfree(info); } return -ENOMEM; } void ion_system_heap_free(struct ion_buffer *buffer) { struct ion_heap *heap = buffer->heap; struct ion_system_heap *sys_heap = container_of(heap, struct ion_system_heap, heap); struct sg_table *table = buffer->priv_virt; struct scatterlist *sg; LIST_HEAD(pages); int i; int vmid = get_secure_vmid(buffer->flags); struct device *dev = heap->priv; if (!(buffer->private_flags & ION_PRIV_FLAG_SHRINKER_FREE) && !(buffer->flags & ION_FLAG_POOL_FORCE_ALLOC)) { if (vmid < 0) msm_ion_heap_sg_table_zero(dev, table, buffer->size); } else if (vmid > 0) { if (ion_system_secure_heap_unassign_sg(table, vmid)) return; } for_each_sg(table->sgl, sg, table->nents, i) free_buffer_page(sys_heap, buffer, sg_page(sg), get_order(sg->length)); sg_free_table(table); kfree(table); } struct sg_table *ion_system_heap_map_dma(struct ion_heap *heap, struct ion_buffer *buffer) { return buffer->priv_virt; } void ion_system_heap_unmap_dma(struct ion_heap *heap, struct ion_buffer *buffer) { } static int ion_secure_page_pool_shrink( struct ion_system_heap *sys_heap, int vmid, int order_idx, int nr_to_scan) { int ret, freed = 0; int order = orders[order_idx]; struct page *page, *tmp; struct sg_table sgt; struct scatterlist *sg; struct ion_page_pool *pool = sys_heap->secure_pools[vmid][order_idx]; LIST_HEAD(pages); if (nr_to_scan == 0) return ion_page_pool_total(pool, true); while (freed < nr_to_scan) { page = ion_page_pool_alloc_pool_only(pool); if (!page) break; list_add(&page->lru, &pages); freed += (1 << order); } if (!freed) return freed; ret = sg_alloc_table(&sgt, (freed >> order), GFP_KERNEL); if (ret) goto out1; sg = sgt.sgl; list_for_each_entry(page, &pages, lru) { sg_set_page(sg, page, (1 << order) * PAGE_SIZE, 0); sg_dma_address(sg) = page_to_phys(page); sg = sg_next(sg); } if (ion_system_secure_heap_unassign_sg(&sgt, vmid)) goto out2; list_for_each_entry_safe(page, tmp, &pages, lru) { list_del(&page->lru); ion_page_pool_free_immediate(pool, page); } sg_free_table(&sgt); return freed; out1: /* Restore pages to secure pool */ list_for_each_entry_safe(page, tmp, &pages, lru) { list_del(&page->lru); ion_page_pool_free(pool, page); } return 0; out2: /* * The security state of the pages is unknown after a failure; * They can neither be added back to the secure pool nor buddy system. */ sg_free_table(&sgt); return 0; } static int ion_system_heap_shrink(struct ion_heap *heap, gfp_t gfp_mask, int nr_to_scan) { struct ion_system_heap *sys_heap; int nr_total = 0; int i, j, nr_freed = 0; int only_scan = 0; struct ion_page_pool *pool; sys_heap = container_of(heap, struct ion_system_heap, heap); if (!nr_to_scan) only_scan = 1; for (i = 0; i < num_orders; i++) { nr_freed = 0; for (j = 0; j < VMID_LAST; j++) { if (is_secure_vmid_valid(j)) nr_freed += ion_secure_page_pool_shrink( sys_heap, j, i, nr_to_scan); } pool = sys_heap->uncached_pools[i]; nr_freed += ion_page_pool_shrink(pool, gfp_mask, nr_to_scan); pool = sys_heap->cached_pools[i]; nr_freed += ion_page_pool_shrink(pool, gfp_mask, nr_to_scan); nr_total += nr_freed; if (!only_scan) { nr_to_scan -= nr_freed; /* shrink completed */ if (nr_to_scan <= 0) break; } } return nr_total; } static struct ion_heap_ops system_heap_ops = { .allocate = ion_system_heap_allocate, .free = ion_system_heap_free, .map_dma = ion_system_heap_map_dma, .unmap_dma = ion_system_heap_unmap_dma, .map_kernel = ion_heap_map_kernel, .unmap_kernel = ion_heap_unmap_kernel, .map_user = ion_heap_map_user, .shrink = ion_system_heap_shrink, }; static int ion_system_heap_debug_show(struct ion_heap *heap, struct seq_file *s, void *unused) { struct ion_system_heap *sys_heap = container_of(heap, struct ion_system_heap, heap); bool use_seq = s != NULL; unsigned long uncached_total = 0; unsigned long cached_total = 0; unsigned long secure_total = 0; struct ion_page_pool *pool; int i, j; for (i = 0; i < num_orders; i++) { pool = sys_heap->uncached_pools[i]; if (use_seq) { seq_printf(s, "%d order %u highmem pages in uncached pool = %lu total\n", pool->high_count, pool->order, (1 << pool->order) * PAGE_SIZE * pool->high_count); seq_printf(s, "%d order %u lowmem pages in uncached pool = %lu total\n", pool->low_count, pool->order, (1 << pool->order) * PAGE_SIZE * pool->low_count); } uncached_total += (1 << pool->order) * PAGE_SIZE * pool->high_count; uncached_total += (1 << pool->order) * PAGE_SIZE * pool->low_count; } for (i = 0; i < num_orders; i++) { pool = sys_heap->cached_pools[i]; if (use_seq) { seq_printf(s, "%d order %u highmem pages in cached pool = %lu total\n", pool->high_count, pool->order, (1 << pool->order) * PAGE_SIZE * pool->high_count); seq_printf(s, "%d order %u lowmem pages in cached pool = %lu total\n", pool->low_count, pool->order, (1 << pool->order) * PAGE_SIZE * pool->low_count); } cached_total += (1 << pool->order) * PAGE_SIZE * pool->high_count; cached_total += (1 << pool->order) * PAGE_SIZE * pool->low_count; } for (i = 0; i < num_orders; i++) { for (j = 0; j < VMID_LAST; j++) { if (!is_secure_vmid_valid(j)) continue; pool = sys_heap->secure_pools[j][i]; if (use_seq) { seq_printf(s, "VMID %d: %d order %u highmem pages in secure pool = %lu total\n", j, pool->high_count, pool->order, (1 << pool->order) * PAGE_SIZE * pool->high_count); seq_printf(s, "VMID %d: %d order %u lowmem pages in secure pool = %lu total\n", j, pool->low_count, pool->order, (1 << pool->order) * PAGE_SIZE * pool->low_count); } secure_total += (1 << pool->order) * PAGE_SIZE * pool->high_count; secure_total += (1 << pool->order) * PAGE_SIZE * pool->low_count; } } if (use_seq) { seq_puts(s, "--------------------------------------------\n"); seq_printf(s, "uncached pool = %lu cached pool = %lu secure pool = %lu\n", uncached_total, cached_total, secure_total); seq_printf(s, "pool total (uncached + cached + secure) = %lu\n", uncached_total + cached_total + secure_total); seq_puts(s, "--------------------------------------------\n"); } else { pr_info("-------------------------------------------------\n"); pr_info("uncached pool = %lu cached pool = %lu secure pool = %lu\n", uncached_total, cached_total, secure_total); pr_info("pool total (uncached + cached + secure) = %lu\n", uncached_total + cached_total + secure_total); pr_info("-------------------------------------------------\n"); } return 0; } static void ion_system_heap_destroy_pools(struct ion_page_pool **pools) { int i; for (i = 0; i < num_orders; i++) if (pools[i]) { ion_page_pool_destroy(pools[i]); pools[i] = NULL; } } /** * ion_system_heap_create_pools - Creates pools for all orders * * If this fails you don't need to destroy any pools. It's all or * nothing. If it succeeds you'll eventually need to use * ion_system_heap_destroy_pools to destroy the pools. */ static int ion_system_heap_create_pools(struct device *dev, struct ion_page_pool **pools) { int i; for (i = 0; i < num_orders; i++) { struct ion_page_pool *pool; gfp_t gfp_flags = low_order_gfp_flags; if (orders[i]) gfp_flags = high_order_gfp_flags; pool = ion_page_pool_create(dev, gfp_flags, orders[i]); if (!pool) goto err_create_pool; pools[i] = pool; } return 0; err_create_pool: ion_system_heap_destroy_pools(pools); return 1; } struct ion_heap *ion_system_heap_create(struct ion_platform_heap *data) { struct ion_system_heap *heap; int i; int pools_size = sizeof(struct ion_page_pool *) * num_orders; struct device *dev = data->priv; heap = kzalloc(sizeof(struct ion_system_heap), GFP_KERNEL); if (!heap) return ERR_PTR(-ENOMEM); heap->heap.ops = &system_heap_ops; heap->heap.type = ION_HEAP_TYPE_SYSTEM; heap->heap.flags = ION_HEAP_FLAG_DEFER_FREE; heap->uncached_pools = kzalloc(pools_size, GFP_KERNEL); if (!heap->uncached_pools) goto err_alloc_uncached_pools; heap->cached_pools = kzalloc(pools_size, GFP_KERNEL); if (!heap->cached_pools) goto err_alloc_cached_pools; for (i = 0; i < VMID_LAST; i++) { if (is_secure_vmid_valid(i)) { heap->secure_pools[i] = kzalloc(pools_size, GFP_KERNEL); if (!heap->secure_pools[i]) goto err_create_secure_pools; if (ion_system_heap_create_pools( dev, heap->secure_pools[i])) goto err_create_secure_pools; } } if (ion_system_heap_create_pools(dev, heap->uncached_pools)) goto err_create_uncached_pools; if (ion_system_heap_create_pools(dev, heap->cached_pools)) goto err_create_cached_pools; mutex_init(&heap->split_page_mutex); heap->heap.debug_show = ion_system_heap_debug_show; return &heap->heap; err_create_cached_pools: ion_system_heap_destroy_pools(heap->uncached_pools); err_create_uncached_pools: kfree(heap->cached_pools); err_create_secure_pools: for (i = 0; i < VMID_LAST; i++) { if (heap->secure_pools[i]) { ion_system_heap_destroy_pools(heap->secure_pools[i]); kfree(heap->secure_pools[i]); } } err_alloc_cached_pools: kfree(heap->uncached_pools); err_alloc_uncached_pools: kfree(heap); return ERR_PTR(-ENOMEM); } void ion_system_heap_destroy(struct ion_heap *heap) { struct ion_system_heap *sys_heap = container_of(heap, struct ion_system_heap, heap); int i, j; for (i = 0; i < VMID_LAST; i++) { if (!is_secure_vmid_valid(i)) continue; for (j = 0; j < num_orders; j++) ion_secure_page_pool_shrink(sys_heap, i, j, UINT_MAX); ion_system_heap_destroy_pools(sys_heap->secure_pools[i]); } ion_system_heap_destroy_pools(sys_heap->uncached_pools); ion_system_heap_destroy_pools(sys_heap->cached_pools); kfree(sys_heap->uncached_pools); kfree(sys_heap->cached_pools); kfree(sys_heap); } static int ion_system_contig_heap_allocate(struct ion_heap *heap, struct ion_buffer *buffer, unsigned long len, unsigned long align, unsigned long flags) { int order = get_order(len); struct page *page; struct sg_table *table; unsigned long i; int ret; struct device *dev = heap->priv; if (align > (PAGE_SIZE << order)) return -EINVAL; page = alloc_pages(low_order_gfp_flags | __GFP_ZERO, order); if (!page) return -ENOMEM; split_page(page, order); len = PAGE_ALIGN(len); for (i = len >> PAGE_SHIFT; i < (1 << order); i++) __free_page(page + i); table = kzalloc(sizeof(struct sg_table), GFP_KERNEL); if (!table) { ret = -ENOMEM; goto out; } ret = sg_alloc_table(table, 1, GFP_KERNEL); if (ret) goto out; sg_set_page(table->sgl, page, len, 0); buffer->priv_virt = table; ion_pages_sync_for_device(dev, page, len, DMA_BIDIRECTIONAL); return 0; out: for (i = 0; i < len >> PAGE_SHIFT; i++) __free_page(page + i); kfree(table); return ret; } void ion_system_contig_heap_free(struct ion_buffer *buffer) { struct sg_table *table = buffer->priv_virt; struct page *page = sg_page(table->sgl); unsigned long pages = PAGE_ALIGN(buffer->size) >> PAGE_SHIFT; unsigned long i; for (i = 0; i < pages; i++) __free_page(page + i); sg_free_table(table); kfree(table); } static int ion_system_contig_heap_phys(struct ion_heap *heap, struct ion_buffer *buffer, ion_phys_addr_t *addr, size_t *len) { struct sg_table *table = buffer->priv_virt; struct page *page = sg_page(table->sgl); *addr = page_to_phys(page); *len = buffer->size; return 0; } struct sg_table *ion_system_contig_heap_map_dma(struct ion_heap *heap, struct ion_buffer *buffer) { return buffer->priv_virt; } void ion_system_contig_heap_unmap_dma(struct ion_heap *heap, struct ion_buffer *buffer) { } static struct ion_heap_ops kmalloc_ops = { .allocate = ion_system_contig_heap_allocate, .free = ion_system_contig_heap_free, .phys = ion_system_contig_heap_phys, .map_dma = ion_system_contig_heap_map_dma, .unmap_dma = ion_system_contig_heap_unmap_dma, .map_kernel = ion_heap_map_kernel, .unmap_kernel = ion_heap_unmap_kernel, .map_user = ion_heap_map_user, }; struct ion_heap *ion_system_contig_heap_create(struct ion_platform_heap *unused) { struct ion_heap *heap; heap = kzalloc(sizeof(struct ion_heap), GFP_KERNEL); if (!heap) return ERR_PTR(-ENOMEM); heap->ops = &kmalloc_ops; heap->type = ION_HEAP_TYPE_SYSTEM_CONTIG; return heap; } void ion_system_contig_heap_destroy(struct ion_heap *heap) { kfree(heap); }