/* Copyright (c) 2012-2015, 2019 The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include "qmi_encdec_priv.h" #define TLV_LEN_SIZE sizeof(uint16_t) #define TLV_TYPE_SIZE sizeof(uint8_t) #define OPTIONAL_TLV_TYPE_START 0x10 #ifdef CONFIG_QMI_ENCDEC_DEBUG #define qmi_encdec_dump(prefix_str, buf, buf_len) do { \ const u8 *ptr = buf; \ int i, linelen, remaining = buf_len; \ int rowsize = 16, groupsize = 1; \ unsigned char linebuf[256]; \ for (i = 0; i < buf_len; i += rowsize) { \ linelen = min(remaining, rowsize); \ remaining -= linelen; \ hex_dump_to_buffer(ptr + i, linelen, rowsize, groupsize, \ linebuf, sizeof(linebuf), false); \ pr_debug("%s: %s\n", prefix_str, linebuf); \ } \ } while (0) #define QMI_ENCODE_LOG_MSG(buf, buf_len) do { \ qmi_encdec_dump("QMI_ENCODE_MSG", buf, buf_len); \ } while (0) #define QMI_DECODE_LOG_MSG(buf, buf_len) do { \ qmi_encdec_dump("QMI_DECODE_MSG", buf, buf_len); \ } while (0) #define QMI_ENCODE_LOG_ELEM(level, elem_len, elem_size, buf) do { \ pr_debug("QMI_ENCODE_ELEM lvl: %d, len: %d, size: %d\n", \ level, elem_len, elem_size); \ qmi_encdec_dump("QMI_ENCODE_ELEM", buf, (elem_len * elem_size)); \ } while (0) #define QMI_DECODE_LOG_ELEM(level, elem_len, elem_size, buf) do { \ pr_debug("QMI_DECODE_ELEM lvl: %d, len: %d, size: %d\n", \ level, elem_len, elem_size); \ qmi_encdec_dump("QMI_DECODE_ELEM", buf, (elem_len * elem_size)); \ } while (0) #define QMI_ENCODE_LOG_TLV(tlv_type, tlv_len) do { \ pr_debug("QMI_ENCODE_TLV type: %d, len: %d\n", tlv_type, tlv_len); \ } while (0) #define QMI_DECODE_LOG_TLV(tlv_type, tlv_len) do { \ pr_debug("QMI_DECODE_TLV type: %d, len: %d\n", tlv_type, tlv_len); \ } while (0) #else #define QMI_ENCODE_LOG_MSG(buf, buf_len) { } #define QMI_DECODE_LOG_MSG(buf, buf_len) { } #define QMI_ENCODE_LOG_ELEM(level, elem_len, elem_size, buf) { } #define QMI_DECODE_LOG_ELEM(level, elem_len, elem_size, buf) { } #define QMI_ENCODE_LOG_TLV(tlv_type, tlv_len) { } #define QMI_DECODE_LOG_TLV(tlv_type, tlv_len) { } #endif static int _qmi_kernel_encode(struct elem_info *ei_array, void *out_buf, void *in_c_struct, uint32_t out_buf_len, int enc_level); static int _qmi_kernel_decode(struct elem_info *ei_array, void *out_c_struct, void *in_buf, uint32_t in_buf_len, int dec_level); static struct elem_info *skip_to_next_elem(struct elem_info *ei_array, int level); /** * qmi_calc_max_msg_len() - Calculate the maximum length of a QMI message * @ei_array: Struct info array describing the structure. * @level: Level to identify the depth of the nested structures. * * @return: expected maximum length of the QMI message or 0 on failure. */ static int qmi_calc_max_msg_len(struct elem_info *ei_array, int level) { int max_msg_len = 0; struct elem_info *temp_ei; if (!ei_array) return max_msg_len; for (temp_ei = ei_array; temp_ei->data_type != QMI_EOTI; temp_ei++) { /* Flag to identify the optional element is not encoded */ if (temp_ei->data_type == QMI_OPT_FLAG) continue; if (temp_ei->data_type == QMI_DATA_LEN) { max_msg_len += (temp_ei->elem_size == sizeof(uint8_t) ? sizeof(uint8_t) : sizeof(uint16_t)); continue; } else if (temp_ei->data_type == QMI_STRUCT) { max_msg_len += (temp_ei->elem_len * qmi_calc_max_msg_len(temp_ei->ei_array, (level + 1))); } else if (temp_ei->data_type == QMI_STRING) { if (level > 1) max_msg_len += temp_ei->elem_len <= U8_MAX ? sizeof(uint8_t) : sizeof(uint16_t); max_msg_len += temp_ei->elem_len * temp_ei->elem_size; } else { max_msg_len += (temp_ei->elem_len * temp_ei->elem_size); } /* * Type & Length info. not prepended for elements in the * nested structure. */ if (level == 1) max_msg_len += (TLV_TYPE_SIZE + TLV_LEN_SIZE); } return max_msg_len; } /** * qmi_calc_min_msg_len() - Calculate the minimum length of a QMI message * @ei_array: Struct info array describing the structure. * @level: Level to identify the depth of the nested structures. * * @return: expected minimum length of the QMI message or 0 on failure. */ static int qmi_calc_min_msg_len(struct elem_info *ei_array, int level) { int min_msg_len = 0; struct elem_info *temp_ei = ei_array; if (!ei_array) return min_msg_len; while (temp_ei->data_type != QMI_EOTI) { /* Optional elements do not count in minimum length */ if (temp_ei->data_type == QMI_OPT_FLAG) { temp_ei = skip_to_next_elem(temp_ei, level); continue; } if (temp_ei->data_type == QMI_DATA_LEN) { min_msg_len += (temp_ei->elem_size == sizeof(uint8_t) ? sizeof(uint8_t) : sizeof(uint16_t)); temp_ei++; continue; } else if (temp_ei->data_type == QMI_STRUCT) { min_msg_len += qmi_calc_min_msg_len(temp_ei->ei_array, (level + 1)); temp_ei++; } else if (temp_ei->data_type == QMI_STRING) { if (level > 1) min_msg_len += temp_ei->elem_len <= U8_MAX ? sizeof(uint8_t) : sizeof(uint16_t); min_msg_len += temp_ei->elem_len * temp_ei->elem_size; temp_ei++; } else { min_msg_len += (temp_ei->elem_len * temp_ei->elem_size); temp_ei++; } /* * Type & Length info. not prepended for elements in the * nested structure. */ if (level == 1) min_msg_len += (TLV_TYPE_SIZE + TLV_LEN_SIZE); } return min_msg_len; } /** * qmi_verify_max_msg_len() - Verify the maximum length of a QMI message * @desc: Pointer to structure descriptor. * * @return: true if the maximum message length embedded in structure * descriptor matches the calculated value, else false. */ bool qmi_verify_max_msg_len(struct msg_desc *desc) { int calc_max_msg_len; if (!desc) return false; calc_max_msg_len = qmi_calc_max_msg_len(desc->ei_array, 1); if (calc_max_msg_len != desc->max_msg_len) { pr_err("%s: Calc. len %d != Passed len %d\n", __func__, calc_max_msg_len, desc->max_msg_len); return false; } return true; } /** * qmi_kernel_encode() - Encode to QMI message wire format * @desc: Pointer to structure descriptor. * @out_buf: Buffer to hold the encoded QMI message. * @out_buf_len: Length of the out buffer. * @in_c_struct: C Structure to be encoded. * * @return: size of encoded message on success, < 0 for error. */ int qmi_kernel_encode(struct msg_desc *desc, void *out_buf, uint32_t out_buf_len, void *in_c_struct) { int enc_level = 1; int ret, calc_max_msg_len, calc_min_msg_len; if (!desc) return -EINVAL; /* Check the possibility of a zero length QMI message */ if (!in_c_struct) { calc_min_msg_len = qmi_calc_min_msg_len(desc->ei_array, 1); if (calc_min_msg_len) { pr_err("%s: Calc. len %d != 0, but NULL in_c_struct\n", __func__, calc_min_msg_len); return -EINVAL; } else { return 0; } } /* * Not a zero-length message. Ensure the output buffer and * element information array are not NULL. */ if (!out_buf || !desc->ei_array) return -EINVAL; if (desc->max_msg_len < out_buf_len) return -ETOOSMALL; ret = _qmi_kernel_encode(desc->ei_array, out_buf, in_c_struct, out_buf_len, enc_level); if (ret == -ETOOSMALL) { calc_max_msg_len = qmi_calc_max_msg_len(desc->ei_array, 1); pr_err("%s: Calc. len %d != Out buf len %d\n", __func__, calc_max_msg_len, out_buf_len); } return ret; } EXPORT_SYMBOL(qmi_kernel_encode); /** * qmi_encode_basic_elem() - Encodes elements of basic/primary data type * @buf_dst: Buffer to store the encoded information. * @buf_src: Buffer containing the elements to be encoded. * @elem_len: Number of elements, in the buf_src, to be encoded. * @elem_size: Size of a single instance of the element to be encoded. * * @return: number of bytes of encoded information. * * This function encodes the "elem_len" number of data elements, each of * size "elem_size" bytes from the source buffer "buf_src" and stores the * encoded information in the destination buffer "buf_dst". The elements are * of primary data type which include uint8_t - uint64_t or similar. This * function returns the number of bytes of encoded information. */ static int qmi_encode_basic_elem(void *buf_dst, void *buf_src, uint32_t elem_len, uint32_t elem_size) { uint32_t i, rc = 0; for (i = 0; i < elem_len; i++) { QMI_ENCDEC_ENCODE_N_BYTES(buf_dst, buf_src, elem_size); rc += elem_size; } return rc; } /** * qmi_encode_struct_elem() - Encodes elements of struct data type * @ei_array: Struct info array descibing the struct element. * @buf_dst: Buffer to store the encoded information. * @buf_src: Buffer containing the elements to be encoded. * @elem_len: Number of elements, in the buf_src, to be encoded. * @out_buf_len: Available space in the encode buffer. * @enc_level: Depth of the nested structure from the main structure. * * @return: Mumber of bytes of encoded information, on success. * < 0 on error. * * This function encodes the "elem_len" number of struct elements, each of * size "ei_array->elem_size" bytes from the source buffer "buf_src" and * stores the encoded information in the destination buffer "buf_dst". The * elements are of struct data type which includes any C structure. This * function returns the number of bytes of encoded information. */ static int qmi_encode_struct_elem(struct elem_info *ei_array, void *buf_dst, void *buf_src, uint32_t elem_len, uint32_t out_buf_len, int enc_level) { int i, rc, encoded_bytes = 0; struct elem_info *temp_ei = ei_array; for (i = 0; i < elem_len; i++) { rc = _qmi_kernel_encode(temp_ei->ei_array, buf_dst, buf_src, (out_buf_len - encoded_bytes), enc_level); if (rc < 0) { pr_err("%s: STRUCT Encode failure\n", __func__); return rc; } buf_dst = buf_dst + rc; buf_src = buf_src + temp_ei->elem_size; encoded_bytes += rc; } return encoded_bytes; } /** * qmi_encode_string_elem() - Encodes elements of string data type * @ei_array: Struct info array descibing the string element. * @buf_dst: Buffer to store the encoded information. * @buf_src: Buffer containing the elements to be encoded. * @out_buf_len: Available space in the encode buffer. * @enc_level: Depth of the string element from the main structure. * * @return: Mumber of bytes of encoded information, on success. * < 0 on error. * * This function encodes a string element of maximum length "ei_array->elem_len" * bytes from the source buffer "buf_src" and stores the encoded information in * the destination buffer "buf_dst". This function returns the number of bytes * of encoded information. */ static int qmi_encode_string_elem(struct elem_info *ei_array, void *buf_dst, void *buf_src, uint32_t out_buf_len, int enc_level) { int rc; int encoded_bytes = 0; struct elem_info *temp_ei = ei_array; uint32_t string_len = 0; uint32_t string_len_sz = 0; string_len = strlen(buf_src); string_len_sz = temp_ei->elem_len <= U8_MAX ? sizeof(uint8_t) : sizeof(uint16_t); if (string_len > temp_ei->elem_len) { pr_err("%s: String to be encoded is longer - %d > %d\n", __func__, string_len, temp_ei->elem_len); return -EINVAL; } if (enc_level == 1) { if (string_len + TLV_LEN_SIZE + TLV_TYPE_SIZE > out_buf_len) { pr_err("%s: Output len %d > Out Buf len %d\n", __func__, string_len, out_buf_len); return -ETOOSMALL; } } else { if (string_len + string_len_sz > out_buf_len) { pr_err("%s: Output len %d > Out Buf len %d\n", __func__, string_len, out_buf_len); return -ETOOSMALL; } rc = qmi_encode_basic_elem(buf_dst, &string_len, 1, string_len_sz); encoded_bytes += rc; } rc = qmi_encode_basic_elem(buf_dst + encoded_bytes, buf_src, string_len, temp_ei->elem_size); encoded_bytes += rc; QMI_ENCODE_LOG_ELEM(enc_level, string_len, temp_ei->elem_size, buf_src); return encoded_bytes; } /** * skip_to_next_elem() - Skip to next element in the structure to be encoded * @ei_array: Struct info describing the element to be skipped. * @level: Depth level of encoding/decoding to identify nested structures. * * @return: Struct info of the next element that can be encoded. * * This function is used while encoding optional elements. If the flag * corresponding to an optional element is not set, then encoding the * optional element can be skipped. This function can be used to perform * that operation. */ static struct elem_info *skip_to_next_elem(struct elem_info *ei_array, int level) { struct elem_info *temp_ei = ei_array; uint8_t tlv_type; if (level > 1) { temp_ei = temp_ei + 1; } else { do { tlv_type = temp_ei->tlv_type; temp_ei = temp_ei + 1; } while (tlv_type == temp_ei->tlv_type); } return temp_ei; } /** * _qmi_kernel_encode() - Core Encode Function * @ei_array: Struct info array describing the structure to be encoded. * @out_buf: Buffer to hold the encoded QMI message. * @in_c_struct: Pointer to the C structure to be encoded. * @out_buf_len: Available space in the encode buffer. * @enc_level: Encode level to indicate the depth of the nested structure, * within the main structure, being encoded. * * @return: Number of bytes of encoded information, on success. * < 0 on error. */ static int _qmi_kernel_encode(struct elem_info *ei_array, void *out_buf, void *in_c_struct, uint32_t out_buf_len, int enc_level) { struct elem_info *temp_ei = ei_array; uint8_t opt_flag_value = 0; uint32_t data_len_value = 0, data_len_sz; uint8_t *buf_dst = (uint8_t *)out_buf; uint8_t *tlv_pointer; uint32_t tlv_len; uint8_t tlv_type; uint32_t encoded_bytes = 0; void *buf_src; int encode_tlv = 0; int rc; tlv_pointer = buf_dst; tlv_len = 0; if (enc_level == 1) buf_dst = buf_dst + (TLV_LEN_SIZE + TLV_TYPE_SIZE); while (temp_ei->data_type != QMI_EOTI) { buf_src = in_c_struct + temp_ei->offset; tlv_type = temp_ei->tlv_type; if (temp_ei->is_array == NO_ARRAY) { data_len_value = 1; } else if (temp_ei->is_array == STATIC_ARRAY) { data_len_value = temp_ei->elem_len; } else if (data_len_value <= 0 || temp_ei->elem_len < data_len_value) { pr_err("%s: Invalid data length\n", __func__); return -EINVAL; } switch (temp_ei->data_type) { case QMI_OPT_FLAG: rc = qmi_encode_basic_elem(&opt_flag_value, buf_src, 1, sizeof(uint8_t)); if (opt_flag_value) temp_ei = temp_ei + 1; else temp_ei = skip_to_next_elem(temp_ei, enc_level); break; case QMI_DATA_LEN: memcpy(&data_len_value, buf_src, temp_ei->elem_size); data_len_sz = temp_ei->elem_size == sizeof(uint8_t) ? sizeof(uint8_t) : sizeof(uint16_t); /* Check to avoid out of range buffer access */ if ((data_len_sz + encoded_bytes + TLV_LEN_SIZE + TLV_TYPE_SIZE) > out_buf_len) { pr_err("%s: Too Small Buffer @DATA_LEN\n", __func__); return -ETOOSMALL; } rc = qmi_encode_basic_elem(buf_dst, &data_len_value, 1, data_len_sz); UPDATE_ENCODE_VARIABLES(temp_ei, buf_dst, encoded_bytes, tlv_len, encode_tlv, rc); if (!data_len_value) temp_ei = skip_to_next_elem(temp_ei, enc_level); else encode_tlv = 0; break; case QMI_UNSIGNED_1_BYTE: case QMI_UNSIGNED_2_BYTE: case QMI_UNSIGNED_4_BYTE: case QMI_UNSIGNED_8_BYTE: case QMI_SIGNED_2_BYTE_ENUM: case QMI_SIGNED_4_BYTE_ENUM: /* Check to avoid out of range buffer access */ if (((data_len_value * temp_ei->elem_size) + encoded_bytes + TLV_LEN_SIZE + TLV_TYPE_SIZE) > out_buf_len) { pr_err("%s: Too Small Buffer @data_type:%d\n", __func__, temp_ei->data_type); return -ETOOSMALL; } rc = qmi_encode_basic_elem(buf_dst, buf_src, data_len_value, temp_ei->elem_size); QMI_ENCODE_LOG_ELEM(enc_level, data_len_value, temp_ei->elem_size, buf_src); UPDATE_ENCODE_VARIABLES(temp_ei, buf_dst, encoded_bytes, tlv_len, encode_tlv, rc); break; case QMI_STRUCT: rc = qmi_encode_struct_elem(temp_ei, buf_dst, buf_src, data_len_value, (out_buf_len - encoded_bytes), (enc_level + 1)); if (rc < 0) return rc; UPDATE_ENCODE_VARIABLES(temp_ei, buf_dst, encoded_bytes, tlv_len, encode_tlv, rc); break; case QMI_STRING: rc = qmi_encode_string_elem(temp_ei, buf_dst, buf_src, out_buf_len - encoded_bytes, enc_level); if (rc < 0) return rc; UPDATE_ENCODE_VARIABLES(temp_ei, buf_dst, encoded_bytes, tlv_len, encode_tlv, rc); break; default: pr_err("%s: Unrecognized data type\n", __func__); return -EINVAL; } if (encode_tlv && enc_level == 1) { QMI_ENCDEC_ENCODE_TLV(tlv_type, tlv_len, tlv_pointer); QMI_ENCODE_LOG_TLV(tlv_type, tlv_len); encoded_bytes += (TLV_TYPE_SIZE + TLV_LEN_SIZE); tlv_pointer = buf_dst; tlv_len = 0; buf_dst = buf_dst + TLV_LEN_SIZE + TLV_TYPE_SIZE; encode_tlv = 0; } } QMI_ENCODE_LOG_MSG(out_buf, encoded_bytes); return encoded_bytes; } /** * qmi_kernel_decode() - Decode to C Structure format * @desc: Pointer to structure descriptor. * @out_c_struct: Buffer to hold the decoded C structure. * @in_buf: Buffer containg the QMI message to be decoded. * @in_buf_len: Length of the incoming QMI message. * * @return: 0 on success, < 0 on error. */ int qmi_kernel_decode(struct msg_desc *desc, void *out_c_struct, void *in_buf, uint32_t in_buf_len) { int dec_level = 1; int rc = 0; if (!desc || !desc->ei_array) return -EINVAL; if (!out_c_struct || !in_buf || !in_buf_len) return -EINVAL; if (desc->max_msg_len < in_buf_len) return -EINVAL; rc = _qmi_kernel_decode(desc->ei_array, out_c_struct, in_buf, in_buf_len, dec_level); if (rc < 0) return rc; else return 0; } EXPORT_SYMBOL(qmi_kernel_decode); /** * qmi_decode_basic_elem() - Decodes elements of basic/primary data type * @buf_dst: Buffer to store the decoded element. * @buf_src: Buffer containing the elements in QMI wire format. * @elem_len: Number of elements to be decoded. * @elem_size: Size of a single instance of the element to be decoded. * * @return: Total size of the decoded data elements, in bytes. * * This function decodes the "elem_len" number of elements in QMI wire format, * each of size "elem_size" bytes from the source buffer "buf_src" and stores * the decoded elements in the destination buffer "buf_dst". The elements are * of primary data type which include uint8_t - uint64_t or similar. This * function returns the number of bytes of decoded information. */ static int qmi_decode_basic_elem(void *buf_dst, void *buf_src, uint32_t elem_len, uint32_t elem_size) { uint32_t i, rc = 0; for (i = 0; i < elem_len; i++) { QMI_ENCDEC_DECODE_N_BYTES(buf_dst, buf_src, elem_size); rc += elem_size; } return rc; } /** * qmi_decode_struct_elem() - Decodes elements of struct data type * @ei_array: Struct info array descibing the struct element. * @buf_dst: Buffer to store the decoded element. * @buf_src: Buffer containing the elements in QMI wire format. * @elem_len: Number of elements to be decoded. * @tlv_len: Total size of the encoded inforation corresponding to * this struct element. * @dec_level: Depth of the nested structure from the main structure. * * @return: Total size of the decoded data elements, on success. * < 0 on error. * * This function decodes the "elem_len" number of elements in QMI wire format, * each of size "(tlv_len/elem_len)" bytes from the source buffer "buf_src" * and stores the decoded elements in the destination buffer "buf_dst". The * elements are of struct data type which includes any C structure. This * function returns the number of bytes of decoded information. */ static int qmi_decode_struct_elem(struct elem_info *ei_array, void *buf_dst, void *buf_src, uint32_t elem_len, uint32_t tlv_len, int dec_level) { int i, rc, decoded_bytes = 0; struct elem_info *temp_ei = ei_array; for (i = 0; i < elem_len && decoded_bytes < tlv_len; i++) { rc = _qmi_kernel_decode(temp_ei->ei_array, buf_dst, buf_src, (tlv_len - decoded_bytes), dec_level); if (rc < 0) return rc; buf_src = buf_src + rc; buf_dst = buf_dst + temp_ei->elem_size; decoded_bytes += rc; } if ((dec_level <= 2 && decoded_bytes != tlv_len) || (dec_level > 2 && (i < elem_len || decoded_bytes > tlv_len))) { pr_err("%s: Fault in decoding: dl(%d), db(%d), tl(%d), i(%d), el(%d)\n", __func__, dec_level, decoded_bytes, tlv_len, i, elem_len); return -EFAULT; } return decoded_bytes; } /** * qmi_decode_string_elem() - Decodes elements of string data type * @ei_array: Struct info array descibing the string element. * @buf_dst: Buffer to store the decoded element. * @buf_src: Buffer containing the elements in QMI wire format. * @tlv_len: Total size of the encoded inforation corresponding to * this string element. * @dec_level: Depth of the string element from the main structure. * * @return: Total size of the decoded data elements, on success. * < 0 on error. * * This function decodes the string element of maximum length * "ei_array->elem_len" from the source buffer "buf_src" and puts it into * the destination buffer "buf_dst". This function returns number of bytes * decoded from the input buffer. */ static int qmi_decode_string_elem(struct elem_info *ei_array, void *buf_dst, void *buf_src, uint32_t tlv_len, int dec_level) { int rc; int decoded_bytes = 0; uint32_t string_len = 0; uint32_t string_len_sz = 0; struct elem_info *temp_ei = ei_array; if (dec_level == 1) { string_len = tlv_len; } else { string_len_sz = temp_ei->elem_len <= U8_MAX ? sizeof(uint8_t) : sizeof(uint16_t); rc = qmi_decode_basic_elem(&string_len, buf_src, 1, string_len_sz); decoded_bytes += rc; } if (string_len >= temp_ei->elem_len) { pr_err("%s: String len %d >= Max Len %d\n", __func__, string_len, temp_ei->elem_len); return -ETOOSMALL; } else if (string_len > tlv_len) { pr_err("%s: String len %d > Input Buffer Len %d\n", __func__, string_len, tlv_len); return -EFAULT; } rc = qmi_decode_basic_elem(buf_dst, buf_src + decoded_bytes, string_len, temp_ei->elem_size); *((char *)buf_dst + string_len) = '\0'; decoded_bytes += rc; QMI_DECODE_LOG_ELEM(dec_level, string_len, temp_ei->elem_size, buf_dst); return decoded_bytes; } /** * find_ei() - Find element info corresponding to TLV Type * @ei_array: Struct info array of the message being decoded. * @type: TLV Type of the element being searched. * * @return: Pointer to struct info, if found * * Every element that got encoded in the QMI message will have a type * information associated with it. While decoding the QMI message, * this function is used to find the struct info regarding the element * that corresponds to the type being decoded. */ static struct elem_info *find_ei(struct elem_info *ei_array, uint32_t type) { struct elem_info *temp_ei = ei_array; while (temp_ei->data_type != QMI_EOTI) { if (temp_ei->tlv_type == (uint8_t)type) return temp_ei; temp_ei = temp_ei + 1; } return NULL; } /** * _qmi_kernel_decode() - Core Decode Function * @ei_array: Struct info array describing the structure to be decoded. * @out_c_struct: Buffer to hold the decoded C struct * @in_buf: Buffer containing the QMI message to be decoded * @in_buf_len: Length of the QMI message to be decoded * @dec_level: Decode level to indicate the depth of the nested structure, * within the main structure, being decoded * * @return: Number of bytes of decoded information, on success * < 0 on error. */ static int _qmi_kernel_decode(struct elem_info *ei_array, void *out_c_struct, void *in_buf, uint32_t in_buf_len, int dec_level) { struct elem_info *temp_ei = ei_array; uint8_t opt_flag_value = 1; uint32_t data_len_value = 0, data_len_sz = 0; uint8_t *buf_dst = out_c_struct; uint8_t *tlv_pointer; uint32_t tlv_len = 0; uint32_t tlv_type; uint32_t decoded_bytes = 0; void *buf_src = in_buf; int rc; QMI_DECODE_LOG_MSG(in_buf, in_buf_len); while (decoded_bytes < in_buf_len) { if (dec_level >= 2 && temp_ei->data_type == QMI_EOTI) return decoded_bytes; if (dec_level == 1) { tlv_pointer = buf_src; QMI_ENCDEC_DECODE_TLV(&tlv_type, &tlv_len, tlv_pointer); QMI_DECODE_LOG_TLV(tlv_type, tlv_len); buf_src += (TLV_TYPE_SIZE + TLV_LEN_SIZE); decoded_bytes += (TLV_TYPE_SIZE + TLV_LEN_SIZE); temp_ei = find_ei(ei_array, tlv_type); if (!temp_ei && (tlv_type < OPTIONAL_TLV_TYPE_START)) { pr_err("%s: Inval element info\n", __func__); return -EINVAL; } else if (!temp_ei) { UPDATE_DECODE_VARIABLES(buf_src, decoded_bytes, tlv_len); continue; } } else { /* * No length information for elements in nested * structures. So use remaining decodable buffer space. */ tlv_len = in_buf_len - decoded_bytes; } buf_dst = out_c_struct + temp_ei->offset; if (temp_ei->data_type == QMI_OPT_FLAG) { memcpy(buf_dst, &opt_flag_value, sizeof(uint8_t)); temp_ei = temp_ei + 1; buf_dst = out_c_struct + temp_ei->offset; } if (temp_ei->data_type == QMI_DATA_LEN) { data_len_sz = temp_ei->elem_size == sizeof(uint8_t) ? sizeof(uint8_t) : sizeof(uint16_t); rc = qmi_decode_basic_elem(&data_len_value, buf_src, 1, data_len_sz); memcpy(buf_dst, &data_len_value, sizeof(uint32_t)); temp_ei = temp_ei + 1; buf_dst = out_c_struct + temp_ei->offset; tlv_len -= data_len_sz; UPDATE_DECODE_VARIABLES(buf_src, decoded_bytes, rc); } if (temp_ei->is_array == NO_ARRAY) { data_len_value = 1; } else if (temp_ei->is_array == STATIC_ARRAY) { data_len_value = temp_ei->elem_len; } else if (data_len_value > temp_ei->elem_len) { pr_err("%s: Data len %d > max spec %d\n", __func__, data_len_value, temp_ei->elem_len); return -ETOOSMALL; } switch (temp_ei->data_type) { case QMI_UNSIGNED_1_BYTE: case QMI_UNSIGNED_2_BYTE: case QMI_UNSIGNED_4_BYTE: case QMI_UNSIGNED_8_BYTE: case QMI_SIGNED_2_BYTE_ENUM: case QMI_SIGNED_4_BYTE_ENUM: rc = qmi_decode_basic_elem(buf_dst, buf_src, data_len_value, temp_ei->elem_size); QMI_DECODE_LOG_ELEM(dec_level, data_len_value, temp_ei->elem_size, buf_dst); UPDATE_DECODE_VARIABLES(buf_src, decoded_bytes, rc); break; case QMI_STRUCT: rc = qmi_decode_struct_elem(temp_ei, buf_dst, buf_src, data_len_value, tlv_len, (dec_level + 1)); if (rc < 0) return rc; UPDATE_DECODE_VARIABLES(buf_src, decoded_bytes, rc); break; case QMI_STRING: rc = qmi_decode_string_elem(temp_ei, buf_dst, buf_src, tlv_len, dec_level); if (rc < 0) return rc; UPDATE_DECODE_VARIABLES(buf_src, decoded_bytes, rc); break; default: pr_err("%s: Unrecognized data type\n", __func__); return -EINVAL; } temp_ei = temp_ei + 1; } return decoded_bytes; } MODULE_DESCRIPTION("QMI kernel enc/dec"); MODULE_LICENSE("GPL v2");