/* * Copyright (c) 2015, Sony Mobile Communications Inc. * Copyright (c) 2013, 2018-2019 The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include /* For TIOCINQ/OUTQ */ #include #include #include #include #include #include #include #include "qrtr.h" #define QRTR_LOG_PAGE_CNT 4 #define QRTR_INFO(ctx, x, ...) \ ipc_log_string(ctx, x, ##__VA_ARGS__) #define QRTR_PROTO_VER_1 1 #define QRTR_PROTO_VER_2 3 /* auto-bind range */ #define QRTR_MIN_EPH_SOCKET 0x4000 #define QRTR_MAX_EPH_SOCKET 0x7fff #define QRTR_PORT_CTRL_LEGACY 0xffff /* qrtr socket states */ #define QRTR_STATE_MULTI -2 #define QRTR_STATE_INIT -1 #define AID_VENDOR_QRTR KGIDT_INIT(2906) #define QRTR_LOG_SIZE 256 #define QRTR_DATA_LEN 30 #define MAX_QRTR_NODES 10 /** * struct qrtr_hdr_v1 - (I|R)PCrouter packet header version 1 * @version: protocol version * @type: packet type; one of QRTR_TYPE_* * @src_node_id: source node * @src_port_id: source port * @confirm_rx: boolean; whether a resume-tx packet should be send in reply * @size: length of packet, excluding this header * @dst_node_id: destination node * @dst_port_id: destination port */ struct qrtr_hdr_v1 { __le32 version; __le32 type; __le32 src_node_id; __le32 src_port_id; __le32 confirm_rx; __le32 size; __le32 dst_node_id; __le32 dst_port_id; } __packed; /** * struct qrtr_hdr_v2 - (I|R)PCrouter packet header later versions * @version: protocol version * @type: packet type; one of QRTR_TYPE_* * @flags: bitmask of QRTR_FLAGS_* * @optlen: length of optional header data * @size: length of packet, excluding this header and optlen * @src_node_id: source node * @src_port_id: source port * @dst_node_id: destination node * @dst_port_id: destination port */ struct qrtr_hdr_v2 { u8 version; u8 type; u8 flags; u8 optlen; __le32 size; __le16 src_node_id; __le16 src_port_id; __le16 dst_node_id; __le16 dst_port_id; }; #define QRTR_FLAGS_CONFIRM_RX BIT(0) struct qrtr_cb { u32 src_node; u32 src_port; u32 dst_node; u32 dst_port; u8 type; u8 confirm_rx; }; #define QRTR_HDR_MAX_SIZE max_t(size_t, sizeof(struct qrtr_hdr_v1), \ sizeof(struct qrtr_hdr_v2)) struct qrtr_sock { /* WARNING: sk must be the first member */ struct sock sk; struct sockaddr_qrtr us; struct sockaddr_qrtr peer; int state; }; struct qrtr_log_data { u64 timestamp; unsigned int src_node; unsigned int src_port; unsigned int dst_node; unsigned int dst_port; u8 type; u8 confirm_rx; unsigned char data[QRTR_DATA_LEN]; }; struct qrtr_debug { struct qrtr_node *node; u64 timestamp; } qrtrnode[MAX_QRTR_NODES]; static inline struct qrtr_sock *qrtr_sk(struct sock *sk) { BUILD_BUG_ON(offsetof(struct qrtr_sock, sk) != 0); return container_of(sk, struct qrtr_sock, sk); } static unsigned int qrtr_local_nid = 1; /* for node ids */ static RADIX_TREE(qrtr_nodes, GFP_KERNEL); /* broadcast list */ static LIST_HEAD(qrtr_all_epts); /* lock for qrtr_nodes, qrtr_all_epts and node reference */ static DECLARE_RWSEM(qrtr_node_lock); /* local port allocation management */ static DEFINE_IDR(qrtr_ports); static DEFINE_MUTEX(qrtr_port_lock); /** * struct qrtr_node - endpoint node * @ep_lock: lock for endpoint management and callbacks * @ep: endpoint * @ref: reference count for node * @nid: node id * @net_id: network cluster identifer * @hello_sent: hello packet sent to endpoint * @qrtr_tx_flow: remote port tx flow control list * @resume_tx: wait until remote port acks control flag * @qrtr_tx_lock: lock for qrtr_tx_flow * @rx_queue: receive queue * @item: list item for broadcast list * @kworker: worker thread for recv work * @task: task to run the worker thread * @read_data: scheduled work for recv work * @ilc: ipc logging context reference */ struct qrtr_node { struct mutex ep_lock; struct qrtr_endpoint *ep; struct kref ref; unsigned int nid; unsigned int net_id; atomic_t hello_sent; struct radix_tree_root qrtr_tx_flow; wait_queue_head_t resume_tx; struct mutex qrtr_tx_lock; /* for qrtr_tx_flow */ struct sk_buff_head rx_queue; struct list_head item; struct kthread_worker kworker; struct task_struct *task; struct kthread_work read_data; struct qrtr_log_data qrtr_data_rcvd[QRTR_LOG_SIZE]; struct qrtr_log_data node_rx_work_data[QRTR_LOG_SIZE]; unsigned int qrtrdataindex; unsigned int qrtrrxworkindex; void *ilc; }; struct qrtr_tx_flow_waiter { struct list_head node; struct sock *sk; }; struct qrtr_tx_flow { atomic_t pending; struct list_head waiters; }; #define QRTR_TX_FLOW_HIGH 10 #define QRTR_TX_FLOW_LOW 5 static struct sk_buff *qrtr_alloc_ctrl_packet(struct qrtr_ctrl_pkt **pkt); static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb, int type, struct sockaddr_qrtr *from, struct sockaddr_qrtr *to, unsigned int flags); static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb, int type, struct sockaddr_qrtr *from, struct sockaddr_qrtr *to, unsigned int flags); static void qrtr_log_tx_msg(struct qrtr_node *node, struct qrtr_hdr_v1 *hdr, struct sk_buff *skb) { const struct qrtr_ctrl_pkt *pkt; u64 pl_buf = 0; u32 type; if (!hdr || !skb || !skb->data) return; type = le32_to_cpu(hdr->type); if (type == QRTR_TYPE_DATA) { pl_buf = *(u64 *)(skb->data + QRTR_HDR_MAX_SIZE); QRTR_INFO(node->ilc, "TX DATA: Len:0x%x CF:0x%x src[0x%x:0x%x] dst[0x%x:0x%x] [%08x %08x] [%s]\n", le32_to_cpu(hdr->size), le32_to_cpu(hdr->confirm_rx), le32_to_cpu(hdr->src_node_id), le32_to_cpu(hdr->src_port_id), le32_to_cpu(hdr->dst_node_id), le32_to_cpu(hdr->dst_port_id), (unsigned int)pl_buf, (unsigned int)(pl_buf >> 32), current->comm); } else { pkt = (struct qrtr_ctrl_pkt *)(skb->data + QRTR_HDR_MAX_SIZE); if (type == QRTR_TYPE_NEW_SERVER || type == QRTR_TYPE_DEL_SERVER) QRTR_INFO(node->ilc, "TX CTRL: cmd:0x%x SVC[0x%x:0x%x] addr[0x%x:0x%x]\n", type, le32_to_cpu(pkt->server.service), le32_to_cpu(pkt->server.instance), le32_to_cpu(pkt->server.node), le32_to_cpu(pkt->server.port)); else if (type == QRTR_TYPE_DEL_CLIENT || type == QRTR_TYPE_RESUME_TX) QRTR_INFO(node->ilc, "TX CTRL: cmd:0x%x addr[0x%x:0x%x]\n", type, le32_to_cpu(pkt->client.node), le32_to_cpu(pkt->client.port)); else if (type == QRTR_TYPE_HELLO || type == QRTR_TYPE_BYE) QRTR_INFO(node->ilc, "TX CTRL: cmd:0x%x node[0x%x]\n", type, hdr->src_node_id); else if (type == QRTR_TYPE_DEL_PROC) QRTR_INFO(node->ilc, "TX CTRL: cmd:0x%x node[0x%x]\n", type, pkt->proc.node); } } static void qrtr_log_rx_msg(struct qrtr_node *node, struct sk_buff *skb) { const struct qrtr_ctrl_pkt *pkt; struct qrtr_cb *cb; u64 pl_buf = 0; if (!skb || !skb->data) return; cb = (struct qrtr_cb *)skb->cb; if (cb->type == QRTR_TYPE_DATA) { pl_buf = *(u64 *)(skb->data); QRTR_INFO(node->ilc, "RX DATA: Len:0x%x CF:0x%x src[0x%x:0x%x] dst[0x%x:0x%x] [%08x %08x]\n", skb->len, cb->confirm_rx, cb->src_node, cb->src_port, cb->dst_node, cb->dst_port, (unsigned int)pl_buf, (unsigned int)(pl_buf >> 32)); } else { pkt = (struct qrtr_ctrl_pkt *)(skb->data); if (cb->type == QRTR_TYPE_NEW_SERVER || cb->type == QRTR_TYPE_DEL_SERVER) QRTR_INFO(node->ilc, "RX CTRL: cmd:0x%x SVC[0x%x:0x%x] addr[0x%x:0x%x]\n", cb->type, le32_to_cpu(pkt->server.service), le32_to_cpu(pkt->server.instance), le32_to_cpu(pkt->server.node), le32_to_cpu(pkt->server.port)); else if (cb->type == QRTR_TYPE_DEL_CLIENT || cb->type == QRTR_TYPE_RESUME_TX) QRTR_INFO(node->ilc, "RX CTRL: cmd:0x%x addr[0x%x:0x%x]\n", cb->type, le32_to_cpu(pkt->client.node), le32_to_cpu(pkt->client.port)); else if (cb->type == QRTR_TYPE_HELLO || cb->type == QRTR_TYPE_BYE) QRTR_INFO(node->ilc, "RX CTRL: cmd:0x%x node[0x%x]\n", cb->type, cb->src_node); } } static bool refcount_dec_and_rwsem_lock(refcount_t *r, struct rw_semaphore *sem) { if (refcount_dec_not_one(r)) return false; down_write(sem); if (!refcount_dec_and_test(r)) { up_write(sem); return false; } return true; } static inline int kref_put_rwsem_lock(struct kref *kref, void (*release)(struct kref *kref), struct rw_semaphore *sem) { if (refcount_dec_and_rwsem_lock((refcount_t *)&kref->refcount, sem)) { release(kref); return 1; } return 0; } /* Release node resources and free the node. * * Do not call directly, use qrtr_node_release. To be used with * kref_put_mutex. As such, the node mutex is expected to be locked on call. */ static void __qrtr_node_release(struct kref *kref) { struct qrtr_tx_flow_waiter *waiter; struct qrtr_tx_flow_waiter *temp; struct radix_tree_iter iter; struct qrtr_tx_flow *flow; struct qrtr_node *node = container_of(kref, struct qrtr_node, ref); void __rcu **slot; int i; for (i = 0; i < MAX_QRTR_NODES; i++) { if (qrtrnode[i].node) { if (node->nid == qrtrnode[i].node->nid) { qrtrnode[i].timestamp = ktime_to_us(ktime_get()); qrtrnode[i].node = NULL; break; } } } if (node->nid != QRTR_EP_NID_AUTO) { radix_tree_for_each_slot(slot, &qrtr_nodes, &iter, 0) { if (node == *slot) radix_tree_delete(&qrtr_nodes, iter.index); } } list_del(&node->item); up_write(&qrtr_node_lock); /* Free tx flow counters */ mutex_lock(&node->qrtr_tx_lock); radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) { flow = *slot; list_for_each_entry_safe(waiter, temp, &flow->waiters, node) { list_del(&waiter->node); sock_put(waiter->sk); kfree(waiter); } kfree(flow); radix_tree_delete(&node->qrtr_tx_flow, iter.index); } mutex_unlock(&node->qrtr_tx_lock); flush_kthread_worker(&node->kworker); kthread_stop(node->task); skb_queue_purge(&node->rx_queue); kfree(node); } /* Increment reference to node. */ static struct qrtr_node *qrtr_node_acquire(struct qrtr_node *node) { if (node) { if (likely(kref_get_unless_zero(&node->ref))) { return node; } else { pr_err("WARN: %s qrtr node is getting acquired while" "being destroyed\n", __func__); } } return NULL; } /* Decrement reference to node and release as necessary. */ static void qrtr_node_release(struct qrtr_node *node) { if (!node) return; kref_put_rwsem_lock(&node->ref, __qrtr_node_release, &qrtr_node_lock); } static bool sig_pending; static bool sig_pending_node; /** * qrtr_tx_resume() - reset flow control counter * @node: qrtr_node that the QRTR_TYPE_RESUME_TX packet arrived on * @skb: skb for resume tx control packet */ static void qrtr_tx_resume(struct qrtr_node *node, struct sk_buff *skb) { struct qrtr_tx_flow_waiter *waiter; struct qrtr_tx_flow_waiter *temp; struct qrtr_ctrl_pkt *pkt; struct qrtr_tx_flow *flow; struct sockaddr_qrtr src; struct qrtr_sock *ipc; struct sk_buff *skbn; unsigned long key; if (sig_pending && (node->nid == sig_pending_node)) printk("%s for node %d\n", __func__, node->nid); pkt = (struct qrtr_ctrl_pkt *)skb->data; if (le32_to_cpu(pkt->cmd) != QRTR_TYPE_RESUME_TX) return; src.sq_family = AF_QIPCRTR; src.sq_node = le32_to_cpu(pkt->client.node); src.sq_port = le32_to_cpu(pkt->client.port); key = (u64)src.sq_node << 32 | src.sq_port; flow = radix_tree_lookup(&node->qrtr_tx_flow, key); if (!flow) return; mutex_lock(&node->qrtr_tx_lock); atomic_set(&flow->pending, 0); wake_up_interruptible_all(&node->resume_tx); list_for_each_entry_safe(waiter, temp, &flow->waiters, node) { list_del(&waiter->node); skbn = alloc_skb(0, GFP_KERNEL); if (skbn) { ipc = qrtr_sk(waiter->sk); qrtr_local_enqueue(NULL, skbn, QRTR_TYPE_RESUME_TX, &src, &ipc->us, 0); } sock_put(waiter->sk); kfree(waiter); } mutex_unlock(&node->qrtr_tx_lock); } /** * qrtr_tx_wait() - flow control for outgoing packets * @node: qrtr_node that the packet is to be send to * @dest_node: node id of the destination * @dest_port: port number of the destination * @type: type of message * * The flow control scheme is based around the low and high "watermarks". When * the low watermark is passed the confirm_rx flag is set on the outgoing * message, which will trigger the remote to send a control message of the type * QRTR_TYPE_RESUME_TX to reset the counter. If the high watermark is hit * further transmision should be paused. * * Return: 1 if confirm_rx should be set, 0 otherwise or errno failure */ static int qrtr_tx_wait(struct qrtr_node *node, struct sockaddr_qrtr *to, struct sock *sk, int type, unsigned int flags) { struct qrtr_tx_flow_waiter *waiter; struct qrtr_tx_flow *flow; unsigned long key = (u64)to->sq_node << 32 | to->sq_port; int confirm_rx = 0; long timeo; long ret; int nsig = _NSIG_WORDS; sigset_t *set; int i = 0; /* Never set confirm_rx on non-data packets */ if (type != QRTR_TYPE_DATA) return 0; /* Assume sk is set correctly for all data type packets */ timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); mutex_lock(&node->qrtr_tx_lock); flow = radix_tree_lookup(&node->qrtr_tx_flow, key); if (!flow) { flow = kzalloc(sizeof(*flow), GFP_KERNEL); if (!flow) { mutex_unlock(&node->qrtr_tx_lock); return 1; } INIT_LIST_HEAD(&flow->waiters); radix_tree_insert(&node->qrtr_tx_flow, key, flow); } mutex_unlock(&node->qrtr_tx_lock); ret = timeo; for (;;) { mutex_lock(&node->qrtr_tx_lock); if (atomic_read(&flow->pending) < QRTR_TX_FLOW_HIGH) { atomic_inc(&flow->pending); confirm_rx = atomic_read(&flow->pending) == QRTR_TX_FLOW_LOW; mutex_unlock(&node->qrtr_tx_lock); break; } if (!ret) { waiter = kzalloc(sizeof(*waiter), GFP_KERNEL); if (!waiter) { mutex_unlock(&node->qrtr_tx_lock); return -ENOMEM; } waiter->sk = sk; sock_hold(sk); list_add_tail(&waiter->node, &flow->waiters); mutex_unlock(&node->qrtr_tx_lock); return -EAGAIN; } mutex_unlock(&node->qrtr_tx_lock); ret = wait_event_interruptible_timeout(node->resume_tx, !node->ep || atomic_read(&flow->pending) < QRTR_TX_FLOW_HIGH, timeo); if (ret < 0) { if (signal_pending(current)) { printk("%s signal pending \n", __func__); sig_pending_node = node->nid; sig_pending = true; set = ¤t->pending.signal; while (i < nsig) { printk("sig[%d] = %lu\n", i, set->sig[i]); i++; } } return ret; } if (!node->ep) return -EPIPE; } return confirm_rx; } /* Pass an outgoing packet socket buffer to the endpoint driver. */ static int qrtr_node_enqueue(struct qrtr_node *node, struct sk_buff *skb, int type, struct sockaddr_qrtr *from, struct sockaddr_qrtr *to, unsigned int flags) { struct qrtr_hdr_v1 *hdr; int confirm_rx; size_t len = skb->len; int rc = -ENODEV; if (!atomic_read(&node->hello_sent) && type != QRTR_TYPE_HELLO) { kfree_skb(skb); return rc; } /* If sk is null, this is a forwarded packet and should not wait */ if (!skb->sk) { struct qrtr_cb *cb = (struct qrtr_cb *)skb->cb; confirm_rx = cb->confirm_rx; } else { confirm_rx = qrtr_tx_wait(node, to, skb->sk, type, flags); if (confirm_rx < 0) { kfree_skb(skb); pr_err("%s: tx wait for confirm_rx failed, %d\n", __func__, confirm_rx); return confirm_rx; } } hdr = (struct qrtr_hdr_v1 *)skb_push(skb, sizeof(*hdr)); hdr->version = cpu_to_le32(QRTR_PROTO_VER_1); hdr->type = cpu_to_le32(type); hdr->src_node_id = cpu_to_le32(from->sq_node); hdr->src_port_id = cpu_to_le32(from->sq_port); if (to->sq_node == QRTR_NODE_BCAST) hdr->dst_node_id = cpu_to_le32(node->nid); else hdr->dst_node_id = cpu_to_le32(to->sq_node); hdr->dst_port_id = cpu_to_le32(to->sq_port); hdr->size = cpu_to_le32(len); hdr->confirm_rx = cpu_to_le32(!!confirm_rx); qrtr_log_tx_msg(node, hdr, skb); rc = skb_put_padto(skb, ALIGN(len, 4) + sizeof(*hdr)); if (rc) { pr_err("%s: failed to pad size %zu to %u rc:%d\n", __func__, len, ALIGN(len, 4) + sizeof(*hdr), rc); return rc; } mutex_lock(&node->ep_lock); if (node->ep) rc = node->ep->xmit(node->ep, skb); else kfree_skb(skb); mutex_unlock(&node->ep_lock); if (!rc && type == QRTR_TYPE_HELLO) atomic_inc(&node->hello_sent); if (rc) { struct qrtr_tx_flow *flow; unsigned long key = (u64)to->sq_node << 32 | to->sq_port; mutex_lock(&node->qrtr_tx_lock); flow = radix_tree_lookup(&node->qrtr_tx_flow, key); if (flow) atomic_dec(&flow->pending); mutex_unlock(&node->qrtr_tx_lock); } return rc; } /* Lookup node by id. * * callers must release with qrtr_node_release() */ static struct qrtr_node *qrtr_node_lookup(unsigned int nid) { struct qrtr_node *node; down_read(&qrtr_node_lock); node = radix_tree_lookup(&qrtr_nodes, nid); node = qrtr_node_acquire(node); up_read(&qrtr_node_lock); return node; } /* Assign node id to node. * * This is mostly useful for automatic node id assignment, based on * the source id in the incoming packet. */ static void qrtr_node_assign(struct qrtr_node *node, unsigned int nid) { struct qrtr_node *tnode = NULL; char name[32] = {0,}; if (nid == QRTR_EP_NID_AUTO) return; if (nid == node->nid) return; down_read(&qrtr_node_lock); tnode = radix_tree_lookup(&qrtr_nodes, nid); up_read(&qrtr_node_lock); if (tnode) return; down_write(&qrtr_node_lock); radix_tree_insert(&qrtr_nodes, nid, node); if (node->nid == QRTR_EP_NID_AUTO) node->nid = nid; up_write(&qrtr_node_lock); if (!node->ilc) { snprintf(name, sizeof(name), "qrtr_%d", nid); node->ilc = ipc_log_context_create(QRTR_LOG_PAGE_CNT, name, 0); } } /** * qrtr_peek_pkt_size() - Peek into the packet header to get potential pkt size * * @data: Starting address of the packet which points to router header. * * @returns: potential packet size on success, < 0 on error. * * This function is used by the underlying transport abstraction layer to * peek into the potential packet size of an incoming packet. This information * is used to perform link layer fragmentation and re-assembly */ int qrtr_peek_pkt_size(const void *data) { const struct qrtr_hdr_v1 *v1; const struct qrtr_hdr_v2 *v2; unsigned int hdrlen; unsigned int size; unsigned int ver; /* Version field in v1 is little endian, so this works for both cases */ ver = *(u8 *)data; switch (ver) { case QRTR_PROTO_VER_1: v1 = data; hdrlen = sizeof(*v1); size = le32_to_cpu(v1->size); break; case QRTR_PROTO_VER_2: v2 = data; hdrlen = sizeof(*v2) + v2->optlen; size = le32_to_cpu(v2->size); break; default: pr_err("qrtr: Invalid version %d\n", ver); return -EINVAL; } return ALIGN(size, 4) + hdrlen; } EXPORT_SYMBOL(qrtr_peek_pkt_size); /** * qrtr_endpoint_post() - post incoming data * @ep: endpoint handle * @data: data pointer * @len: size of data in bytes * * Return: 0 on success; negative error code on failure */ int qrtr_endpoint_post(struct qrtr_endpoint *ep, const void *data, size_t len) { struct qrtr_node *node = ep->node; const struct qrtr_hdr_v1 *v1; const struct qrtr_hdr_v2 *v2; struct sk_buff *skb; struct qrtr_cb *cb; unsigned int size; unsigned int ver; size_t hdrlen; if (len & 3) return -EINVAL; skb = netdev_alloc_skb(NULL, len); if (!skb) return -ENOMEM; cb = (struct qrtr_cb *)skb->cb; /* Version field in v1 is little endian, so this works for both cases */ ver = *(u8*)data; switch (ver) { case QRTR_PROTO_VER_1: v1 = data; hdrlen = sizeof(*v1); cb->type = le32_to_cpu(v1->type); cb->src_node = le32_to_cpu(v1->src_node_id); cb->src_port = le32_to_cpu(v1->src_port_id); cb->confirm_rx = !!v1->confirm_rx; cb->dst_node = le32_to_cpu(v1->dst_node_id); cb->dst_port = le32_to_cpu(v1->dst_port_id); size = le32_to_cpu(v1->size); break; case QRTR_PROTO_VER_2: v2 = data; hdrlen = sizeof(*v2) + v2->optlen; cb->type = v2->type; cb->confirm_rx = !!(v2->flags & QRTR_FLAGS_CONFIRM_RX); cb->src_node = le16_to_cpu(v2->src_node_id); cb->src_port = le16_to_cpu(v2->src_port_id); cb->dst_node = le16_to_cpu(v2->dst_node_id); cb->dst_port = le16_to_cpu(v2->dst_port_id); if (cb->src_port == (u16)QRTR_PORT_CTRL) cb->src_port = QRTR_PORT_CTRL; if (cb->dst_port == (u16)QRTR_PORT_CTRL) cb->dst_port = QRTR_PORT_CTRL; size = le32_to_cpu(v2->size); break; default: pr_err("qrtr: Invalid version %d\n", ver); goto err; } if (cb->dst_port == QRTR_PORT_CTRL_LEGACY) cb->dst_port = QRTR_PORT_CTRL; if (len != ALIGN(size, 4) + hdrlen) goto err; if (cb->dst_port != QRTR_PORT_CTRL && cb->type != QRTR_TYPE_DATA && cb->type != QRTR_TYPE_RESUME_TX) goto err; node->qrtr_data_rcvd[node->qrtrdataindex].src_port = cb->src_port; node->qrtr_data_rcvd[node->qrtrdataindex].dst_port = cb->dst_port; node->qrtr_data_rcvd[node->qrtrdataindex].src_node = cb->src_node; node->qrtr_data_rcvd[node->qrtrdataindex].dst_node = cb->dst_node; node->qrtr_data_rcvd[node->qrtrdataindex].type = cb->type; node->qrtr_data_rcvd[node->qrtrdataindex].confirm_rx = cb->confirm_rx; node->qrtr_data_rcvd[node->qrtrdataindex].timestamp = ktime_to_us(ktime_get()); if (size > QRTR_DATA_LEN) memcpy(node->qrtr_data_rcvd[node->qrtrdataindex++].data, data + hdrlen, QRTR_DATA_LEN); else memcpy(node->qrtr_data_rcvd[node->qrtrdataindex++].data, data + hdrlen, size); node->qrtrdataindex &= (QRTR_LOG_SIZE - 1); skb_put_data(skb, data + hdrlen, size); qrtr_log_rx_msg(node, skb); skb_queue_tail(&node->rx_queue, skb); queue_kthread_work(&node->kworker, &node->read_data); return 0; err: kfree_skb(skb); return -EINVAL; } EXPORT_SYMBOL_GPL(qrtr_endpoint_post); /** * qrtr_alloc_ctrl_packet() - allocate control packet skb * @pkt: reference to qrtr_ctrl_pkt pointer * * Returns newly allocated sk_buff, or NULL on failure * * This function allocates a sk_buff large enough to carry a qrtr_ctrl_pkt and * on success returns a reference to the control packet in @pkt. */ static struct sk_buff *qrtr_alloc_ctrl_packet(struct qrtr_ctrl_pkt **pkt) { const int pkt_len = sizeof(struct qrtr_ctrl_pkt); struct sk_buff *skb; skb = alloc_skb(QRTR_HDR_MAX_SIZE + pkt_len, GFP_KERNEL); if (!skb) return NULL; skb_reserve(skb, QRTR_HDR_MAX_SIZE); *pkt = skb_put_zero(skb, pkt_len); return skb; } static struct qrtr_sock *qrtr_port_lookup(int port); static void qrtr_port_put(struct qrtr_sock *ipc); /* Prepare skb for forwarding by allocating enough linear memory to align and * add the header since qrtr transports do not support fragmented skbs */ static void qrtr_skb_align_linearize(struct sk_buff *skb) { int nhead = ALIGN(skb->len, 4) + sizeof(struct qrtr_hdr_v1); int rc; if (!skb_is_nonlinear(skb)) return; rc = pskb_expand_head(skb, nhead, 0, GFP_KERNEL); if (rc) pr_err("%s: failed:%d to allocate linear skb size:%d\n", __func__, rc, nhead); } static bool qrtr_must_forward(struct qrtr_node *src, struct qrtr_node *dst, u32 type) { /* Node structure is not maintained for local processor. * Hence src is null in that case. */ if (!src) return true; if (!dst) return false; if (type == QRTR_TYPE_HELLO || type == QRTR_TYPE_RESUME_TX) return false; if (dst == src || dst->nid == QRTR_EP_NID_AUTO) return false; if (abs(dst->net_id - src->net_id) > 1) return true; return false; } static void qrtr_fwd_ctrl_pkt(struct sk_buff *skb) { struct qrtr_node *node; struct qrtr_node *src; struct qrtr_cb *cb = (struct qrtr_cb *)skb->cb; qrtr_skb_align_linearize(skb); src = qrtr_node_lookup(cb->src_node); down_read(&qrtr_node_lock); list_for_each_entry(node, &qrtr_all_epts, item) { struct sockaddr_qrtr from; struct sockaddr_qrtr to; struct sk_buff *skbn; if (!qrtr_must_forward(src, node, cb->type)) continue; skbn = skb_clone(skb, GFP_KERNEL); if (!skbn) break; from.sq_family = AF_QIPCRTR; from.sq_node = cb->src_node; from.sq_port = cb->src_port; to.sq_family = AF_QIPCRTR; to.sq_node = node->nid; to.sq_port = QRTR_PORT_CTRL; qrtr_node_enqueue(node, skbn, cb->type, &from, &to, 0); } up_read(&qrtr_node_lock); qrtr_node_release(src); } static void qrtr_fwd_pkt(struct sk_buff *skb, struct qrtr_cb *cb) { struct sockaddr_qrtr from = {AF_QIPCRTR, cb->src_node, cb->src_port}; struct sockaddr_qrtr to = {AF_QIPCRTR, cb->dst_node, cb->dst_port}; struct qrtr_node *node; qrtr_skb_align_linearize(skb); node = qrtr_node_lookup(cb->dst_node); if (!node) return; qrtr_node_enqueue(node, skb, cb->type, &from, &to, 0); qrtr_node_release(node); } /* Handle and route a received packet. * * This will auto-reply with resume-tx packet as necessary. */ static void qrtr_node_rx_work(struct kthread_work *work) { struct qrtr_node *node = container_of(work, struct qrtr_node, read_data); struct qrtr_ctrl_pkt *pkt; struct sk_buff *skb; void __rcu **slot; struct radix_tree_iter iter; struct qrtr_tx_flow_waiter *waiter; struct qrtr_tx_flow_waiter *temp; unsigned long node_id; struct qrtr_tx_flow *flow; while ((skb = skb_dequeue(&node->rx_queue)) != NULL) { struct qrtr_sock *ipc; struct qrtr_cb *cb; cb = (struct qrtr_cb *)skb->cb; qrtr_node_assign(node, cb->src_node); node->node_rx_work_data[node->qrtrrxworkindex].src_port = cb->src_port; node->node_rx_work_data[node->qrtrrxworkindex].dst_port = cb->dst_port; node->node_rx_work_data[node->qrtrrxworkindex].src_node = cb->src_node; node->node_rx_work_data[node->qrtrrxworkindex].dst_node = cb->dst_node; node->node_rx_work_data[node->qrtrrxworkindex].type = cb->type; node->node_rx_work_data[node->qrtrrxworkindex].confirm_rx = cb->confirm_rx; node->node_rx_work_data[node->qrtrrxworkindex].timestamp = ktime_to_us(ktime_get()); if (cb->type != QRTR_TYPE_DATA) qrtr_fwd_ctrl_pkt(skb); if (cb->type == QRTR_TYPE_NEW_SERVER && skb->len == sizeof(*pkt)) { pkt = (void *)skb->data; qrtr_node_assign(node, le32_to_cpu(pkt->server.node)); } if (cb->type == QRTR_TYPE_RESUME_TX) { if (cb->dst_node != qrtr_local_nid) { qrtr_fwd_pkt(skb, cb); ++node->qrtrrxworkindex; node->qrtrrxworkindex &= (QRTR_LOG_SIZE - 1); continue; } qrtr_tx_resume(node, skb); consume_skb(skb); } else if (cb->dst_node != qrtr_local_nid && cb->type == QRTR_TYPE_DATA) { qrtr_fwd_pkt(skb, cb); } else { ipc = qrtr_port_lookup(cb->dst_port); if (!ipc) { kfree_skb(skb); } else { if (cb->type == QRTR_TYPE_DEL_PROC) { if (skb->len == sizeof(*pkt)) pkt = (void *)skb->data; /* Free tx flow counters */ mutex_lock(&node->qrtr_tx_lock); radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) { flow = *slot; /* extract node id from the index key */ node_id = (iter.index & 0xFFFFFFFF00000000) >> 32; if (node_id != le32_to_cpu(pkt->proc.node)) continue; list_for_each_entry_safe(waiter, temp, &flow->waiters, node) { list_del(&waiter->node); sock_put(waiter->sk); kfree(waiter); } kfree(flow); radix_tree_delete(&node->qrtr_tx_flow, iter.index); } mutex_unlock(&node->qrtr_tx_lock); wake_up_interruptible_all(&node->resume_tx); /* Translate DEL_PROC to BYE for local enqueue */ cb->type = QRTR_TYPE_BYE; pkt = (struct qrtr_ctrl_pkt *)skb->data; memset(pkt, 0, sizeof(struct qrtr_ctrl_pkt)); pkt->cmd = cpu_to_le32(QRTR_TYPE_BYE); } if (skb->len > QRTR_DATA_LEN) memcpy(node->node_rx_work_data[node->qrtrrxworkindex].data, skb->data, QRTR_DATA_LEN); else memcpy(node->node_rx_work_data[node->qrtrrxworkindex].data, skb->data, skb->len); if (sock_queue_rcv_skb(&ipc->sk, skb)) kfree_skb(skb); qrtr_port_put(ipc); } } ++node->qrtrrxworkindex; node->qrtrrxworkindex &= (QRTR_LOG_SIZE - 1); } } /** * qrtr_endpoint_register() - register a new endpoint * @ep: endpoint to register * @nid: desired node id; may be QRTR_EP_NID_AUTO for auto-assignment * Return: 0 on success; negative error code on failure * * The specified endpoint must have the xmit function pointer set on call. */ int qrtr_endpoint_register(struct qrtr_endpoint *ep, unsigned int net_id) { struct qrtr_node *node; int i; if (!ep || !ep->xmit) return -EINVAL; node = kzalloc(sizeof(*node), GFP_KERNEL); if (!node) return -ENOMEM; kref_init(&node->ref); mutex_init(&node->ep_lock); skb_queue_head_init(&node->rx_queue); node->nid = QRTR_EP_NID_AUTO; node->ep = ep; atomic_set(&node->hello_sent, 0); init_kthread_work(&node->read_data, qrtr_node_rx_work); init_kthread_worker(&node->kworker); node->task = kthread_run(kthread_worker_fn, &node->kworker, "qrtr_rx"); if (IS_ERR(node->task)) { kfree(node); return -ENOMEM; } mutex_init(&node->qrtr_tx_lock); INIT_RADIX_TREE(&node->qrtr_tx_flow, GFP_KERNEL); init_waitqueue_head(&node->resume_tx); qrtr_node_assign(node, node->nid); node->net_id = net_id; down_write(&qrtr_node_lock); for (i = 0; i < MAX_QRTR_NODES; i++) { if (qrtrnode[i].node == NULL) { qrtrnode[i].timestamp = ktime_to_us(ktime_get()); qrtrnode[i].node = node; break; } } list_add(&node->item, &qrtr_all_epts); up_write(&qrtr_node_lock); ep->node = node; return 0; } EXPORT_SYMBOL_GPL(qrtr_endpoint_register); static u32 qrtr_calc_checksum(struct qrtr_ctrl_pkt *pkt) { u32 checksum = 0; u32 mask = 0xffff; u16 upper_nb; u16 lower_nb; u32 *msg; int i; if (!pkt) return checksum; msg = (u32 *)pkt; for (i = 0; i < sizeof(*pkt) / sizeof(*msg); i++) { lower_nb = *msg & mask; upper_nb = (*msg >> 16) & mask; checksum += (upper_nb + lower_nb); msg++; } while (checksum > 0xffff) checksum = (checksum & mask) + ((checksum >> 16) & mask); checksum = ~checksum & mask; return checksum; } static void qrtr_fwd_del_proc(struct qrtr_node *src, unsigned int nid) { struct sockaddr_qrtr from = {AF_QIPCRTR, 0, QRTR_PORT_CTRL}; struct sockaddr_qrtr to = {AF_QIPCRTR, 0, QRTR_PORT_CTRL}; struct qrtr_ctrl_pkt *pkt; struct qrtr_node *dst; struct sk_buff *skb; list_for_each_entry(dst, &qrtr_all_epts, item) { if (!qrtr_must_forward(src, dst, QRTR_TYPE_DEL_PROC)) continue; skb = qrtr_alloc_ctrl_packet(&pkt); if (!skb) return; pkt->cmd = cpu_to_le32(QRTR_TYPE_DEL_PROC); pkt->proc.rsvd = QRTR_DEL_PROC_MAGIC; pkt->proc.node = cpu_to_le32(nid); pkt->proc.rsvd = cpu_to_le32(qrtr_calc_checksum(pkt)); from.sq_node = src->nid; to.sq_node = dst->nid; qrtr_node_enqueue(dst, skb, QRTR_TYPE_DEL_PROC, &from, &to, 0); } } /** * qrtr_endpoint_unregister - unregister endpoint * @ep: endpoint to unregister */ void qrtr_endpoint_unregister(struct qrtr_endpoint *ep) { struct radix_tree_iter iter; struct qrtr_node *node = ep->node; struct sockaddr_qrtr src = {AF_QIPCRTR, node->nid, QRTR_PORT_CTRL}; struct sockaddr_qrtr dst = {AF_QIPCRTR, qrtr_local_nid, QRTR_PORT_CTRL}; struct qrtr_ctrl_pkt *pkt; struct sk_buff *skb; void __rcu **slot; mutex_lock(&node->ep_lock); node->ep = NULL; mutex_unlock(&node->ep_lock); /* Notify the local controller about the event */ down_read(&qrtr_node_lock); radix_tree_for_each_slot(slot, &qrtr_nodes, &iter, 0) { if (node != *slot) continue; skb = qrtr_alloc_ctrl_packet(&pkt); if (!skb) continue; src.sq_node = iter.index; pkt->cmd = cpu_to_le32(QRTR_TYPE_BYE); qrtr_local_enqueue(NULL, skb, QRTR_TYPE_BYE, &src, &dst, 0); qrtr_fwd_del_proc(node, iter.index); } up_read(&qrtr_node_lock); /* Wake up any transmitters waiting for resume-tx from the node */ wake_up_interruptible_all(&node->resume_tx); qrtr_node_release(node); ep->node = NULL; } EXPORT_SYMBOL_GPL(qrtr_endpoint_unregister); /* Lookup socket by port. * * Callers must release with qrtr_port_put() */ static struct qrtr_sock *qrtr_port_lookup(int port) { struct qrtr_sock *ipc; if (port == QRTR_PORT_CTRL) port = 0; mutex_lock(&qrtr_port_lock); ipc = idr_find(&qrtr_ports, port); if (ipc) sock_hold(&ipc->sk); mutex_unlock(&qrtr_port_lock); return ipc; } /* Release acquired socket. */ static void qrtr_port_put(struct qrtr_sock *ipc) { sock_put(&ipc->sk); } static void qrtr_send_del_client(struct qrtr_sock *ipc) { struct qrtr_ctrl_pkt *pkt; struct sockaddr_qrtr to; struct qrtr_node *node; struct sk_buff *skbn; struct sk_buff *skb; int type = QRTR_TYPE_DEL_CLIENT; skb = qrtr_alloc_ctrl_packet(&pkt); if (!skb) return; to.sq_family = AF_QIPCRTR; to.sq_node = QRTR_NODE_BCAST; to.sq_port = QRTR_PORT_CTRL; pkt->cmd = cpu_to_le32(QRTR_TYPE_DEL_CLIENT); pkt->client.node = cpu_to_le32(ipc->us.sq_node); pkt->client.port = cpu_to_le32(ipc->us.sq_port); skb_set_owner_w(skb, &ipc->sk); if (ipc->state == QRTR_STATE_MULTI) { qrtr_bcast_enqueue(NULL, skb, type, &ipc->us, &to, 0); return; } if (ipc->state > QRTR_STATE_INIT) { node = qrtr_node_lookup(ipc->state); if (!node) goto exit; skbn = skb_clone(skb, GFP_KERNEL); if (!skbn) { qrtr_node_release(node); goto exit; } skb_set_owner_w(skbn, &ipc->sk); qrtr_node_enqueue(node, skbn, type, &ipc->us, &to, 0); qrtr_node_release(node); } exit: qrtr_local_enqueue(NULL, skb, type, &ipc->us, &to, 0); } /* Remove port assignment. */ static void qrtr_port_remove(struct qrtr_sock *ipc) { int port = ipc->us.sq_port; qrtr_send_del_client(ipc); if (port == QRTR_PORT_CTRL) port = 0; __sock_put(&ipc->sk); mutex_lock(&qrtr_port_lock); idr_remove(&qrtr_ports, port); mutex_unlock(&qrtr_port_lock); } /* Assign port number to socket. * * Specify port in the integer pointed to by port, and it will be adjusted * on return as necesssary. * * Port may be: * 0: Assign ephemeral port in [QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET] * QRTR_MIN_EPH_SOCKET: Specified; available to all */ static int qrtr_port_assign(struct qrtr_sock *ipc, int *port) { int rc; if (!*port) { rc = idr_alloc_cyclic(&qrtr_ports, ipc, QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET + 1, GFP_ATOMIC); if (rc >= 0) *port = rc; } else if (*port < QRTR_MIN_EPH_SOCKET && !(capable(CAP_NET_ADMIN) || in_egroup_p(AID_VENDOR_QRTR) || in_egroup_p(GLOBAL_ROOT_GID))) { rc = -EACCES; } else if (*port == QRTR_PORT_CTRL) { rc = idr_alloc(&qrtr_ports, ipc, 0, 1, GFP_ATOMIC); } else { rc = idr_alloc_cyclic(&qrtr_ports, ipc, *port, *port + 1, GFP_ATOMIC); if (rc >= 0) *port = rc; } if (rc == -ENOSPC) return -EADDRINUSE; else if (rc < 0) return rc; sock_hold(&ipc->sk); return 0; } /* Reset all non-control ports */ static void qrtr_reset_ports(void) { struct qrtr_sock *ipc; int id; idr_for_each_entry(&qrtr_ports, ipc, id) { /* Don't reset control port */ if (id == 0) continue; sock_hold(&ipc->sk); ipc->sk.sk_err = ENETRESET; if (ipc->sk.sk_error_report) ipc->sk.sk_error_report(&ipc->sk); sock_put(&ipc->sk); } } /* Bind socket to address. * * Socket should be locked upon call. */ static int __qrtr_bind(struct socket *sock, const struct sockaddr_qrtr *addr, int zapped) { struct qrtr_sock *ipc = qrtr_sk(sock->sk); struct sock *sk = sock->sk; int port; int rc; /* rebinding ok */ if (!zapped && addr->sq_port == ipc->us.sq_port) return 0; mutex_lock(&qrtr_port_lock); port = addr->sq_port; rc = qrtr_port_assign(ipc, &port); if (rc) { mutex_unlock(&qrtr_port_lock); return rc; } /* Notify all open ports about the new controller */ if (port == QRTR_PORT_CTRL) qrtr_reset_ports(); mutex_unlock(&qrtr_port_lock); /* unbind previous, if any */ if (!zapped) qrtr_port_remove(ipc); ipc->us.sq_port = port; sock_reset_flag(sk, SOCK_ZAPPED); return 0; } /* Auto bind to an ephemeral port. */ static int qrtr_autobind(struct socket *sock) { struct sock *sk = sock->sk; struct sockaddr_qrtr addr; if (!sock_flag(sk, SOCK_ZAPPED)) return 0; addr.sq_family = AF_QIPCRTR; addr.sq_node = qrtr_local_nid; addr.sq_port = 0; return __qrtr_bind(sock, &addr, 1); } /* Bind socket to specified sockaddr. */ static int qrtr_bind(struct socket *sock, struct sockaddr *saddr, int len) { DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr); struct qrtr_sock *ipc = qrtr_sk(sock->sk); struct sock *sk = sock->sk; int rc; if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR) return -EINVAL; if (addr->sq_node != ipc->us.sq_node) return -EINVAL; lock_sock(sk); rc = __qrtr_bind(sock, addr, sock_flag(sk, SOCK_ZAPPED)); release_sock(sk); return rc; } /* Queue packet to local peer socket. */ static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb, int type, struct sockaddr_qrtr *from, struct sockaddr_qrtr *to, unsigned int flags) { struct qrtr_sock *ipc; struct qrtr_cb *cb; struct sock *sk = skb->sk; ipc = qrtr_port_lookup(to->sq_port); if (!ipc && to->sq_port == QRTR_PORT_CTRL) { kfree_skb(skb); return 0; } if (!ipc || &ipc->sk == skb->sk) { /* do not send to self */ kfree_skb(skb); return -ENODEV; } /* Keep resetting NETRESET until socket is closed */ if (sk && sk->sk_err == ENETRESET) { sock_hold(sk); sk->sk_err = ENETRESET; if (sk->sk_error_report) sk->sk_error_report(sk); sock_put(sk); kfree_skb(skb); return 0; } cb = (struct qrtr_cb *)skb->cb; cb->src_node = from->sq_node; cb->src_port = from->sq_port; if (sock_queue_rcv_skb(&ipc->sk, skb)) { qrtr_port_put(ipc); kfree_skb(skb); return -ENOSPC; } qrtr_port_put(ipc); return 0; } /* Queue packet for broadcast. */ static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb, int type, struct sockaddr_qrtr *from, struct sockaddr_qrtr *to, unsigned int flags) { struct sk_buff *skbn; down_read(&qrtr_node_lock); list_for_each_entry(node, &qrtr_all_epts, item) { if (node->nid == QRTR_EP_NID_AUTO) continue; skbn = skb_clone(skb, GFP_KERNEL); if (!skbn) break; skb_set_owner_w(skbn, skb->sk); qrtr_node_enqueue(node, skbn, type, from, to, flags); } up_read(&qrtr_node_lock); qrtr_local_enqueue(node, skb, type, from, to, flags); return 0; } static int qrtr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) { DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name); int (*enqueue_fn)(struct qrtr_node *, struct sk_buff *, int, struct sockaddr_qrtr *, struct sockaddr_qrtr *, unsigned int); struct qrtr_sock *ipc = qrtr_sk(sock->sk); struct sock *sk = sock->sk; struct qrtr_ctrl_pkt *pkt; struct qrtr_node *node; struct qrtr_node *srv_node; struct sk_buff *skb; size_t plen; u32 type = QRTR_TYPE_DATA; int rc; if (msg->msg_flags & ~(MSG_DONTWAIT)) return -EINVAL; if (len > 65535) return -EMSGSIZE; lock_sock(sk); if (addr) { if (msg->msg_namelen < sizeof(*addr)) { release_sock(sk); return -EINVAL; } if (addr->sq_family != AF_QIPCRTR) { release_sock(sk); return -EINVAL; } rc = qrtr_autobind(sock); if (rc) { release_sock(sk); return rc; } } else if (sk->sk_state == TCP_ESTABLISHED) { addr = &ipc->peer; } else { release_sock(sk); return -ENOTCONN; } node = NULL; srv_node = NULL; if (addr->sq_node == QRTR_NODE_BCAST) { enqueue_fn = qrtr_bcast_enqueue; if (addr->sq_port != QRTR_PORT_CTRL) { release_sock(sk); return -ENOTCONN; } } else if (addr->sq_node == ipc->us.sq_node) { enqueue_fn = qrtr_local_enqueue; } else { enqueue_fn = qrtr_node_enqueue; node = qrtr_node_lookup(addr->sq_node); if (!node) { release_sock(sk); return -ECONNRESET; } if (ipc->state > QRTR_STATE_INIT && ipc->state != node->nid) ipc->state = QRTR_STATE_MULTI; else if (ipc->state == QRTR_STATE_INIT) ipc->state = node->nid; } plen = (len + 3) & ~3; skb = sock_alloc_send_skb(sk, plen + QRTR_HDR_MAX_SIZE, msg->msg_flags & MSG_DONTWAIT, &rc); if (!skb) goto out_node; skb_reserve(skb, QRTR_HDR_MAX_SIZE); rc = memcpy_from_msg(skb_put(skb, len), msg, len); if (rc) { kfree_skb(skb); goto out_node; } if (ipc->us.sq_port == QRTR_PORT_CTRL || addr->sq_port == QRTR_PORT_CTRL) { if (len < 4) { rc = -EINVAL; kfree_skb(skb); goto out_node; } /* control messages already require the type as 'command' */ skb_copy_bits(skb, 0, &type, 4); type = le32_to_cpu(type); } if (addr->sq_port == QRTR_PORT_CTRL && type == QRTR_TYPE_NEW_SERVER) { ipc->state = QRTR_STATE_MULTI; /* drop new server cmds that are not forwardable to dst node*/ pkt = (struct qrtr_ctrl_pkt *)skb->data; srv_node = qrtr_node_lookup(pkt->server.node); if (!qrtr_must_forward(srv_node, node, type)) { rc = 0; kfree_skb(skb); qrtr_node_release(srv_node); goto out_node; } qrtr_node_release(srv_node); } rc = enqueue_fn(node, skb, type, &ipc->us, addr, msg->msg_flags); if (rc >= 0) rc = len; else pr_err("%s: enqueue_fn failed with error, %d\n", __func__, rc); out_node: qrtr_node_release(node); release_sock(sk); return rc; } static int qrtr_resume_tx(struct qrtr_cb *cb) { struct sockaddr_qrtr remote = { AF_QIPCRTR, cb->src_node, cb->src_port }; struct sockaddr_qrtr local = { AF_QIPCRTR, cb->dst_node, cb->dst_port }; struct qrtr_ctrl_pkt *pkt; struct qrtr_node *node; struct sk_buff *skb; int ret; node = qrtr_node_lookup(remote.sq_node); if (!node) return -EINVAL; skb = qrtr_alloc_ctrl_packet(&pkt); if (!skb) return -ENOMEM; pkt->cmd = cpu_to_le32(QRTR_TYPE_RESUME_TX); pkt->client.node = cpu_to_le32(cb->dst_node); pkt->client.port = cpu_to_le32(cb->dst_port); ret = qrtr_node_enqueue(node, skb, QRTR_TYPE_RESUME_TX, &local, &remote, 0); qrtr_node_release(node); return ret; } static int qrtr_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int flags) { DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name); struct sock *sk = sock->sk; struct sk_buff *skb; struct qrtr_cb *cb; int copied, rc; lock_sock(sk); if (sock_flag(sk, SOCK_ZAPPED)) { release_sock(sk); return -EADDRNOTAVAIL; } skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &rc); if (!skb) { release_sock(sk); return rc; } cb = (struct qrtr_cb *)skb->cb; copied = skb->len; if (copied > size) { copied = size; msg->msg_flags |= MSG_TRUNC; } rc = skb_copy_datagram_msg(skb, 0, msg, copied); if (rc < 0) goto out; rc = copied; if (addr) { addr->sq_family = AF_QIPCRTR; addr->sq_node = cb->src_node; addr->sq_port = cb->src_port; msg->msg_namelen = sizeof(*addr); } out: if (cb->confirm_rx) qrtr_resume_tx(cb); skb_free_datagram(sk, skb); release_sock(sk); return rc; } static int qrtr_connect(struct socket *sock, struct sockaddr *saddr, int len, int flags) { DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr); struct qrtr_sock *ipc = qrtr_sk(sock->sk); struct sock *sk = sock->sk; int rc; if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR) return -EINVAL; lock_sock(sk); sk->sk_state = TCP_CLOSE; sock->state = SS_UNCONNECTED; rc = qrtr_autobind(sock); if (rc) { release_sock(sk); return rc; } ipc->peer = *addr; sock->state = SS_CONNECTED; sk->sk_state = TCP_ESTABLISHED; release_sock(sk); return 0; } static int qrtr_getname(struct socket *sock, struct sockaddr *saddr, int *sockaddr_len, int peer) { struct qrtr_sock *ipc = qrtr_sk(sock->sk); struct sockaddr_qrtr qaddr; struct sock *sk = sock->sk; lock_sock(sk); if (peer) { if (sk->sk_state != TCP_ESTABLISHED) { release_sock(sk); return -ENOTCONN; } qaddr = ipc->peer; } else { qaddr = ipc->us; } release_sock(sk); *sockaddr_len = sizeof(qaddr); qaddr.sq_family = AF_QIPCRTR; memcpy(saddr, &qaddr, sizeof(qaddr)); return 0; } static int qrtr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { void __user *argp = (void __user *)arg; struct qrtr_sock *ipc = qrtr_sk(sock->sk); struct sock *sk = sock->sk; struct sockaddr_qrtr *sq; struct sk_buff *skb; struct ifreq ifr; long len = 0; int rc = 0; lock_sock(sk); switch (cmd) { case TIOCOUTQ: len = sk->sk_sndbuf - sk_wmem_alloc_get(sk); if (len < 0) len = 0; rc = put_user(len, (int __user *)argp); break; case TIOCINQ: skb = skb_peek(&sk->sk_receive_queue); if (skb) len = skb->len; rc = put_user(len, (int __user *)argp); break; case SIOCGIFADDR: if (copy_from_user(&ifr, argp, sizeof(ifr))) { rc = -EFAULT; break; } sq = (struct sockaddr_qrtr *)&ifr.ifr_addr; *sq = ipc->us; if (copy_to_user(argp, &ifr, sizeof(ifr))) { rc = -EFAULT; break; } break; case SIOCGSTAMP: rc = sock_get_timestamp(sk, argp); break; case SIOCADDRT: case SIOCDELRT: case SIOCSIFADDR: case SIOCGIFDSTADDR: case SIOCSIFDSTADDR: case SIOCGIFBRDADDR: case SIOCSIFBRDADDR: case SIOCGIFNETMASK: case SIOCSIFNETMASK: rc = -EINVAL; break; default: rc = -ENOIOCTLCMD; break; } release_sock(sk); return rc; } static int qrtr_release(struct socket *sock) { struct sock *sk = sock->sk; struct qrtr_sock *ipc; if (!sk) return 0; lock_sock(sk); ipc = qrtr_sk(sk); sk->sk_shutdown = SHUTDOWN_MASK; if (!sock_flag(sk, SOCK_DEAD)) sk->sk_state_change(sk); sock_orphan(sk); sock->sk = NULL; if (!sock_flag(sk, SOCK_ZAPPED)) qrtr_port_remove(ipc); skb_queue_purge(&sk->sk_receive_queue); release_sock(sk); sock_put(sk); return 0; } static const struct proto_ops qrtr_proto_ops = { .owner = THIS_MODULE, .family = AF_QIPCRTR, .bind = qrtr_bind, .connect = qrtr_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .listen = sock_no_listen, .sendmsg = qrtr_sendmsg, .recvmsg = qrtr_recvmsg, .getname = qrtr_getname, .ioctl = qrtr_ioctl, .poll = datagram_poll, .shutdown = sock_no_shutdown, .setsockopt = sock_no_setsockopt, .getsockopt = sock_no_getsockopt, .release = qrtr_release, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; static struct proto qrtr_proto = { .name = "QIPCRTR", .owner = THIS_MODULE, .obj_size = sizeof(struct qrtr_sock), }; static int qrtr_create(struct net *net, struct socket *sock, int protocol, int kern) { struct qrtr_sock *ipc; struct sock *sk; if (sock->type != SOCK_DGRAM) return -EPROTOTYPE; sk = sk_alloc(net, AF_QIPCRTR, GFP_KERNEL, &qrtr_proto, kern); if (!sk) return -ENOMEM; sock_set_flag(sk, SOCK_ZAPPED); sock_init_data(sock, sk); sock->ops = &qrtr_proto_ops; ipc = qrtr_sk(sk); ipc->us.sq_family = AF_QIPCRTR; ipc->us.sq_node = qrtr_local_nid; ipc->us.sq_port = 0; ipc->state = QRTR_STATE_INIT; return 0; } static const struct nla_policy qrtr_policy[IFA_MAX + 1] = { [IFA_LOCAL] = { .type = NLA_U32 }, }; static int qrtr_addr_doit(struct sk_buff *skb, struct nlmsghdr *nlh) { struct nlattr *tb[IFA_MAX + 1]; struct ifaddrmsg *ifm; int rc; if (!netlink_capable(skb, CAP_NET_ADMIN)) return -EPERM; ASSERT_RTNL(); rc = nlmsg_parse(nlh, sizeof(*ifm), tb, IFA_MAX, qrtr_policy); if (rc < 0) return rc; ifm = nlmsg_data(nlh); if (!tb[IFA_LOCAL]) return -EINVAL; qrtr_local_nid = nla_get_u32(tb[IFA_LOCAL]); return 0; } static const struct net_proto_family qrtr_family = { .owner = THIS_MODULE, .family = AF_QIPCRTR, .create = qrtr_create, }; static int __init qrtr_proto_init(void) { int rc; rc = proto_register(&qrtr_proto, 1); if (rc) return rc; rc = sock_register(&qrtr_family); if (rc) { proto_unregister(&qrtr_proto); return rc; } rtnl_register(PF_QIPCRTR, RTM_NEWADDR, qrtr_addr_doit, NULL, NULL); return 0; } postcore_initcall(qrtr_proto_init); static void __exit qrtr_proto_fini(void) { rtnl_unregister(PF_QIPCRTR, RTM_NEWADDR); sock_unregister(qrtr_family.family); proto_unregister(&qrtr_proto); } module_exit(qrtr_proto_fini); MODULE_DESCRIPTION("Qualcomm IPC-router driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS_NETPROTO(PF_QIPCRTR);