/* * Copyright (C) 2001 Mike Corrigan & Dave Engebretsen, IBM Corporation * * Rewrite, cleanup: * * Copyright (C) 2004 Olof Johansson , IBM Corporation * Copyright (C) 2006 Olof Johansson * * Dynamic DMA mapping support, pSeries-specific parts, both SMP and LPAR. * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pseries.h" static struct iommu_table_group *iommu_pseries_alloc_group(int node) { struct iommu_table_group *table_group = NULL; struct iommu_table *tbl = NULL; struct iommu_table_group_link *tgl = NULL; table_group = kzalloc_node(sizeof(struct iommu_table_group), GFP_KERNEL, node); if (!table_group) goto fail_exit; tbl = kzalloc_node(sizeof(struct iommu_table), GFP_KERNEL, node); if (!tbl) goto fail_exit; tgl = kzalloc_node(sizeof(struct iommu_table_group_link), GFP_KERNEL, node); if (!tgl) goto fail_exit; INIT_LIST_HEAD_RCU(&tbl->it_group_list); tgl->table_group = table_group; list_add_rcu(&tgl->next, &tbl->it_group_list); table_group->tables[0] = tbl; return table_group; fail_exit: kfree(tgl); kfree(table_group); kfree(tbl); return NULL; } static void iommu_pseries_free_group(struct iommu_table_group *table_group, const char *node_name) { struct iommu_table *tbl; #ifdef CONFIG_IOMMU_API struct iommu_table_group_link *tgl; #endif if (!table_group) return; tbl = table_group->tables[0]; #ifdef CONFIG_IOMMU_API tgl = list_first_entry_or_null(&tbl->it_group_list, struct iommu_table_group_link, next); WARN_ON_ONCE(!tgl); if (tgl) { list_del_rcu(&tgl->next); kfree(tgl); } if (table_group->group) { iommu_group_put(table_group->group); BUG_ON(table_group->group); } #endif iommu_free_table(tbl, node_name); kfree(table_group); } static void tce_invalidate_pSeries_sw(struct iommu_table *tbl, __be64 *startp, __be64 *endp) { u64 __iomem *invalidate = (u64 __iomem *)tbl->it_index; unsigned long start, end, inc; start = __pa(startp); end = __pa(endp); inc = L1_CACHE_BYTES; /* invalidate a cacheline of TCEs at a time */ /* If this is non-zero, change the format. We shift the * address and or in the magic from the device tree. */ if (tbl->it_busno) { start <<= 12; end <<= 12; inc <<= 12; start |= tbl->it_busno; end |= tbl->it_busno; } end |= inc - 1; /* round up end to be different than start */ mb(); /* Make sure TCEs in memory are written */ while (start <= end) { out_be64(invalidate, start); start += inc; } } static int tce_build_pSeries(struct iommu_table *tbl, long index, long npages, unsigned long uaddr, enum dma_data_direction direction, struct dma_attrs *attrs) { u64 proto_tce; __be64 *tcep, *tces; u64 rpn; proto_tce = TCE_PCI_READ; // Read allowed if (direction != DMA_TO_DEVICE) proto_tce |= TCE_PCI_WRITE; tces = tcep = ((__be64 *)tbl->it_base) + index; while (npages--) { /* can't move this out since we might cross MEMBLOCK boundary */ rpn = __pa(uaddr) >> TCE_SHIFT; *tcep = cpu_to_be64(proto_tce | (rpn & TCE_RPN_MASK) << TCE_RPN_SHIFT); uaddr += TCE_PAGE_SIZE; tcep++; } if (tbl->it_type & TCE_PCI_SWINV_CREATE) tce_invalidate_pSeries_sw(tbl, tces, tcep - 1); return 0; } static void tce_free_pSeries(struct iommu_table *tbl, long index, long npages) { __be64 *tcep, *tces; tces = tcep = ((__be64 *)tbl->it_base) + index; while (npages--) *(tcep++) = 0; if (tbl->it_type & TCE_PCI_SWINV_FREE) tce_invalidate_pSeries_sw(tbl, tces, tcep - 1); } static unsigned long tce_get_pseries(struct iommu_table *tbl, long index) { __be64 *tcep; tcep = ((__be64 *)tbl->it_base) + index; return be64_to_cpu(*tcep); } static void tce_free_pSeriesLP(unsigned long liobn, long, long); static void tce_freemulti_pSeriesLP(struct iommu_table*, long, long); static int tce_build_pSeriesLP(unsigned long liobn, long tcenum, long tceshift, long npages, unsigned long uaddr, enum dma_data_direction direction, struct dma_attrs *attrs) { u64 rc = 0; u64 proto_tce, tce; u64 rpn; int ret = 0; long tcenum_start = tcenum, npages_start = npages; rpn = __pa(uaddr) >> tceshift; proto_tce = TCE_PCI_READ; if (direction != DMA_TO_DEVICE) proto_tce |= TCE_PCI_WRITE; while (npages--) { tce = proto_tce | (rpn & TCE_RPN_MASK) << tceshift; rc = plpar_tce_put((u64)liobn, (u64)tcenum << tceshift, tce); if (unlikely(rc == H_NOT_ENOUGH_RESOURCES)) { ret = (int)rc; tce_free_pSeriesLP(liobn, tcenum_start, (npages_start - (npages + 1))); break; } if (rc && printk_ratelimit()) { printk("tce_build_pSeriesLP: plpar_tce_put failed. rc=%lld\n", rc); printk("\tindex = 0x%llx\n", (u64)liobn); printk("\ttcenum = 0x%llx\n", (u64)tcenum); printk("\ttce val = 0x%llx\n", tce ); dump_stack(); } tcenum++; rpn++; } return ret; } static DEFINE_PER_CPU(__be64 *, tce_page); static int tce_buildmulti_pSeriesLP(struct iommu_table *tbl, long tcenum, long npages, unsigned long uaddr, enum dma_data_direction direction, struct dma_attrs *attrs) { u64 rc = 0; u64 proto_tce; __be64 *tcep; u64 rpn; long l, limit; long tcenum_start = tcenum, npages_start = npages; int ret = 0; unsigned long flags; if ((npages == 1) || !firmware_has_feature(FW_FEATURE_MULTITCE)) { return tce_build_pSeriesLP(tbl->it_index, tcenum, tbl->it_page_shift, npages, uaddr, direction, attrs); } local_irq_save(flags); /* to protect tcep and the page behind it */ tcep = __this_cpu_read(tce_page); /* This is safe to do since interrupts are off when we're called * from iommu_alloc{,_sg}() */ if (!tcep) { tcep = (__be64 *)__get_free_page(GFP_ATOMIC); /* If allocation fails, fall back to the loop implementation */ if (!tcep) { local_irq_restore(flags); return tce_build_pSeriesLP(tbl->it_index, tcenum, tbl->it_page_shift, npages, uaddr, direction, attrs); } __this_cpu_write(tce_page, tcep); } rpn = __pa(uaddr) >> TCE_SHIFT; proto_tce = TCE_PCI_READ; if (direction != DMA_TO_DEVICE) proto_tce |= TCE_PCI_WRITE; /* We can map max one pageful of TCEs at a time */ do { /* * Set up the page with TCE data, looping through and setting * the values. */ limit = min_t(long, npages, 4096/TCE_ENTRY_SIZE); for (l = 0; l < limit; l++) { tcep[l] = cpu_to_be64(proto_tce | (rpn & TCE_RPN_MASK) << TCE_RPN_SHIFT); rpn++; } rc = plpar_tce_put_indirect((u64)tbl->it_index, (u64)tcenum << 12, (u64)__pa(tcep), limit); npages -= limit; tcenum += limit; } while (npages > 0 && !rc); local_irq_restore(flags); if (unlikely(rc == H_NOT_ENOUGH_RESOURCES)) { ret = (int)rc; tce_freemulti_pSeriesLP(tbl, tcenum_start, (npages_start - (npages + limit))); return ret; } if (rc && printk_ratelimit()) { printk("tce_buildmulti_pSeriesLP: plpar_tce_put failed. rc=%lld\n", rc); printk("\tindex = 0x%llx\n", (u64)tbl->it_index); printk("\tnpages = 0x%llx\n", (u64)npages); printk("\ttce[0] val = 0x%llx\n", tcep[0]); dump_stack(); } return ret; } static void tce_free_pSeriesLP(unsigned long liobn, long tcenum, long npages) { u64 rc; while (npages--) { rc = plpar_tce_put((u64)liobn, (u64)tcenum << 12, 0); if (rc && printk_ratelimit()) { printk("tce_free_pSeriesLP: plpar_tce_put failed. rc=%lld\n", rc); printk("\tindex = 0x%llx\n", (u64)liobn); printk("\ttcenum = 0x%llx\n", (u64)tcenum); dump_stack(); } tcenum++; } } static void tce_freemulti_pSeriesLP(struct iommu_table *tbl, long tcenum, long npages) { u64 rc; if (!firmware_has_feature(FW_FEATURE_MULTITCE)) return tce_free_pSeriesLP(tbl->it_index, tcenum, npages); rc = plpar_tce_stuff((u64)tbl->it_index, (u64)tcenum << 12, 0, npages); if (rc && printk_ratelimit()) { printk("tce_freemulti_pSeriesLP: plpar_tce_stuff failed\n"); printk("\trc = %lld\n", rc); printk("\tindex = 0x%llx\n", (u64)tbl->it_index); printk("\tnpages = 0x%llx\n", (u64)npages); dump_stack(); } } static unsigned long tce_get_pSeriesLP(struct iommu_table *tbl, long tcenum) { u64 rc; unsigned long tce_ret; rc = plpar_tce_get((u64)tbl->it_index, (u64)tcenum << 12, &tce_ret); if (rc && printk_ratelimit()) { printk("tce_get_pSeriesLP: plpar_tce_get failed. rc=%lld\n", rc); printk("\tindex = 0x%llx\n", (u64)tbl->it_index); printk("\ttcenum = 0x%llx\n", (u64)tcenum); dump_stack(); } return tce_ret; } /* this is compatible with cells for the device tree property */ struct dynamic_dma_window_prop { __be32 liobn; /* tce table number */ __be64 dma_base; /* address hi,lo */ __be32 tce_shift; /* ilog2(tce_page_size) */ __be32 window_shift; /* ilog2(tce_window_size) */ }; struct direct_window { struct device_node *device; const struct dynamic_dma_window_prop *prop; struct list_head list; }; /* Dynamic DMA Window support */ struct ddw_query_response { u32 windows_available; u32 largest_available_block; u32 page_size; u32 migration_capable; }; struct ddw_create_response { u32 liobn; u32 addr_hi; u32 addr_lo; }; static LIST_HEAD(direct_window_list); /* prevents races between memory on/offline and window creation */ static DEFINE_SPINLOCK(direct_window_list_lock); /* protects initializing window twice for same device */ static DEFINE_MUTEX(direct_window_init_mutex); #define DIRECT64_PROPNAME "linux,direct64-ddr-window-info" static int tce_clearrange_multi_pSeriesLP(unsigned long start_pfn, unsigned long num_pfn, const void *arg) { const struct dynamic_dma_window_prop *maprange = arg; int rc; u64 tce_size, num_tce, dma_offset, next; u32 tce_shift; long limit; tce_shift = be32_to_cpu(maprange->tce_shift); tce_size = 1ULL << tce_shift; next = start_pfn << PAGE_SHIFT; num_tce = num_pfn << PAGE_SHIFT; /* round back to the beginning of the tce page size */ num_tce += next & (tce_size - 1); next &= ~(tce_size - 1); /* covert to number of tces */ num_tce |= tce_size - 1; num_tce >>= tce_shift; do { /* * Set up the page with TCE data, looping through and setting * the values. */ limit = min_t(long, num_tce, 512); dma_offset = next + be64_to_cpu(maprange->dma_base); rc = plpar_tce_stuff((u64)be32_to_cpu(maprange->liobn), dma_offset, 0, limit); next += limit * tce_size; num_tce -= limit; } while (num_tce > 0 && !rc); return rc; } static int tce_setrange_multi_pSeriesLP(unsigned long start_pfn, unsigned long num_pfn, const void *arg) { const struct dynamic_dma_window_prop *maprange = arg; u64 tce_size, num_tce, dma_offset, next, proto_tce, liobn; __be64 *tcep; u32 tce_shift; u64 rc = 0; long l, limit; if (!firmware_has_feature(FW_FEATURE_MULTITCE)) { unsigned long tceshift = be32_to_cpu(maprange->tce_shift); unsigned long dmastart = (start_pfn << PAGE_SHIFT) + be64_to_cpu(maprange->dma_base); unsigned long tcenum = dmastart >> tceshift; unsigned long npages = num_pfn << PAGE_SHIFT >> tceshift; void *uaddr = __va(start_pfn << PAGE_SHIFT); return tce_build_pSeriesLP(be32_to_cpu(maprange->liobn), tcenum, tceshift, npages, (unsigned long) uaddr, DMA_BIDIRECTIONAL, 0); } local_irq_disable(); /* to protect tcep and the page behind it */ tcep = __this_cpu_read(tce_page); if (!tcep) { tcep = (__be64 *)__get_free_page(GFP_ATOMIC); if (!tcep) { local_irq_enable(); return -ENOMEM; } __this_cpu_write(tce_page, tcep); } proto_tce = TCE_PCI_READ | TCE_PCI_WRITE; liobn = (u64)be32_to_cpu(maprange->liobn); tce_shift = be32_to_cpu(maprange->tce_shift); tce_size = 1ULL << tce_shift; next = start_pfn << PAGE_SHIFT; num_tce = num_pfn << PAGE_SHIFT; /* round back to the beginning of the tce page size */ num_tce += next & (tce_size - 1); next &= ~(tce_size - 1); /* covert to number of tces */ num_tce |= tce_size - 1; num_tce >>= tce_shift; /* We can map max one pageful of TCEs at a time */ do { /* * Set up the page with TCE data, looping through and setting * the values. */ limit = min_t(long, num_tce, 4096/TCE_ENTRY_SIZE); dma_offset = next + be64_to_cpu(maprange->dma_base); for (l = 0; l < limit; l++) { tcep[l] = cpu_to_be64(proto_tce | next); next += tce_size; } rc = plpar_tce_put_indirect(liobn, dma_offset, (u64)__pa(tcep), limit); num_tce -= limit; } while (num_tce > 0 && !rc); /* error cleanup: caller will clear whole range */ local_irq_enable(); return rc; } static int tce_setrange_multi_pSeriesLP_walk(unsigned long start_pfn, unsigned long num_pfn, void *arg) { return tce_setrange_multi_pSeriesLP(start_pfn, num_pfn, arg); } static void iommu_table_setparms(struct pci_controller *phb, struct device_node *dn, struct iommu_table *tbl) { struct device_node *node; const unsigned long *basep, *sw_inval; const u32 *sizep; node = phb->dn; basep = of_get_property(node, "linux,tce-base", NULL); sizep = of_get_property(node, "linux,tce-size", NULL); if (basep == NULL || sizep == NULL) { printk(KERN_ERR "PCI_DMA: iommu_table_setparms: %s has " "missing tce entries !\n", dn->full_name); return; } tbl->it_base = (unsigned long)__va(*basep); if (!is_kdump_kernel()) memset((void *)tbl->it_base, 0, *sizep); tbl->it_busno = phb->bus->number; tbl->it_page_shift = IOMMU_PAGE_SHIFT_4K; /* Units of tce entries */ tbl->it_offset = phb->dma_window_base_cur >> tbl->it_page_shift; /* Test if we are going over 2GB of DMA space */ if (phb->dma_window_base_cur + phb->dma_window_size > 0x80000000ul) { udbg_printf("PCI_DMA: Unexpected number of IOAs under this PHB.\n"); panic("PCI_DMA: Unexpected number of IOAs under this PHB.\n"); } phb->dma_window_base_cur += phb->dma_window_size; /* Set the tce table size - measured in entries */ tbl->it_size = phb->dma_window_size >> tbl->it_page_shift; tbl->it_index = 0; tbl->it_blocksize = 16; tbl->it_type = TCE_PCI; sw_inval = of_get_property(node, "linux,tce-sw-invalidate-info", NULL); if (sw_inval) { /* * This property contains information on how to * invalidate the TCE entry. The first property is * the base MMIO address used to invalidate entries. * The second property tells us the format of the TCE * invalidate (whether it needs to be shifted) and * some magic routing info to add to our invalidate * command. */ tbl->it_index = (unsigned long) ioremap(sw_inval[0], 8); tbl->it_busno = sw_inval[1]; /* overload this with magic */ tbl->it_type = TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE; } } /* * iommu_table_setparms_lpar * * Function: On pSeries LPAR systems, return TCE table info, given a pci bus. */ static void iommu_table_setparms_lpar(struct pci_controller *phb, struct device_node *dn, struct iommu_table *tbl, const __be32 *dma_window) { unsigned long offset, size; of_parse_dma_window(dn, dma_window, &tbl->it_index, &offset, &size); tbl->it_busno = phb->bus->number; tbl->it_page_shift = IOMMU_PAGE_SHIFT_4K; tbl->it_base = 0; tbl->it_blocksize = 16; tbl->it_type = TCE_PCI; tbl->it_offset = offset >> tbl->it_page_shift; tbl->it_size = size >> tbl->it_page_shift; } struct iommu_table_ops iommu_table_pseries_ops = { .set = tce_build_pSeries, .clear = tce_free_pSeries, .get = tce_get_pseries }; static void pci_dma_bus_setup_pSeries(struct pci_bus *bus) { struct device_node *dn; struct iommu_table *tbl; struct device_node *isa_dn, *isa_dn_orig; struct device_node *tmp; struct pci_dn *pci; int children; dn = pci_bus_to_OF_node(bus); pr_debug("pci_dma_bus_setup_pSeries: setting up bus %s\n", dn->full_name); if (bus->self) { /* This is not a root bus, any setup will be done for the * device-side of the bridge in iommu_dev_setup_pSeries(). */ return; } pci = PCI_DN(dn); /* Check if the ISA bus on the system is under * this PHB. */ isa_dn = isa_dn_orig = of_find_node_by_type(NULL, "isa"); while (isa_dn && isa_dn != dn) isa_dn = isa_dn->parent; of_node_put(isa_dn_orig); /* Count number of direct PCI children of the PHB. */ for (children = 0, tmp = dn->child; tmp; tmp = tmp->sibling) children++; pr_debug("Children: %d\n", children); /* Calculate amount of DMA window per slot. Each window must be * a power of two (due to pci_alloc_consistent requirements). * * Keep 256MB aside for PHBs with ISA. */ if (!isa_dn) { /* No ISA/IDE - just set window size and return */ pci->phb->dma_window_size = 0x80000000ul; /* To be divided */ while (pci->phb->dma_window_size * children > 0x80000000ul) pci->phb->dma_window_size >>= 1; pr_debug("No ISA/IDE, window size is 0x%llx\n", pci->phb->dma_window_size); pci->phb->dma_window_base_cur = 0; return; } /* If we have ISA, then we probably have an IDE * controller too. Allocate a 128MB table but * skip the first 128MB to avoid stepping on ISA * space. */ pci->phb->dma_window_size = 0x8000000ul; pci->phb->dma_window_base_cur = 0x8000000ul; pci->table_group = iommu_pseries_alloc_group(pci->phb->node); tbl = pci->table_group->tables[0]; iommu_table_setparms(pci->phb, dn, tbl); tbl->it_ops = &iommu_table_pseries_ops; iommu_init_table(tbl, pci->phb->node); iommu_register_group(pci->table_group, pci_domain_nr(bus), 0); /* Divide the rest (1.75GB) among the children */ pci->phb->dma_window_size = 0x80000000ul; while (pci->phb->dma_window_size * children > 0x70000000ul) pci->phb->dma_window_size >>= 1; pr_debug("ISA/IDE, window size is 0x%llx\n", pci->phb->dma_window_size); } struct iommu_table_ops iommu_table_lpar_multi_ops = { .set = tce_buildmulti_pSeriesLP, .clear = tce_freemulti_pSeriesLP, .get = tce_get_pSeriesLP }; static void pci_dma_bus_setup_pSeriesLP(struct pci_bus *bus) { struct iommu_table *tbl; struct device_node *dn, *pdn; struct pci_dn *ppci; const __be32 *dma_window = NULL; dn = pci_bus_to_OF_node(bus); pr_debug("pci_dma_bus_setup_pSeriesLP: setting up bus %s\n", dn->full_name); /* Find nearest ibm,dma-window, walking up the device tree */ for (pdn = dn; pdn != NULL; pdn = pdn->parent) { dma_window = of_get_property(pdn, "ibm,dma-window", NULL); if (dma_window != NULL) break; } if (dma_window == NULL) { pr_debug(" no ibm,dma-window property !\n"); return; } ppci = PCI_DN(pdn); pr_debug(" parent is %s, iommu_table: 0x%p\n", pdn->full_name, ppci->table_group); if (!ppci->table_group) { ppci->table_group = iommu_pseries_alloc_group(ppci->phb->node); tbl = ppci->table_group->tables[0]; iommu_table_setparms_lpar(ppci->phb, pdn, tbl, dma_window); tbl->it_ops = &iommu_table_lpar_multi_ops; iommu_init_table(tbl, ppci->phb->node); iommu_register_group(ppci->table_group, pci_domain_nr(bus), 0); pr_debug(" created table: %p\n", ppci->table_group); } } static void pci_dma_dev_setup_pSeries(struct pci_dev *dev) { struct device_node *dn; struct iommu_table *tbl; pr_debug("pci_dma_dev_setup_pSeries: %s\n", pci_name(dev)); dn = dev->dev.of_node; /* If we're the direct child of a root bus, then we need to allocate * an iommu table ourselves. The bus setup code should have setup * the window sizes already. */ if (!dev->bus->self) { struct pci_controller *phb = PCI_DN(dn)->phb; pr_debug(" --> first child, no bridge. Allocating iommu table.\n"); PCI_DN(dn)->table_group = iommu_pseries_alloc_group(phb->node); tbl = PCI_DN(dn)->table_group->tables[0]; iommu_table_setparms(phb, dn, tbl); tbl->it_ops = &iommu_table_pseries_ops; iommu_init_table(tbl, phb->node); iommu_register_group(PCI_DN(dn)->table_group, pci_domain_nr(phb->bus), 0); set_iommu_table_base(&dev->dev, tbl); iommu_add_device(&dev->dev); return; } /* If this device is further down the bus tree, search upwards until * an already allocated iommu table is found and use that. */ while (dn && PCI_DN(dn) && PCI_DN(dn)->table_group == NULL) dn = dn->parent; if (dn && PCI_DN(dn)) { set_iommu_table_base(&dev->dev, PCI_DN(dn)->table_group->tables[0]); iommu_add_device(&dev->dev); } else printk(KERN_WARNING "iommu: Device %s has no iommu table\n", pci_name(dev)); } static int __read_mostly disable_ddw; static int __init disable_ddw_setup(char *str) { disable_ddw = 1; printk(KERN_INFO "ppc iommu: disabling ddw.\n"); return 0; } early_param("disable_ddw", disable_ddw_setup); static void remove_ddw(struct device_node *np, bool remove_prop) { struct dynamic_dma_window_prop *dwp; struct property *win64; u32 ddw_avail[3]; u64 liobn; int ret = 0; ret = of_property_read_u32_array(np, "ibm,ddw-applicable", &ddw_avail[0], 3); win64 = of_find_property(np, DIRECT64_PROPNAME, NULL); if (!win64) return; if (ret || win64->length < sizeof(*dwp)) goto delprop; dwp = win64->value; liobn = (u64)be32_to_cpu(dwp->liobn); /* clear the whole window, note the arg is in kernel pages */ ret = tce_clearrange_multi_pSeriesLP(0, 1ULL << (be32_to_cpu(dwp->window_shift) - PAGE_SHIFT), dwp); if (ret) pr_warning("%s failed to clear tces in window.\n", np->full_name); else pr_debug("%s successfully cleared tces in window.\n", np->full_name); ret = rtas_call(ddw_avail[2], 1, 1, NULL, liobn); if (ret) pr_warning("%s: failed to remove direct window: rtas returned " "%d to ibm,remove-pe-dma-window(%x) %llx\n", np->full_name, ret, ddw_avail[2], liobn); else pr_debug("%s: successfully removed direct window: rtas returned " "%d to ibm,remove-pe-dma-window(%x) %llx\n", np->full_name, ret, ddw_avail[2], liobn); delprop: if (remove_prop) ret = of_remove_property(np, win64); if (ret) pr_warning("%s: failed to remove direct window property: %d\n", np->full_name, ret); } static u64 find_existing_ddw(struct device_node *pdn) { struct direct_window *window; const struct dynamic_dma_window_prop *direct64; u64 dma_addr = 0; spin_lock(&direct_window_list_lock); /* check if we already created a window and dupe that config if so */ list_for_each_entry(window, &direct_window_list, list) { if (window->device == pdn) { direct64 = window->prop; dma_addr = be64_to_cpu(direct64->dma_base); break; } } spin_unlock(&direct_window_list_lock); return dma_addr; } static int find_existing_ddw_windows(void) { int len; struct device_node *pdn; struct direct_window *window; const struct dynamic_dma_window_prop *direct64; if (!firmware_has_feature(FW_FEATURE_LPAR)) return 0; for_each_node_with_property(pdn, DIRECT64_PROPNAME) { direct64 = of_get_property(pdn, DIRECT64_PROPNAME, &len); if (!direct64) continue; window = kzalloc(sizeof(*window), GFP_KERNEL); if (!window || len < sizeof(struct dynamic_dma_window_prop)) { kfree(window); remove_ddw(pdn, true); continue; } window->device = pdn; window->prop = direct64; spin_lock(&direct_window_list_lock); list_add(&window->list, &direct_window_list); spin_unlock(&direct_window_list_lock); } return 0; } machine_arch_initcall(pseries, find_existing_ddw_windows); static int query_ddw(struct pci_dev *dev, const u32 *ddw_avail, struct ddw_query_response *query) { struct device_node *dn; struct pci_dn *pdn; u32 cfg_addr; u64 buid; int ret; /* * Get the config address and phb buid of the PE window. * Rely on eeh to retrieve this for us. * Retrieve them from the pci device, not the node with the * dma-window property */ dn = pci_device_to_OF_node(dev); pdn = PCI_DN(dn); buid = pdn->phb->buid; cfg_addr = ((pdn->busno << 16) | (pdn->devfn << 8)); ret = rtas_call(ddw_avail[0], 3, 5, (u32 *)query, cfg_addr, BUID_HI(buid), BUID_LO(buid)); dev_info(&dev->dev, "ibm,query-pe-dma-windows(%x) %x %x %x" " returned %d\n", ddw_avail[0], cfg_addr, BUID_HI(buid), BUID_LO(buid), ret); return ret; } static int create_ddw(struct pci_dev *dev, const u32 *ddw_avail, struct ddw_create_response *create, int page_shift, int window_shift) { struct device_node *dn; struct pci_dn *pdn; u32 cfg_addr; u64 buid; int ret; /* * Get the config address and phb buid of the PE window. * Rely on eeh to retrieve this for us. * Retrieve them from the pci device, not the node with the * dma-window property */ dn = pci_device_to_OF_node(dev); pdn = PCI_DN(dn); buid = pdn->phb->buid; cfg_addr = ((pdn->busno << 16) | (pdn->devfn << 8)); do { /* extra outputs are LIOBN and dma-addr (hi, lo) */ ret = rtas_call(ddw_avail[1], 5, 4, (u32 *)create, cfg_addr, BUID_HI(buid), BUID_LO(buid), page_shift, window_shift); } while (rtas_busy_delay(ret)); dev_info(&dev->dev, "ibm,create-pe-dma-window(%x) %x %x %x %x %x returned %d " "(liobn = 0x%x starting addr = %x %x)\n", ddw_avail[1], cfg_addr, BUID_HI(buid), BUID_LO(buid), page_shift, window_shift, ret, create->liobn, create->addr_hi, create->addr_lo); return ret; } struct failed_ddw_pdn { struct device_node *pdn; struct list_head list; }; static LIST_HEAD(failed_ddw_pdn_list); /* * If the PE supports dynamic dma windows, and there is space for a table * that can map all pages in a linear offset, then setup such a table, * and record the dma-offset in the struct device. * * dev: the pci device we are checking * pdn: the parent pe node with the ibm,dma_window property * Future: also check if we can remap the base window for our base page size * * returns the dma offset for use by dma_set_mask */ static u64 enable_ddw(struct pci_dev *dev, struct device_node *pdn) { int len, ret; struct ddw_query_response query; struct ddw_create_response create; int page_shift; u64 dma_addr, max_addr; struct device_node *dn; u32 ddw_avail[3]; struct direct_window *window; struct property *win64; struct dynamic_dma_window_prop *ddwprop; struct failed_ddw_pdn *fpdn; mutex_lock(&direct_window_init_mutex); dma_addr = find_existing_ddw(pdn); if (dma_addr != 0) goto out_unlock; /* * If we already went through this for a previous function of * the same device and failed, we don't want to muck with the * DMA window again, as it will race with in-flight operations * and can lead to EEHs. The above mutex protects access to the * list. */ list_for_each_entry(fpdn, &failed_ddw_pdn_list, list) { if (!strcmp(fpdn->pdn->full_name, pdn->full_name)) goto out_unlock; } /* * the ibm,ddw-applicable property holds the tokens for: * ibm,query-pe-dma-window * ibm,create-pe-dma-window * ibm,remove-pe-dma-window * for the given node in that order. * the property is actually in the parent, not the PE */ ret = of_property_read_u32_array(pdn, "ibm,ddw-applicable", &ddw_avail[0], 3); if (ret) goto out_failed; /* * Query if there is a second window of size to map the * whole partition. Query returns number of windows, largest * block assigned to PE (partition endpoint), and two bitmasks * of page sizes: supported and supported for migrate-dma. */ dn = pci_device_to_OF_node(dev); ret = query_ddw(dev, ddw_avail, &query); if (ret != 0) goto out_failed; if (query.windows_available == 0) { /* * no additional windows are available for this device. * We might be able to reallocate the existing window, * trading in for a larger page size. */ dev_dbg(&dev->dev, "no free dynamic windows"); goto out_failed; } if (query.page_size & 4) { page_shift = 24; /* 16MB */ } else if (query.page_size & 2) { page_shift = 16; /* 64kB */ } else if (query.page_size & 1) { page_shift = 12; /* 4kB */ } else { dev_dbg(&dev->dev, "no supported direct page size in mask %x", query.page_size); goto out_failed; } /* verify the window * number of ptes will map the partition */ /* check largest block * page size > max memory hotplug addr */ max_addr = memory_hotplug_max(); if (query.largest_available_block < (max_addr >> page_shift)) { dev_dbg(&dev->dev, "can't map partiton max 0x%llx with %u " "%llu-sized pages\n", max_addr, query.largest_available_block, 1ULL << page_shift); goto out_failed; } len = order_base_2(max_addr); win64 = kzalloc(sizeof(struct property), GFP_KERNEL); if (!win64) { dev_info(&dev->dev, "couldn't allocate property for 64bit dma window\n"); goto out_failed; } win64->name = kstrdup(DIRECT64_PROPNAME, GFP_KERNEL); win64->value = ddwprop = kmalloc(sizeof(*ddwprop), GFP_KERNEL); win64->length = sizeof(*ddwprop); if (!win64->name || !win64->value) { dev_info(&dev->dev, "couldn't allocate property name and value\n"); goto out_free_prop; } ret = create_ddw(dev, ddw_avail, &create, page_shift, len); if (ret != 0) goto out_free_prop; ddwprop->liobn = cpu_to_be32(create.liobn); ddwprop->dma_base = cpu_to_be64(((u64)create.addr_hi << 32) | create.addr_lo); ddwprop->tce_shift = cpu_to_be32(page_shift); ddwprop->window_shift = cpu_to_be32(len); dev_dbg(&dev->dev, "created tce table LIOBN 0x%x for %s\n", create.liobn, dn->full_name); window = kzalloc(sizeof(*window), GFP_KERNEL); if (!window) goto out_clear_window; ret = walk_system_ram_range(0, memblock_end_of_DRAM() >> PAGE_SHIFT, win64->value, tce_setrange_multi_pSeriesLP_walk); if (ret) { dev_info(&dev->dev, "failed to map direct window for %s: %d\n", dn->full_name, ret); goto out_free_window; } ret = of_add_property(pdn, win64); if (ret) { dev_err(&dev->dev, "unable to add dma window property for %s: %d", pdn->full_name, ret); goto out_free_window; } window->device = pdn; window->prop = ddwprop; spin_lock(&direct_window_list_lock); list_add(&window->list, &direct_window_list); spin_unlock(&direct_window_list_lock); dma_addr = be64_to_cpu(ddwprop->dma_base); goto out_unlock; out_free_window: kfree(window); out_clear_window: remove_ddw(pdn, true); out_free_prop: kfree(win64->name); kfree(win64->value); kfree(win64); out_failed: fpdn = kzalloc(sizeof(*fpdn), GFP_KERNEL); if (!fpdn) goto out_unlock; fpdn->pdn = pdn; list_add(&fpdn->list, &failed_ddw_pdn_list); out_unlock: mutex_unlock(&direct_window_init_mutex); return dma_addr; } static void pci_dma_dev_setup_pSeriesLP(struct pci_dev *dev) { struct device_node *pdn, *dn; struct iommu_table *tbl; const __be32 *dma_window = NULL; struct pci_dn *pci; pr_debug("pci_dma_dev_setup_pSeriesLP: %s\n", pci_name(dev)); /* dev setup for LPAR is a little tricky, since the device tree might * contain the dma-window properties per-device and not necessarily * for the bus. So we need to search upwards in the tree until we * either hit a dma-window property, OR find a parent with a table * already allocated. */ dn = pci_device_to_OF_node(dev); pr_debug(" node is %s\n", dn->full_name); for (pdn = dn; pdn && PCI_DN(pdn) && !PCI_DN(pdn)->table_group; pdn = pdn->parent) { dma_window = of_get_property(pdn, "ibm,dma-window", NULL); if (dma_window) break; } if (!pdn || !PCI_DN(pdn)) { printk(KERN_WARNING "pci_dma_dev_setup_pSeriesLP: " "no DMA window found for pci dev=%s dn=%s\n", pci_name(dev), of_node_full_name(dn)); return; } pr_debug(" parent is %s\n", pdn->full_name); pci = PCI_DN(pdn); if (!pci->table_group) { pci->table_group = iommu_pseries_alloc_group(pci->phb->node); tbl = pci->table_group->tables[0]; iommu_table_setparms_lpar(pci->phb, pdn, tbl, dma_window); tbl->it_ops = &iommu_table_lpar_multi_ops; iommu_init_table(tbl, pci->phb->node); iommu_register_group(pci->table_group, pci_domain_nr(pci->phb->bus), 0); pr_debug(" created table: %p\n", pci->table_group); } else { pr_debug(" found DMA window, table: %p\n", pci->table_group); } set_iommu_table_base(&dev->dev, pci->table_group->tables[0]); iommu_add_device(&dev->dev); } static int dma_set_mask_pSeriesLP(struct device *dev, u64 dma_mask) { bool ddw_enabled = false; struct device_node *pdn, *dn; struct pci_dev *pdev; const __be32 *dma_window = NULL; u64 dma_offset; if (!dev->dma_mask) return -EIO; if (!dev_is_pci(dev)) goto check_mask; pdev = to_pci_dev(dev); /* only attempt to use a new window if 64-bit DMA is requested */ if (!disable_ddw && dma_mask == DMA_BIT_MASK(64)) { dn = pci_device_to_OF_node(pdev); dev_dbg(dev, "node is %s\n", dn->full_name); /* * the device tree might contain the dma-window properties * per-device and not necessarily for the bus. So we need to * search upwards in the tree until we either hit a dma-window * property, OR find a parent with a table already allocated. */ for (pdn = dn; pdn && PCI_DN(pdn) && !PCI_DN(pdn)->table_group; pdn = pdn->parent) { dma_window = of_get_property(pdn, "ibm,dma-window", NULL); if (dma_window) break; } if (pdn && PCI_DN(pdn)) { dma_offset = enable_ddw(pdev, pdn); if (dma_offset != 0) { dev_info(dev, "Using 64-bit direct DMA at offset %llx\n", dma_offset); set_dma_offset(dev, dma_offset); set_dma_ops(dev, &dma_direct_ops); ddw_enabled = true; } } } /* fall back on iommu ops */ if (!ddw_enabled && get_dma_ops(dev) != &dma_iommu_ops) { dev_info(dev, "Restoring 32-bit DMA via iommu\n"); set_dma_ops(dev, &dma_iommu_ops); } check_mask: if (!dma_supported(dev, dma_mask)) return -EIO; *dev->dma_mask = dma_mask; return 0; } static u64 dma_get_required_mask_pSeriesLP(struct device *dev) { if (!dev->dma_mask) return 0; if (!disable_ddw && dev_is_pci(dev)) { struct pci_dev *pdev = to_pci_dev(dev); struct device_node *dn; dn = pci_device_to_OF_node(pdev); /* search upwards for ibm,dma-window */ for (; dn && PCI_DN(dn) && !PCI_DN(dn)->table_group; dn = dn->parent) if (of_get_property(dn, "ibm,dma-window", NULL)) break; /* if there is a ibm,ddw-applicable property require 64 bits */ if (dn && PCI_DN(dn) && of_get_property(dn, "ibm,ddw-applicable", NULL)) return DMA_BIT_MASK(64); } return dma_iommu_ops.get_required_mask(dev); } static int iommu_mem_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct direct_window *window; struct memory_notify *arg = data; int ret = 0; switch (action) { case MEM_GOING_ONLINE: spin_lock(&direct_window_list_lock); list_for_each_entry(window, &direct_window_list, list) { ret |= tce_setrange_multi_pSeriesLP(arg->start_pfn, arg->nr_pages, window->prop); /* XXX log error */ } spin_unlock(&direct_window_list_lock); break; case MEM_CANCEL_ONLINE: case MEM_OFFLINE: spin_lock(&direct_window_list_lock); list_for_each_entry(window, &direct_window_list, list) { ret |= tce_clearrange_multi_pSeriesLP(arg->start_pfn, arg->nr_pages, window->prop); /* XXX log error */ } spin_unlock(&direct_window_list_lock); break; default: break; } if (ret && action != MEM_CANCEL_ONLINE) return NOTIFY_BAD; return NOTIFY_OK; } static struct notifier_block iommu_mem_nb = { .notifier_call = iommu_mem_notifier, }; static int iommu_reconfig_notifier(struct notifier_block *nb, unsigned long action, void *data) { int err = NOTIFY_OK; struct of_reconfig_data *rd = data; struct device_node *np = rd->dn; struct pci_dn *pci = PCI_DN(np); struct direct_window *window; switch (action) { case OF_RECONFIG_DETACH_NODE: /* * Removing the property will invoke the reconfig * notifier again, which causes dead-lock on the * read-write semaphore of the notifier chain. So * we have to remove the property when releasing * the device node. */ remove_ddw(np, false); if (pci && pci->table_group) iommu_pseries_free_group(pci->table_group, np->full_name); spin_lock(&direct_window_list_lock); list_for_each_entry(window, &direct_window_list, list) { if (window->device == np) { list_del(&window->list); kfree(window); break; } } spin_unlock(&direct_window_list_lock); break; default: err = NOTIFY_DONE; break; } return err; } static struct notifier_block iommu_reconfig_nb = { .notifier_call = iommu_reconfig_notifier, }; /* These are called very early. */ void iommu_init_early_pSeries(void) { if (of_chosen && of_get_property(of_chosen, "linux,iommu-off", NULL)) return; if (firmware_has_feature(FW_FEATURE_LPAR)) { pseries_pci_controller_ops.dma_bus_setup = pci_dma_bus_setup_pSeriesLP; pseries_pci_controller_ops.dma_dev_setup = pci_dma_dev_setup_pSeriesLP; ppc_md.dma_set_mask = dma_set_mask_pSeriesLP; ppc_md.dma_get_required_mask = dma_get_required_mask_pSeriesLP; } else { pseries_pci_controller_ops.dma_bus_setup = pci_dma_bus_setup_pSeries; pseries_pci_controller_ops.dma_dev_setup = pci_dma_dev_setup_pSeries; } of_reconfig_notifier_register(&iommu_reconfig_nb); register_memory_notifier(&iommu_mem_nb); set_pci_dma_ops(&dma_iommu_ops); } static int __init disable_multitce(char *str) { if (strcmp(str, "off") == 0 && firmware_has_feature(FW_FEATURE_LPAR) && firmware_has_feature(FW_FEATURE_MULTITCE)) { printk(KERN_INFO "Disabling MULTITCE firmware feature\n"); powerpc_firmware_features &= ~FW_FEATURE_MULTITCE; } return 1; } __setup("multitce=", disable_multitce); machine_subsys_initcall_sync(pseries, tce_iommu_bus_notifier_init);