/* * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include "iw_cxgb4.h" int use_dsgl = 0; module_param(use_dsgl, int, 0644); MODULE_PARM_DESC(use_dsgl, "Use DSGL for PBL/FastReg (default=0)"); #define T4_ULPTX_MIN_IO 32 #define C4IW_MAX_INLINE_SIZE 96 #define T4_ULPTX_MAX_DMA 1024 #define C4IW_INLINE_THRESHOLD 128 static int inline_threshold = C4IW_INLINE_THRESHOLD; module_param(inline_threshold, int, 0644); MODULE_PARM_DESC(inline_threshold, "inline vs dsgl threshold (default=128)"); static int mr_exceeds_hw_limits(struct c4iw_dev *dev, u64 length) { return (is_t4(dev->rdev.lldi.adapter_type) || is_t5(dev->rdev.lldi.adapter_type)) && length >= 8*1024*1024*1024ULL; } static int _c4iw_write_mem_dma_aligned(struct c4iw_rdev *rdev, u32 addr, u32 len, dma_addr_t data, int wait) { struct sk_buff *skb; struct ulp_mem_io *req; struct ulptx_sgl *sgl; u8 wr_len; int ret = 0; struct c4iw_wr_wait wr_wait; addr &= 0x7FFFFFF; if (wait) c4iw_init_wr_wait(&wr_wait); wr_len = roundup(sizeof(*req) + sizeof(*sgl), 16); skb = alloc_skb(wr_len, GFP_KERNEL); if (!skb) return -ENOMEM; set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0); req = (struct ulp_mem_io *)__skb_put(skb, wr_len); memset(req, 0, wr_len); INIT_ULPTX_WR(req, wr_len, 0, 0); req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) | (wait ? FW_WR_COMPL_F : 0)); req->wr.wr_lo = wait ? (__force __be64)(unsigned long) &wr_wait : 0L; req->wr.wr_mid = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(wr_len, 16))); req->cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE)); req->cmd |= cpu_to_be32(T5_ULP_MEMIO_ORDER_V(1)); req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(len>>5)); req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr), 16)); req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(addr)); sgl = (struct ulptx_sgl *)(req + 1); sgl->cmd_nsge = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_DSGL) | ULPTX_NSGE_V(1)); sgl->len0 = cpu_to_be32(len); sgl->addr0 = cpu_to_be64(data); ret = c4iw_ofld_send(rdev, skb); if (ret) return ret; if (wait) ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__); return ret; } static int _c4iw_write_mem_inline(struct c4iw_rdev *rdev, u32 addr, u32 len, void *data) { struct sk_buff *skb; struct ulp_mem_io *req; struct ulptx_idata *sc; u8 wr_len, *to_dp, *from_dp; int copy_len, num_wqe, i, ret = 0; struct c4iw_wr_wait wr_wait; __be32 cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE)); if (is_t4(rdev->lldi.adapter_type)) cmd |= cpu_to_be32(ULP_MEMIO_ORDER_F); else cmd |= cpu_to_be32(T5_ULP_MEMIO_IMM_F); addr &= 0x7FFFFFF; PDBG("%s addr 0x%x len %u\n", __func__, addr, len); num_wqe = DIV_ROUND_UP(len, C4IW_MAX_INLINE_SIZE); c4iw_init_wr_wait(&wr_wait); for (i = 0; i < num_wqe; i++) { copy_len = len > C4IW_MAX_INLINE_SIZE ? C4IW_MAX_INLINE_SIZE : len; wr_len = roundup(sizeof *req + sizeof *sc + roundup(copy_len, T4_ULPTX_MIN_IO), 16); skb = alloc_skb(wr_len, GFP_KERNEL); if (!skb) return -ENOMEM; set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0); req = (struct ulp_mem_io *)__skb_put(skb, wr_len); memset(req, 0, wr_len); INIT_ULPTX_WR(req, wr_len, 0, 0); if (i == (num_wqe-1)) { req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) | FW_WR_COMPL_F); req->wr.wr_lo = (__force __be64)(unsigned long)&wr_wait; } else req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR)); req->wr.wr_mid = cpu_to_be32( FW_WR_LEN16_V(DIV_ROUND_UP(wr_len, 16))); req->cmd = cmd; req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V( DIV_ROUND_UP(copy_len, T4_ULPTX_MIN_IO))); req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr), 16)); req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(addr + i * 3)); sc = (struct ulptx_idata *)(req + 1); sc->cmd_more = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_IMM)); sc->len = cpu_to_be32(roundup(copy_len, T4_ULPTX_MIN_IO)); to_dp = (u8 *)(sc + 1); from_dp = (u8 *)data + i * C4IW_MAX_INLINE_SIZE; if (data) memcpy(to_dp, from_dp, copy_len); else memset(to_dp, 0, copy_len); if (copy_len % T4_ULPTX_MIN_IO) memset(to_dp + copy_len, 0, T4_ULPTX_MIN_IO - (copy_len % T4_ULPTX_MIN_IO)); ret = c4iw_ofld_send(rdev, skb); if (ret) return ret; len -= C4IW_MAX_INLINE_SIZE; } ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__); return ret; } static int _c4iw_write_mem_dma(struct c4iw_rdev *rdev, u32 addr, u32 len, void *data) { u32 remain = len; u32 dmalen; int ret = 0; dma_addr_t daddr; dma_addr_t save; daddr = dma_map_single(&rdev->lldi.pdev->dev, data, len, DMA_TO_DEVICE); if (dma_mapping_error(&rdev->lldi.pdev->dev, daddr)) return -1; save = daddr; while (remain > inline_threshold) { if (remain < T4_ULPTX_MAX_DMA) { if (remain & ~T4_ULPTX_MIN_IO) dmalen = remain & ~(T4_ULPTX_MIN_IO-1); else dmalen = remain; } else dmalen = T4_ULPTX_MAX_DMA; remain -= dmalen; ret = _c4iw_write_mem_dma_aligned(rdev, addr, dmalen, daddr, !remain); if (ret) goto out; addr += dmalen >> 5; data += dmalen; daddr += dmalen; } if (remain) ret = _c4iw_write_mem_inline(rdev, addr, remain, data); out: dma_unmap_single(&rdev->lldi.pdev->dev, save, len, DMA_TO_DEVICE); return ret; } /* * write len bytes of data into addr (32B aligned address) * If data is NULL, clear len byte of memory to zero. */ static int write_adapter_mem(struct c4iw_rdev *rdev, u32 addr, u32 len, void *data) { if (is_t5(rdev->lldi.adapter_type) && use_dsgl) { if (len > inline_threshold) { if (_c4iw_write_mem_dma(rdev, addr, len, data)) { printk_ratelimited(KERN_WARNING "%s: dma map" " failure (non fatal)\n", pci_name(rdev->lldi.pdev)); return _c4iw_write_mem_inline(rdev, addr, len, data); } else return 0; } else return _c4iw_write_mem_inline(rdev, addr, len, data); } else return _c4iw_write_mem_inline(rdev, addr, len, data); } /* * Build and write a TPT entry. * IN: stag key, pdid, perm, bind_enabled, zbva, to, len, page_size, * pbl_size and pbl_addr * OUT: stag index */ static int write_tpt_entry(struct c4iw_rdev *rdev, u32 reset_tpt_entry, u32 *stag, u8 stag_state, u32 pdid, enum fw_ri_stag_type type, enum fw_ri_mem_perms perm, int bind_enabled, u32 zbva, u64 to, u64 len, u8 page_size, u32 pbl_size, u32 pbl_addr) { int err; struct fw_ri_tpte *tpt; u32 stag_idx; static atomic_t key; if (c4iw_fatal_error(rdev)) return -EIO; tpt = kmalloc(sizeof(*tpt), GFP_KERNEL); if (!tpt) return -ENOMEM; stag_state = stag_state > 0; stag_idx = (*stag) >> 8; if ((!reset_tpt_entry) && (*stag == T4_STAG_UNSET)) { stag_idx = c4iw_get_resource(&rdev->resource.tpt_table); if (!stag_idx) { mutex_lock(&rdev->stats.lock); rdev->stats.stag.fail++; mutex_unlock(&rdev->stats.lock); kfree(tpt); return -ENOMEM; } mutex_lock(&rdev->stats.lock); rdev->stats.stag.cur += 32; if (rdev->stats.stag.cur > rdev->stats.stag.max) rdev->stats.stag.max = rdev->stats.stag.cur; mutex_unlock(&rdev->stats.lock); *stag = (stag_idx << 8) | (atomic_inc_return(&key) & 0xff); } PDBG("%s stag_state 0x%0x type 0x%0x pdid 0x%0x, stag_idx 0x%x\n", __func__, stag_state, type, pdid, stag_idx); /* write TPT entry */ if (reset_tpt_entry) memset(tpt, 0, sizeof(*tpt)); else { tpt->valid_to_pdid = cpu_to_be32(FW_RI_TPTE_VALID_F | FW_RI_TPTE_STAGKEY_V((*stag & FW_RI_TPTE_STAGKEY_M)) | FW_RI_TPTE_STAGSTATE_V(stag_state) | FW_RI_TPTE_STAGTYPE_V(type) | FW_RI_TPTE_PDID_V(pdid)); tpt->locread_to_qpid = cpu_to_be32(FW_RI_TPTE_PERM_V(perm) | (bind_enabled ? FW_RI_TPTE_MWBINDEN_F : 0) | FW_RI_TPTE_ADDRTYPE_V((zbva ? FW_RI_ZERO_BASED_TO : FW_RI_VA_BASED_TO))| FW_RI_TPTE_PS_V(page_size)); tpt->nosnoop_pbladdr = !pbl_size ? 0 : cpu_to_be32( FW_RI_TPTE_PBLADDR_V(PBL_OFF(rdev, pbl_addr)>>3)); tpt->len_lo = cpu_to_be32((u32)(len & 0xffffffffUL)); tpt->va_hi = cpu_to_be32((u32)(to >> 32)); tpt->va_lo_fbo = cpu_to_be32((u32)(to & 0xffffffffUL)); tpt->dca_mwbcnt_pstag = cpu_to_be32(0); tpt->len_hi = cpu_to_be32((u32)(len >> 32)); } err = write_adapter_mem(rdev, stag_idx + (rdev->lldi.vr->stag.start >> 5), sizeof(*tpt), tpt); if (reset_tpt_entry) { c4iw_put_resource(&rdev->resource.tpt_table, stag_idx); mutex_lock(&rdev->stats.lock); rdev->stats.stag.cur -= 32; mutex_unlock(&rdev->stats.lock); } kfree(tpt); return err; } static int write_pbl(struct c4iw_rdev *rdev, __be64 *pbl, u32 pbl_addr, u32 pbl_size) { int err; PDBG("%s *pdb_addr 0x%x, pbl_base 0x%x, pbl_size %d\n", __func__, pbl_addr, rdev->lldi.vr->pbl.start, pbl_size); err = write_adapter_mem(rdev, pbl_addr >> 5, pbl_size << 3, pbl); return err; } static int dereg_mem(struct c4iw_rdev *rdev, u32 stag, u32 pbl_size, u32 pbl_addr) { return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0, pbl_size, pbl_addr); } static int allocate_window(struct c4iw_rdev *rdev, u32 * stag, u32 pdid) { *stag = T4_STAG_UNSET; return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_MW, 0, 0, 0, 0UL, 0, 0, 0, 0); } static int deallocate_window(struct c4iw_rdev *rdev, u32 stag) { return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0, 0, 0); } static int allocate_stag(struct c4iw_rdev *rdev, u32 *stag, u32 pdid, u32 pbl_size, u32 pbl_addr) { *stag = T4_STAG_UNSET; return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_NSMR, 0, 0, 0, 0UL, 0, 0, pbl_size, pbl_addr); } static int finish_mem_reg(struct c4iw_mr *mhp, u32 stag) { u32 mmid; mhp->attr.state = 1; mhp->attr.stag = stag; mmid = stag >> 8; mhp->ibmr.rkey = mhp->ibmr.lkey = stag; PDBG("%s mmid 0x%x mhp %p\n", __func__, mmid, mhp); return insert_handle(mhp->rhp, &mhp->rhp->mmidr, mhp, mmid); } static int register_mem(struct c4iw_dev *rhp, struct c4iw_pd *php, struct c4iw_mr *mhp, int shift) { u32 stag = T4_STAG_UNSET; int ret; ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid, FW_RI_STAG_NSMR, mhp->attr.len ? mhp->attr.perms : 0, mhp->attr.mw_bind_enable, mhp->attr.zbva, mhp->attr.va_fbo, mhp->attr.len ? mhp->attr.len : -1, shift - 12, mhp->attr.pbl_size, mhp->attr.pbl_addr); if (ret) return ret; ret = finish_mem_reg(mhp, stag); if (ret) dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size, mhp->attr.pbl_addr); return ret; } static int reregister_mem(struct c4iw_dev *rhp, struct c4iw_pd *php, struct c4iw_mr *mhp, int shift, int npages) { u32 stag; int ret; if (npages > mhp->attr.pbl_size) return -ENOMEM; stag = mhp->attr.stag; ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid, FW_RI_STAG_NSMR, mhp->attr.perms, mhp->attr.mw_bind_enable, mhp->attr.zbva, mhp->attr.va_fbo, mhp->attr.len, shift - 12, mhp->attr.pbl_size, mhp->attr.pbl_addr); if (ret) return ret; ret = finish_mem_reg(mhp, stag); if (ret) dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size, mhp->attr.pbl_addr); return ret; } static int alloc_pbl(struct c4iw_mr *mhp, int npages) { mhp->attr.pbl_addr = c4iw_pblpool_alloc(&mhp->rhp->rdev, npages << 3); if (!mhp->attr.pbl_addr) return -ENOMEM; mhp->attr.pbl_size = npages; return 0; } static int build_phys_page_list(struct ib_phys_buf *buffer_list, int num_phys_buf, u64 *iova_start, u64 *total_size, int *npages, int *shift, __be64 **page_list) { u64 mask; int i, j, n; mask = 0; *total_size = 0; for (i = 0; i < num_phys_buf; ++i) { if (i != 0 && buffer_list[i].addr & ~PAGE_MASK) return -EINVAL; if (i != 0 && i != num_phys_buf - 1 && (buffer_list[i].size & ~PAGE_MASK)) return -EINVAL; *total_size += buffer_list[i].size; if (i > 0) mask |= buffer_list[i].addr; else mask |= buffer_list[i].addr & PAGE_MASK; if (i != num_phys_buf - 1) mask |= buffer_list[i].addr + buffer_list[i].size; else mask |= (buffer_list[i].addr + buffer_list[i].size + PAGE_SIZE - 1) & PAGE_MASK; } if (*total_size > 0xFFFFFFFFULL) return -ENOMEM; /* Find largest page shift we can use to cover buffers */ for (*shift = PAGE_SHIFT; *shift < 27; ++(*shift)) if ((1ULL << *shift) & mask) break; buffer_list[0].size += buffer_list[0].addr & ((1ULL << *shift) - 1); buffer_list[0].addr &= ~0ull << *shift; *npages = 0; for (i = 0; i < num_phys_buf; ++i) *npages += (buffer_list[i].size + (1ULL << *shift) - 1) >> *shift; if (!*npages) return -EINVAL; *page_list = kmalloc(sizeof(u64) * *npages, GFP_KERNEL); if (!*page_list) return -ENOMEM; n = 0; for (i = 0; i < num_phys_buf; ++i) for (j = 0; j < (buffer_list[i].size + (1ULL << *shift) - 1) >> *shift; ++j) (*page_list)[n++] = cpu_to_be64(buffer_list[i].addr + ((u64) j << *shift)); PDBG("%s va 0x%llx mask 0x%llx shift %d len %lld pbl_size %d\n", __func__, (unsigned long long)*iova_start, (unsigned long long)mask, *shift, (unsigned long long)*total_size, *npages); return 0; } int c4iw_reregister_phys_mem(struct ib_mr *mr, int mr_rereg_mask, struct ib_pd *pd, struct ib_phys_buf *buffer_list, int num_phys_buf, int acc, u64 *iova_start) { struct c4iw_mr mh, *mhp; struct c4iw_pd *php; struct c4iw_dev *rhp; __be64 *page_list = NULL; int shift = 0; u64 total_size; int npages; int ret; PDBG("%s ib_mr %p ib_pd %p\n", __func__, mr, pd); /* There can be no memory windows */ if (atomic_read(&mr->usecnt)) return -EINVAL; mhp = to_c4iw_mr(mr); rhp = mhp->rhp; php = to_c4iw_pd(mr->pd); /* make sure we are on the same adapter */ if (rhp != php->rhp) return -EINVAL; memcpy(&mh, mhp, sizeof *mhp); if (mr_rereg_mask & IB_MR_REREG_PD) php = to_c4iw_pd(pd); if (mr_rereg_mask & IB_MR_REREG_ACCESS) { mh.attr.perms = c4iw_ib_to_tpt_access(acc); mh.attr.mw_bind_enable = (acc & IB_ACCESS_MW_BIND) == IB_ACCESS_MW_BIND; } if (mr_rereg_mask & IB_MR_REREG_TRANS) { ret = build_phys_page_list(buffer_list, num_phys_buf, iova_start, &total_size, &npages, &shift, &page_list); if (ret) return ret; } if (mr_exceeds_hw_limits(rhp, total_size)) { kfree(page_list); return -EINVAL; } ret = reregister_mem(rhp, php, &mh, shift, npages); kfree(page_list); if (ret) return ret; if (mr_rereg_mask & IB_MR_REREG_PD) mhp->attr.pdid = php->pdid; if (mr_rereg_mask & IB_MR_REREG_ACCESS) mhp->attr.perms = c4iw_ib_to_tpt_access(acc); if (mr_rereg_mask & IB_MR_REREG_TRANS) { mhp->attr.zbva = 0; mhp->attr.va_fbo = *iova_start; mhp->attr.page_size = shift - 12; mhp->attr.len = (u32) total_size; mhp->attr.pbl_size = npages; } return 0; } struct ib_mr *c4iw_register_phys_mem(struct ib_pd *pd, struct ib_phys_buf *buffer_list, int num_phys_buf, int acc, u64 *iova_start) { __be64 *page_list; int shift; u64 total_size; int npages; struct c4iw_dev *rhp; struct c4iw_pd *php; struct c4iw_mr *mhp; int ret; PDBG("%s ib_pd %p\n", __func__, pd); php = to_c4iw_pd(pd); rhp = php->rhp; mhp = kzalloc(sizeof(*mhp), GFP_KERNEL); if (!mhp) return ERR_PTR(-ENOMEM); mhp->rhp = rhp; /* First check that we have enough alignment */ if ((*iova_start & ~PAGE_MASK) != (buffer_list[0].addr & ~PAGE_MASK)) { ret = -EINVAL; goto err; } if (num_phys_buf > 1 && ((buffer_list[0].addr + buffer_list[0].size) & ~PAGE_MASK)) { ret = -EINVAL; goto err; } ret = build_phys_page_list(buffer_list, num_phys_buf, iova_start, &total_size, &npages, &shift, &page_list); if (ret) goto err; if (mr_exceeds_hw_limits(rhp, total_size)) { kfree(page_list); ret = -EINVAL; goto err; } ret = alloc_pbl(mhp, npages); if (ret) { kfree(page_list); goto err; } ret = write_pbl(&mhp->rhp->rdev, page_list, mhp->attr.pbl_addr, npages); kfree(page_list); if (ret) goto err_pbl; mhp->attr.pdid = php->pdid; mhp->attr.zbva = 0; mhp->attr.perms = c4iw_ib_to_tpt_access(acc); mhp->attr.va_fbo = *iova_start; mhp->attr.page_size = shift - 12; mhp->attr.len = (u32) total_size; mhp->attr.pbl_size = npages; ret = register_mem(rhp, php, mhp, shift); if (ret) goto err_pbl; return &mhp->ibmr; err_pbl: c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr, mhp->attr.pbl_size << 3); err: kfree(mhp); return ERR_PTR(ret); } struct ib_mr *c4iw_get_dma_mr(struct ib_pd *pd, int acc) { struct c4iw_dev *rhp; struct c4iw_pd *php; struct c4iw_mr *mhp; int ret; u32 stag = T4_STAG_UNSET; PDBG("%s ib_pd %p\n", __func__, pd); php = to_c4iw_pd(pd); rhp = php->rhp; mhp = kzalloc(sizeof(*mhp), GFP_KERNEL); if (!mhp) return ERR_PTR(-ENOMEM); mhp->rhp = rhp; mhp->attr.pdid = php->pdid; mhp->attr.perms = c4iw_ib_to_tpt_access(acc); mhp->attr.mw_bind_enable = (acc&IB_ACCESS_MW_BIND) == IB_ACCESS_MW_BIND; mhp->attr.zbva = 0; mhp->attr.va_fbo = 0; mhp->attr.page_size = 0; mhp->attr.len = ~0ULL; mhp->attr.pbl_size = 0; ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, php->pdid, FW_RI_STAG_NSMR, mhp->attr.perms, mhp->attr.mw_bind_enable, 0, 0, ~0ULL, 0, 0, 0); if (ret) goto err1; ret = finish_mem_reg(mhp, stag); if (ret) goto err2; return &mhp->ibmr; err2: dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size, mhp->attr.pbl_addr); err1: kfree(mhp); return ERR_PTR(ret); } struct ib_mr *c4iw_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, u64 virt, int acc, struct ib_udata *udata) { __be64 *pages; int shift, n, len; int i, k, entry; int err = 0; struct scatterlist *sg; struct c4iw_dev *rhp; struct c4iw_pd *php; struct c4iw_mr *mhp; PDBG("%s ib_pd %p\n", __func__, pd); if (length == ~0ULL) return ERR_PTR(-EINVAL); if ((length + start) < start) return ERR_PTR(-EINVAL); php = to_c4iw_pd(pd); rhp = php->rhp; if (mr_exceeds_hw_limits(rhp, length)) return ERR_PTR(-EINVAL); mhp = kzalloc(sizeof(*mhp), GFP_KERNEL); if (!mhp) return ERR_PTR(-ENOMEM); mhp->rhp = rhp; mhp->umem = ib_umem_get(pd->uobject->context, start, length, acc, 0); if (IS_ERR(mhp->umem)) { err = PTR_ERR(mhp->umem); kfree(mhp); return ERR_PTR(err); } shift = ffs(mhp->umem->page_size) - 1; n = mhp->umem->nmap; err = alloc_pbl(mhp, n); if (err) goto err; pages = (__be64 *) __get_free_page(GFP_KERNEL); if (!pages) { err = -ENOMEM; goto err_pbl; } i = n = 0; for_each_sg(mhp->umem->sg_head.sgl, sg, mhp->umem->nmap, entry) { len = sg_dma_len(sg) >> shift; for (k = 0; k < len; ++k) { pages[i++] = cpu_to_be64(sg_dma_address(sg) + mhp->umem->page_size * k); if (i == PAGE_SIZE / sizeof *pages) { err = write_pbl(&mhp->rhp->rdev, pages, mhp->attr.pbl_addr + (n << 3), i); if (err) goto pbl_done; n += i; i = 0; } } } if (i) err = write_pbl(&mhp->rhp->rdev, pages, mhp->attr.pbl_addr + (n << 3), i); pbl_done: free_page((unsigned long) pages); if (err) goto err_pbl; mhp->attr.pdid = php->pdid; mhp->attr.zbva = 0; mhp->attr.perms = c4iw_ib_to_tpt_access(acc); mhp->attr.va_fbo = virt; mhp->attr.page_size = shift - 12; mhp->attr.len = length; err = register_mem(rhp, php, mhp, shift); if (err) goto err_pbl; return &mhp->ibmr; err_pbl: c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr, mhp->attr.pbl_size << 3); err: ib_umem_release(mhp->umem); kfree(mhp); return ERR_PTR(err); } struct ib_mw *c4iw_alloc_mw(struct ib_pd *pd, enum ib_mw_type type) { struct c4iw_dev *rhp; struct c4iw_pd *php; struct c4iw_mw *mhp; u32 mmid; u32 stag = 0; int ret; if (type != IB_MW_TYPE_1) return ERR_PTR(-EINVAL); php = to_c4iw_pd(pd); rhp = php->rhp; mhp = kzalloc(sizeof(*mhp), GFP_KERNEL); if (!mhp) return ERR_PTR(-ENOMEM); ret = allocate_window(&rhp->rdev, &stag, php->pdid); if (ret) { kfree(mhp); return ERR_PTR(ret); } mhp->rhp = rhp; mhp->attr.pdid = php->pdid; mhp->attr.type = FW_RI_STAG_MW; mhp->attr.stag = stag; mmid = (stag) >> 8; mhp->ibmw.rkey = stag; if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) { deallocate_window(&rhp->rdev, mhp->attr.stag); kfree(mhp); return ERR_PTR(-ENOMEM); } PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag); return &(mhp->ibmw); } int c4iw_dealloc_mw(struct ib_mw *mw) { struct c4iw_dev *rhp; struct c4iw_mw *mhp; u32 mmid; mhp = to_c4iw_mw(mw); rhp = mhp->rhp; mmid = (mw->rkey) >> 8; remove_handle(rhp, &rhp->mmidr, mmid); deallocate_window(&rhp->rdev, mhp->attr.stag); kfree(mhp); PDBG("%s ib_mw %p mmid 0x%x ptr %p\n", __func__, mw, mmid, mhp); return 0; } struct ib_mr *c4iw_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, u32 max_num_sg) { struct c4iw_dev *rhp; struct c4iw_pd *php; struct c4iw_mr *mhp; u32 mmid; u32 stag = 0; int ret = 0; int length = roundup(max_num_sg * sizeof(u64), 32); if (mr_type != IB_MR_TYPE_MEM_REG || max_num_sg > t4_max_fr_depth(use_dsgl)) return ERR_PTR(-EINVAL); php = to_c4iw_pd(pd); rhp = php->rhp; mhp = kzalloc(sizeof(*mhp), GFP_KERNEL); if (!mhp) { ret = -ENOMEM; goto err; } mhp->mpl = dma_alloc_coherent(&rhp->rdev.lldi.pdev->dev, length, &mhp->mpl_addr, GFP_KERNEL); if (!mhp->mpl) { ret = -ENOMEM; goto err_mpl; } mhp->max_mpl_len = length; mhp->rhp = rhp; ret = alloc_pbl(mhp, max_num_sg); if (ret) goto err1; mhp->attr.pbl_size = max_num_sg; ret = allocate_stag(&rhp->rdev, &stag, php->pdid, mhp->attr.pbl_size, mhp->attr.pbl_addr); if (ret) goto err2; mhp->attr.pdid = php->pdid; mhp->attr.type = FW_RI_STAG_NSMR; mhp->attr.stag = stag; mhp->attr.state = 1; mmid = (stag) >> 8; mhp->ibmr.rkey = mhp->ibmr.lkey = stag; if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) { ret = -ENOMEM; goto err3; } PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag); return &(mhp->ibmr); err3: dereg_mem(&rhp->rdev, stag, mhp->attr.pbl_size, mhp->attr.pbl_addr); err2: c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr, mhp->attr.pbl_size << 3); err1: dma_free_coherent(&mhp->rhp->rdev.lldi.pdev->dev, mhp->max_mpl_len, mhp->mpl, mhp->mpl_addr); err_mpl: kfree(mhp); err: return ERR_PTR(ret); } static int c4iw_set_page(struct ib_mr *ibmr, u64 addr) { struct c4iw_mr *mhp = to_c4iw_mr(ibmr); if (unlikely(mhp->mpl_len == mhp->attr.pbl_size)) return -ENOMEM; mhp->mpl[mhp->mpl_len++] = addr; return 0; } int c4iw_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents) { struct c4iw_mr *mhp = to_c4iw_mr(ibmr); mhp->mpl_len = 0; return ib_sg_to_pages(ibmr, sg, sg_nents, c4iw_set_page); } int c4iw_dereg_mr(struct ib_mr *ib_mr) { struct c4iw_dev *rhp; struct c4iw_mr *mhp; u32 mmid; PDBG("%s ib_mr %p\n", __func__, ib_mr); /* There can be no memory windows */ if (atomic_read(&ib_mr->usecnt)) return -EINVAL; mhp = to_c4iw_mr(ib_mr); rhp = mhp->rhp; mmid = mhp->attr.stag >> 8; remove_handle(rhp, &rhp->mmidr, mmid); if (mhp->mpl) dma_free_coherent(&mhp->rhp->rdev.lldi.pdev->dev, mhp->max_mpl_len, mhp->mpl, mhp->mpl_addr); dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size, mhp->attr.pbl_addr); if (mhp->attr.pbl_size) c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr, mhp->attr.pbl_size << 3); if (mhp->kva) kfree((void *) (unsigned long) mhp->kva); if (mhp->umem) ib_umem_release(mhp->umem); PDBG("%s mmid 0x%x ptr %p\n", __func__, mmid, mhp); kfree(mhp); return 0; }