/*******************************************************************************
*
* Intel Ethernet Controller XL710 Family Linux Driver
* Copyright(c) 2013 - 2014 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see .
*
* The full GNU General Public License is included in this distribution in
* the file called "COPYING".
*
* Contact Information:
* e1000-devel Mailing List
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
******************************************************************************/
#include "i40e.h"
#include
/* The XL710 timesync is very much like Intel's 82599 design when it comes to
* the fundamental clock design. However, the clock operations are much simpler
* in the XL710 because the device supports a full 64 bits of nanoseconds.
* Because the field is so wide, we can forgo the cycle counter and just
* operate with the nanosecond field directly without fear of overflow.
*
* Much like the 82599, the update period is dependent upon the link speed:
* At 40Gb link or no link, the period is 1.6ns.
* At 10Gb link, the period is multiplied by 2. (3.2ns)
* At 1Gb link, the period is multiplied by 20. (32ns)
* 1588 functionality is not supported at 100Mbps.
*/
#define I40E_PTP_40GB_INCVAL 0x0199999999ULL
#define I40E_PTP_10GB_INCVAL 0x0333333333ULL
#define I40E_PTP_1GB_INCVAL 0x2000000000ULL
#define I40E_PRTTSYN_CTL1_TSYNTYPE_V1 BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
#define I40E_PRTTSYN_CTL1_TSYNTYPE_V2 (2 << \
I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
/**
* i40e_ptp_read - Read the PHC time from the device
* @pf: Board private structure
* @ts: timespec structure to hold the current time value
*
* This function reads the PRTTSYN_TIME registers and stores them in a
* timespec. However, since the registers are 64 bits of nanoseconds, we must
* convert the result to a timespec before we can return.
**/
static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts)
{
struct i40e_hw *hw = &pf->hw;
u32 hi, lo;
u64 ns;
/* The timer latches on the lowest register read. */
lo = rd32(hw, I40E_PRTTSYN_TIME_L);
hi = rd32(hw, I40E_PRTTSYN_TIME_H);
ns = (((u64)hi) << 32) | lo;
*ts = ns_to_timespec64(ns);
}
/**
* i40e_ptp_write - Write the PHC time to the device
* @pf: Board private structure
* @ts: timespec structure that holds the new time value
*
* This function writes the PRTTSYN_TIME registers with the user value. Since
* we receive a timespec from the stack, we must convert that timespec into
* nanoseconds before programming the registers.
**/
static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
{
struct i40e_hw *hw = &pf->hw;
u64 ns = timespec64_to_ns(ts);
/* The timer will not update until the high register is written, so
* write the low register first.
*/
wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
}
/**
* i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
* @hwtstamps: Timestamp structure to update
* @timestamp: Timestamp from the hardware
*
* We need to convert the NIC clock value into a hwtstamp which can be used by
* the upper level timestamping functions. Since the timestamp is simply a 64-
* bit nanosecond value, we can call ns_to_ktime directly to handle this.
**/
static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
u64 timestamp)
{
memset(hwtstamps, 0, sizeof(*hwtstamps));
hwtstamps->hwtstamp = ns_to_ktime(timestamp);
}
/**
* i40e_ptp_adjfreq - Adjust the PHC frequency
* @ptp: The PTP clock structure
* @ppb: Parts per billion adjustment from the base
*
* Adjust the frequency of the PHC by the indicated parts per billion from the
* base frequency.
**/
static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
{
struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
struct i40e_hw *hw = &pf->hw;
u64 adj, freq, diff;
int neg_adj = 0;
if (ppb < 0) {
neg_adj = 1;
ppb = -ppb;
}
smp_mb(); /* Force any pending update before accessing. */
adj = ACCESS_ONCE(pf->ptp_base_adj);
freq = adj;
freq *= ppb;
diff = div_u64(freq, 1000000000ULL);
if (neg_adj)
adj -= diff;
else
adj += diff;
wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
return 0;
}
/**
* i40e_ptp_adjtime - Adjust the PHC time
* @ptp: The PTP clock structure
* @delta: Offset in nanoseconds to adjust the PHC time by
*
* Adjust the frequency of the PHC by the indicated parts per billion from the
* base frequency.
**/
static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
struct timespec64 now, then = ns_to_timespec64(delta);
unsigned long flags;
spin_lock_irqsave(&pf->tmreg_lock, flags);
i40e_ptp_read(pf, &now);
now = timespec64_add(now, then);
i40e_ptp_write(pf, (const struct timespec64 *)&now);
spin_unlock_irqrestore(&pf->tmreg_lock, flags);
return 0;
}
/**
* i40e_ptp_gettime - Get the time of the PHC
* @ptp: The PTP clock structure
* @ts: timespec structure to hold the current time value
*
* Read the device clock and return the correct value on ns, after converting it
* into a timespec struct.
**/
static int i40e_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
{
struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
unsigned long flags;
spin_lock_irqsave(&pf->tmreg_lock, flags);
i40e_ptp_read(pf, ts);
spin_unlock_irqrestore(&pf->tmreg_lock, flags);
return 0;
}
/**
* i40e_ptp_settime - Set the time of the PHC
* @ptp: The PTP clock structure
* @ts: timespec structure that holds the new time value
*
* Set the device clock to the user input value. The conversion from timespec
* to ns happens in the write function.
**/
static int i40e_ptp_settime(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
unsigned long flags;
spin_lock_irqsave(&pf->tmreg_lock, flags);
i40e_ptp_write(pf, ts);
spin_unlock_irqrestore(&pf->tmreg_lock, flags);
return 0;
}
/**
* i40e_ptp_feature_enable - Enable/disable ancillary features of the PHC subsystem
* @ptp: The PTP clock structure
* @rq: The requested feature to change
* @on: Enable/disable flag
*
* The XL710 does not support any of the ancillary features of the PHC
* subsystem, so this function may just return.
**/
static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
return -EOPNOTSUPP;
}
/**
* i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
* @vsi: The VSI with the rings relevant to 1588
*
* This watchdog task is scheduled to detect error case where hardware has
* dropped an Rx packet that was timestamped when the ring is full. The
* particular error is rare but leaves the device in a state unable to timestamp
* any future packets.
**/
void i40e_ptp_rx_hang(struct i40e_vsi *vsi)
{
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
struct i40e_ring *rx_ring;
unsigned long rx_event;
u32 prttsyn_stat;
int n;
/* Since we cannot turn off the Rx timestamp logic if the device is
* configured for Tx timestamping, we check if Rx timestamping is
* configured. We don't want to spuriously warn about Rx timestamp
* hangs if we don't care about the timestamps.
*/
if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
return;
prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
/* Unless all four receive timestamp registers are latched, we are not
* concerned about a possible PTP Rx hang, so just update the timeout
* counter and exit.
*/
if (!(prttsyn_stat & ((I40E_PRTTSYN_STAT_1_RXT0_MASK <<
I40E_PRTTSYN_STAT_1_RXT0_SHIFT) |
(I40E_PRTTSYN_STAT_1_RXT1_MASK <<
I40E_PRTTSYN_STAT_1_RXT1_SHIFT) |
(I40E_PRTTSYN_STAT_1_RXT2_MASK <<
I40E_PRTTSYN_STAT_1_RXT2_SHIFT) |
(I40E_PRTTSYN_STAT_1_RXT3_MASK <<
I40E_PRTTSYN_STAT_1_RXT3_SHIFT)))) {
pf->last_rx_ptp_check = jiffies;
return;
}
/* Determine the most recent watchdog or rx_timestamp event. */
rx_event = pf->last_rx_ptp_check;
for (n = 0; n < vsi->num_queue_pairs; n++) {
rx_ring = vsi->rx_rings[n];
if (time_after(rx_ring->last_rx_timestamp, rx_event))
rx_event = rx_ring->last_rx_timestamp;
}
/* Only need to read the high RXSTMP register to clear the lock */
if (time_is_before_jiffies(rx_event + 5 * HZ)) {
rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
pf->last_rx_ptp_check = jiffies;
pf->rx_hwtstamp_cleared++;
dev_warn(&vsi->back->pdev->dev,
"%s: clearing Rx timestamp hang\n",
__func__);
}
}
/**
* i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
* @pf: Board private structure
*
* Read the value of the Tx timestamp from the registers, convert it into a
* value consumable by the stack, and store that result into the shhwtstamps
* struct before returning it up the stack.
**/
void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
{
struct skb_shared_hwtstamps shhwtstamps;
struct i40e_hw *hw = &pf->hw;
u32 hi, lo;
u64 ns;
if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
return;
/* don't attempt to timestamp if we don't have an skb */
if (!pf->ptp_tx_skb)
return;
lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
ns = (((u64)hi) << 32) | lo;
i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
skb_tstamp_tx(pf->ptp_tx_skb, &shhwtstamps);
dev_kfree_skb_any(pf->ptp_tx_skb);
pf->ptp_tx_skb = NULL;
clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, &pf->state);
}
/**
* i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
* @pf: Board private structure
* @skb: Particular skb to send timestamp with
* @index: Index into the receive timestamp registers for the timestamp
*
* The XL710 receives a notification in the receive descriptor with an offset
* into the set of RXTIME registers where the timestamp is for that skb. This
* function goes and fetches the receive timestamp from that offset, if a valid
* one exists. The RXTIME registers are in ns, so we must convert the result
* first.
**/
void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
{
u32 prttsyn_stat, hi, lo;
struct i40e_hw *hw;
u64 ns;
/* Since we cannot turn off the Rx timestamp logic if the device is
* doing Tx timestamping, check if Rx timestamping is configured.
*/
if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
return;
hw = &pf->hw;
prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
if (!(prttsyn_stat & BIT(index)))
return;
lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
ns = (((u64)hi) << 32) | lo;
i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
}
/**
* i40e_ptp_set_increment - Utility function to update clock increment rate
* @pf: Board private structure
*
* During a link change, the DMA frequency that drives the 1588 logic will
* change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
* we must update the increment value per clock tick.
**/
void i40e_ptp_set_increment(struct i40e_pf *pf)
{
struct i40e_link_status *hw_link_info;
struct i40e_hw *hw = &pf->hw;
u64 incval;
hw_link_info = &hw->phy.link_info;
i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
switch (hw_link_info->link_speed) {
case I40E_LINK_SPEED_10GB:
incval = I40E_PTP_10GB_INCVAL;
break;
case I40E_LINK_SPEED_1GB:
incval = I40E_PTP_1GB_INCVAL;
break;
case I40E_LINK_SPEED_100MB:
{
static int warn_once;
if (!warn_once) {
dev_warn(&pf->pdev->dev,
"1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
warn_once++;
}
incval = 0;
break;
}
case I40E_LINK_SPEED_40GB:
default:
incval = I40E_PTP_40GB_INCVAL;
break;
}
/* Write the new increment value into the increment register. The
* hardware will not update the clock until both registers have been
* written.
*/
wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
/* Update the base adjustement value. */
ACCESS_ONCE(pf->ptp_base_adj) = incval;
smp_mb(); /* Force the above update. */
}
/**
* i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
* @pf: Board private structure
* @ifreq: ioctl data
*
* Obtain the current hardware timestamping settigs as requested. To do this,
* keep a shadow copy of the timestamp settings rather than attempting to
* deconstruct it from the registers.
**/
int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
{
struct hwtstamp_config *config = &pf->tstamp_config;
if (!(pf->flags & I40E_FLAG_PTP))
return -EOPNOTSUPP;
return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
-EFAULT : 0;
}
/**
* i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
* @pf: Board private structure
* @config: hwtstamp settings requested or saved
*
* Control hardware registers to enter the specific mode requested by the
* user. Also used during reset path to ensure that timestamp settings are
* maintained.
*
* Note: modifies config in place, and may update the requested mode to be
* more broad if the specific filter is not directly supported.
**/
static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
struct hwtstamp_config *config)
{
struct i40e_hw *hw = &pf->hw;
u32 tsyntype, regval;
/* Reserved for future extensions. */
if (config->flags)
return -EINVAL;
switch (config->tx_type) {
case HWTSTAMP_TX_OFF:
pf->ptp_tx = false;
break;
case HWTSTAMP_TX_ON:
pf->ptp_tx = true;
break;
default:
return -ERANGE;
}
switch (config->rx_filter) {
case HWTSTAMP_FILTER_NONE:
pf->ptp_rx = false;
/* We set the type to V1, but do not enable UDP packet
* recognition. In this way, we should be as close to
* disabling PTP Rx timestamps as possible since V1 packets
* are always UDP, since L2 packets are a V2 feature.
*/
tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
pf->ptp_rx = true;
tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
break;
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
pf->ptp_rx = true;
tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
I40E_PRTTSYN_CTL1_TSYNTYPE_V2 |
I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
break;
case HWTSTAMP_FILTER_ALL:
default:
return -ERANGE;
}
/* Clear out all 1588-related registers to clear and unlatch them. */
rd32(hw, I40E_PRTTSYN_STAT_0);
rd32(hw, I40E_PRTTSYN_TXTIME_H);
rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
/* Enable/disable the Tx timestamp interrupt based on user input. */
regval = rd32(hw, I40E_PRTTSYN_CTL0);
if (pf->ptp_tx)
regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
else
regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
wr32(hw, I40E_PRTTSYN_CTL0, regval);
regval = rd32(hw, I40E_PFINT_ICR0_ENA);
if (pf->ptp_tx)
regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
else
regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
wr32(hw, I40E_PFINT_ICR0_ENA, regval);
/* Although there is no simple on/off switch for Rx, we "disable" Rx
* timestamps by setting to V1 only mode and clear the UDP
* recognition. This ought to disable all PTP Rx timestamps as V1
* packets are always over UDP. Note that software is configured to
* ignore Rx timestamps via the pf->ptp_rx flag.
*/
regval = rd32(hw, I40E_PRTTSYN_CTL1);
/* clear everything but the enable bit */
regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
/* now enable bits for desired Rx timestamps */
regval |= tsyntype;
wr32(hw, I40E_PRTTSYN_CTL1, regval);
return 0;
}
/**
* i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
* @pf: Board private structure
* @ifreq: ioctl data
*
* Respond to the user filter requests and make the appropriate hardware
* changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
* logic, so keep track in software of whether to indicate these timestamps
* or not.
*
* It is permissible to "upgrade" the user request to a broader filter, as long
* as the user receives the timestamps they care about and the user is notified
* the filter has been broadened.
**/
int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
{
struct hwtstamp_config config;
int err;
if (!(pf->flags & I40E_FLAG_PTP))
return -EOPNOTSUPP;
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
return -EFAULT;
err = i40e_ptp_set_timestamp_mode(pf, &config);
if (err)
return err;
/* save these settings for future reference */
pf->tstamp_config = config;
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
-EFAULT : 0;
}
/**
* i40e_ptp_create_clock - Create PTP clock device for userspace
* @pf: Board private structure
*
* This function creates a new PTP clock device. It only creates one if we
* don't already have one, so it is safe to call. Will return error if it
* can't create one, but success if we already have a device. Should be used
* by i40e_ptp_init to create clock initially, and prevent global resets from
* creating new clock devices.
**/
static long i40e_ptp_create_clock(struct i40e_pf *pf)
{
/* no need to create a clock device if we already have one */
if (!IS_ERR_OR_NULL(pf->ptp_clock))
return 0;
strncpy(pf->ptp_caps.name, i40e_driver_name,
sizeof(pf->ptp_caps.name) - 1);
pf->ptp_caps.owner = THIS_MODULE;
pf->ptp_caps.max_adj = 999999999;
pf->ptp_caps.n_ext_ts = 0;
pf->ptp_caps.pps = 0;
pf->ptp_caps.adjfreq = i40e_ptp_adjfreq;
pf->ptp_caps.adjtime = i40e_ptp_adjtime;
pf->ptp_caps.gettime64 = i40e_ptp_gettime;
pf->ptp_caps.settime64 = i40e_ptp_settime;
pf->ptp_caps.enable = i40e_ptp_feature_enable;
/* Attempt to register the clock before enabling the hardware. */
pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
if (IS_ERR(pf->ptp_clock))
return PTR_ERR(pf->ptp_clock);
/* clear the hwtstamp settings here during clock create, instead of
* during regular init, so that we can maintain settings across a
* reset or suspend.
*/
pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
return 0;
}
/**
* i40e_ptp_init - Initialize the 1588 support after device probe or reset
* @pf: Board private structure
*
* This function sets device up for 1588 support. The first time it is run, it
* will create a PHC clock device. It does not create a clock device if one
* already exists. It also reconfigures the device after a reset.
**/
void i40e_ptp_init(struct i40e_pf *pf)
{
struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
struct i40e_hw *hw = &pf->hw;
u32 pf_id;
long err;
/* Only one PF is assigned to control 1588 logic per port. Do not
* enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
*/
pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
if (hw->pf_id != pf_id) {
pf->flags &= ~I40E_FLAG_PTP;
dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
__func__,
netdev->name);
return;
}
/* we have to initialize the lock first, since we can't control
* when the user will enter the PHC device entry points
*/
spin_lock_init(&pf->tmreg_lock);
/* ensure we have a clock device */
err = i40e_ptp_create_clock(pf);
if (err) {
pf->ptp_clock = NULL;
dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
__func__);
} else {
struct timespec64 ts;
u32 regval;
if (pf->hw.debug_mask & I40E_DEBUG_LAN)
dev_info(&pf->pdev->dev, "PHC enabled\n");
pf->flags |= I40E_FLAG_PTP;
/* Ensure the clocks are running. */
regval = rd32(hw, I40E_PRTTSYN_CTL0);
regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
wr32(hw, I40E_PRTTSYN_CTL0, regval);
regval = rd32(hw, I40E_PRTTSYN_CTL1);
regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
wr32(hw, I40E_PRTTSYN_CTL1, regval);
/* Set the increment value per clock tick. */
i40e_ptp_set_increment(pf);
/* reset timestamping mode */
i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
/* Set the clock value. */
ts = ktime_to_timespec64(ktime_get_real());
i40e_ptp_settime(&pf->ptp_caps, &ts);
}
}
/**
* i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
* @pf: Board private structure
*
* This function handles the cleanup work required from the initialization by
* clearing out the important information and unregistering the PHC.
**/
void i40e_ptp_stop(struct i40e_pf *pf)
{
pf->flags &= ~I40E_FLAG_PTP;
pf->ptp_tx = false;
pf->ptp_rx = false;
if (pf->ptp_tx_skb) {
dev_kfree_skb_any(pf->ptp_tx_skb);
pf->ptp_tx_skb = NULL;
clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, &pf->state);
}
if (pf->ptp_clock) {
ptp_clock_unregister(pf->ptp_clock);
pf->ptp_clock = NULL;
dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
pf->vsi[pf->lan_vsi]->netdev->name);
}
}