/* * Device driver for monitoring ambient light intensity (lux) * within the TAOS tsl258x family of devices (tsl2580, tsl2581). * * Copyright (c) 2011, TAOS Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #define TSL258X_MAX_DEVICE_REGS 32 /* Triton register offsets */ #define TSL258X_REG_MAX 8 /* Device Registers and Masks */ #define TSL258X_CNTRL 0x00 #define TSL258X_ALS_TIME 0X01 #define TSL258X_INTERRUPT 0x02 #define TSL258X_GAIN 0x07 #define TSL258X_REVID 0x11 #define TSL258X_CHIPID 0x12 #define TSL258X_ALS_CHAN0LO 0x14 #define TSL258X_ALS_CHAN0HI 0x15 #define TSL258X_ALS_CHAN1LO 0x16 #define TSL258X_ALS_CHAN1HI 0x17 #define TSL258X_TMR_LO 0x18 #define TSL258X_TMR_HI 0x19 /* tsl2583 cmd reg masks */ #define TSL258X_CMD_REG 0x80 #define TSL258X_CMD_SPL_FN 0x60 #define TSL258X_CMD_ALS_INT_CLR 0X01 /* tsl2583 cntrl reg masks */ #define TSL258X_CNTL_ADC_ENBL 0x02 #define TSL258X_CNTL_PWR_ON 0x01 /* tsl2583 status reg masks */ #define TSL258X_STA_ADC_VALID 0x01 #define TSL258X_STA_ADC_INTR 0x10 /* Lux calculation constants */ #define TSL258X_LUX_CALC_OVER_FLOW 65535 enum { TSL258X_CHIP_UNKNOWN = 0, TSL258X_CHIP_WORKING = 1, TSL258X_CHIP_SUSPENDED = 2 }; /* Per-device data */ struct taos_als_info { u16 als_ch0; u16 als_ch1; u16 lux; }; struct taos_settings { int als_time; int als_gain; int als_gain_trim; int als_cal_target; }; struct tsl2583_chip { struct mutex als_mutex; struct i2c_client *client; struct taos_als_info als_cur_info; struct taos_settings taos_settings; int als_time_scale; int als_saturation; int taos_chip_status; u8 taos_config[8]; }; /* * Initial values for device - this values can/will be changed by driver. * and applications as needed. * These values are dynamic. */ static const u8 taos_config[8] = { 0x00, 0xee, 0x00, 0x03, 0x00, 0xFF, 0xFF, 0x00 }; /* cntrl atime intC Athl0 Athl1 Athh0 Athh1 gain */ struct taos_lux { unsigned int ratio; unsigned int ch0; unsigned int ch1; }; /* This structure is intentionally large to accommodate updates via sysfs. */ /* Sized to 11 = max 10 segments + 1 termination segment */ /* Assumption is one and only one type of glass used */ static struct taos_lux taos_device_lux[11] = { { 9830, 8520, 15729 }, { 12452, 10807, 23344 }, { 14746, 6383, 11705 }, { 17695, 4063, 6554 }, }; struct gainadj { s16 ch0; s16 ch1; }; /* Index = (0 - 3) Used to validate the gain selection index */ static const struct gainadj gainadj[] = { { 1, 1 }, { 8, 8 }, { 16, 16 }, { 107, 115 } }; /* * Provides initial operational parameter defaults. * These defaults may be changed through the device's sysfs files. */ static void taos_defaults(struct tsl2583_chip *chip) { /* Operational parameters */ chip->taos_settings.als_time = 100; /* must be a multiple of 50mS */ chip->taos_settings.als_gain = 0; /* this is actually an index into the gain table */ /* assume clear glass as default */ chip->taos_settings.als_gain_trim = 1000; /* default gain trim to account for aperture effects */ chip->taos_settings.als_cal_target = 130; /* Known external ALS reading used for calibration */ } /* * Read a number of bytes starting at register (reg) location. * Return 0, or i2c_smbus_write_byte ERROR code. */ static int taos_i2c_read(struct i2c_client *client, u8 reg, u8 *val, unsigned int len) { int i, ret; for (i = 0; i < len; i++) { /* select register to write */ ret = i2c_smbus_write_byte(client, (TSL258X_CMD_REG | reg)); if (ret < 0) { dev_err(&client->dev, "taos_i2c_read failed to write register %x\n", reg); return ret; } /* read the data */ *val = i2c_smbus_read_byte(client); val++; reg++; } return 0; } /* * Reads and calculates current lux value. * The raw ch0 and ch1 values of the ambient light sensed in the last * integration cycle are read from the device. * Time scale factor array values are adjusted based on the integration time. * The raw values are multiplied by a scale factor, and device gain is obtained * using gain index. Limit checks are done next, then the ratio of a multiple * of ch1 value, to the ch0 value, is calculated. The array taos_device_lux[] * declared above is then scanned to find the first ratio value that is just * above the ratio we just calculated. The ch0 and ch1 multiplier constants in * the array are then used along with the time scale factor array values, to * calculate the lux. */ static int taos_get_lux(struct iio_dev *indio_dev) { u16 ch0, ch1; /* separated ch0/ch1 data from device */ u32 lux; /* raw lux calculated from device data */ u64 lux64; u32 ratio; u8 buf[5]; struct taos_lux *p; struct tsl2583_chip *chip = iio_priv(indio_dev); int i, ret; u32 ch0lux = 0; u32 ch1lux = 0; if (mutex_trylock(&chip->als_mutex) == 0) { dev_info(&chip->client->dev, "taos_get_lux device is busy\n"); return chip->als_cur_info.lux; /* busy, so return LAST VALUE */ } if (chip->taos_chip_status != TSL258X_CHIP_WORKING) { /* device is not enabled */ dev_err(&chip->client->dev, "taos_get_lux device is not enabled\n"); ret = -EBUSY; goto out_unlock; } ret = taos_i2c_read(chip->client, (TSL258X_CMD_REG), &buf[0], 1); if (ret < 0) { dev_err(&chip->client->dev, "taos_get_lux failed to read CMD_REG\n"); goto out_unlock; } /* is data new & valid */ if (!(buf[0] & TSL258X_STA_ADC_INTR)) { dev_err(&chip->client->dev, "taos_get_lux data not valid\n"); ret = chip->als_cur_info.lux; /* return LAST VALUE */ goto out_unlock; } for (i = 0; i < 4; i++) { int reg = TSL258X_CMD_REG | (TSL258X_ALS_CHAN0LO + i); ret = taos_i2c_read(chip->client, reg, &buf[i], 1); if (ret < 0) { dev_err(&chip->client->dev, "taos_get_lux failed to read register %x\n", reg); goto out_unlock; } } /* clear status, really interrupt status (interrupts are off), but * we use the bit anyway - don't forget 0x80 - this is a command*/ ret = i2c_smbus_write_byte(chip->client, (TSL258X_CMD_REG | TSL258X_CMD_SPL_FN | TSL258X_CMD_ALS_INT_CLR)); if (ret < 0) { dev_err(&chip->client->dev, "taos_i2c_write_command failed in taos_get_lux, err = %d\n", ret); goto out_unlock; /* have no data, so return failure */ } /* extract ALS/lux data */ ch0 = le16_to_cpup((const __le16 *)&buf[0]); ch1 = le16_to_cpup((const __le16 *)&buf[2]); chip->als_cur_info.als_ch0 = ch0; chip->als_cur_info.als_ch1 = ch1; if ((ch0 >= chip->als_saturation) || (ch1 >= chip->als_saturation)) goto return_max; if (!ch0) { /* have no data, so return LAST VALUE */ ret = chip->als_cur_info.lux = 0; goto out_unlock; } /* calculate ratio */ ratio = (ch1 << 15) / ch0; /* convert to unscaled lux using the pointer to the table */ for (p = (struct taos_lux *) taos_device_lux; p->ratio != 0 && p->ratio < ratio; p++) ; if (p->ratio == 0) { lux = 0; } else { ch0lux = ((ch0 * p->ch0) + (gainadj[chip->taos_settings.als_gain].ch0 >> 1)) / gainadj[chip->taos_settings.als_gain].ch0; ch1lux = ((ch1 * p->ch1) + (gainadj[chip->taos_settings.als_gain].ch1 >> 1)) / gainadj[chip->taos_settings.als_gain].ch1; lux = ch0lux - ch1lux; } /* note: lux is 31 bit max at this point */ if (ch1lux > ch0lux) { dev_dbg(&chip->client->dev, "No Data - Return last value\n"); ret = chip->als_cur_info.lux = 0; goto out_unlock; } /* adjust for active time scale */ if (chip->als_time_scale == 0) lux = 0; else lux = (lux + (chip->als_time_scale >> 1)) / chip->als_time_scale; /* Adjust for active gain scale. * The taos_device_lux tables above have a factor of 8192 built in, * so we need to shift right. * User-specified gain provides a multiplier. * Apply user-specified gain before shifting right to retain precision. * Use 64 bits to avoid overflow on multiplication. * Then go back to 32 bits before division to avoid using div_u64(). */ lux64 = lux; lux64 = lux64 * chip->taos_settings.als_gain_trim; lux64 >>= 13; lux = lux64; lux = (lux + 500) / 1000; if (lux > TSL258X_LUX_CALC_OVER_FLOW) { /* check for overflow */ return_max: lux = TSL258X_LUX_CALC_OVER_FLOW; } /* Update the structure with the latest VALID lux. */ chip->als_cur_info.lux = lux; ret = lux; out_unlock: mutex_unlock(&chip->als_mutex); return ret; } /* * Obtain single reading and calculate the als_gain_trim (later used * to derive actual lux). * Return updated gain_trim value. */ static int taos_als_calibrate(struct iio_dev *indio_dev) { struct tsl2583_chip *chip = iio_priv(indio_dev); u8 reg_val; unsigned int gain_trim_val; int ret; int lux_val; ret = i2c_smbus_write_byte(chip->client, (TSL258X_CMD_REG | TSL258X_CNTRL)); if (ret < 0) { dev_err(&chip->client->dev, "taos_als_calibrate failed to reach the CNTRL register, ret=%d\n", ret); return ret; } reg_val = i2c_smbus_read_byte(chip->client); if ((reg_val & (TSL258X_CNTL_ADC_ENBL | TSL258X_CNTL_PWR_ON)) != (TSL258X_CNTL_ADC_ENBL | TSL258X_CNTL_PWR_ON)) { dev_err(&chip->client->dev, "taos_als_calibrate failed: device not powered on with ADC enabled\n"); return -1; } ret = i2c_smbus_write_byte(chip->client, (TSL258X_CMD_REG | TSL258X_CNTRL)); if (ret < 0) { dev_err(&chip->client->dev, "taos_als_calibrate failed to reach the STATUS register, ret=%d\n", ret); return ret; } reg_val = i2c_smbus_read_byte(chip->client); if ((reg_val & TSL258X_STA_ADC_VALID) != TSL258X_STA_ADC_VALID) { dev_err(&chip->client->dev, "taos_als_calibrate failed: STATUS - ADC not valid.\n"); return -ENODATA; } lux_val = taos_get_lux(indio_dev); if (lux_val < 0) { dev_err(&chip->client->dev, "taos_als_calibrate failed to get lux\n"); return lux_val; } /* Avoid division by zero of lux_value later on */ if (lux_val == 0) { dev_err(&chip->client->dev, "%s: lux_val of 0 will produce out of range trim_value\n", __func__); return -ENODATA; } gain_trim_val = (unsigned int) (((chip->taos_settings.als_cal_target) * chip->taos_settings.als_gain_trim) / lux_val); if ((gain_trim_val < 250) || (gain_trim_val > 4000)) { dev_err(&chip->client->dev, "taos_als_calibrate failed: trim_val of %d is out of range\n", gain_trim_val); return -ENODATA; } chip->taos_settings.als_gain_trim = (int) gain_trim_val; return (int) gain_trim_val; } /* * Turn the device on. * Configuration must be set before calling this function. */ static int taos_chip_on(struct iio_dev *indio_dev) { int i; int ret; u8 *uP; u8 utmp; int als_count; int als_time; struct tsl2583_chip *chip = iio_priv(indio_dev); /* and make sure we're not already on */ if (chip->taos_chip_status == TSL258X_CHIP_WORKING) { /* if forcing a register update - turn off, then on */ dev_info(&chip->client->dev, "device is already enabled\n"); return -EINVAL; } /* determine als integration register */ als_count = (chip->taos_settings.als_time * 100 + 135) / 270; if (!als_count) als_count = 1; /* ensure at least one cycle */ /* convert back to time (encompasses overrides) */ als_time = (als_count * 27 + 5) / 10; chip->taos_config[TSL258X_ALS_TIME] = 256 - als_count; /* Set the gain based on taos_settings struct */ chip->taos_config[TSL258X_GAIN] = chip->taos_settings.als_gain; /* set chip struct re scaling and saturation */ chip->als_saturation = als_count * 922; /* 90% of full scale */ chip->als_time_scale = (als_time + 25) / 50; /* TSL258x Specific power-on / adc enable sequence * Power on the device 1st. */ utmp = TSL258X_CNTL_PWR_ON; ret = i2c_smbus_write_byte_data(chip->client, TSL258X_CMD_REG | TSL258X_CNTRL, utmp); if (ret < 0) { dev_err(&chip->client->dev, "taos_chip_on failed on CNTRL reg.\n"); return ret; } /* Use the following shadow copy for our delay before enabling ADC. * Write all the registers. */ for (i = 0, uP = chip->taos_config; i < TSL258X_REG_MAX; i++) { ret = i2c_smbus_write_byte_data(chip->client, TSL258X_CMD_REG + i, *uP++); if (ret < 0) { dev_err(&chip->client->dev, "taos_chip_on failed on reg %d.\n", i); return ret; } } usleep_range(3000, 3500); /* NOW enable the ADC * initialize the desired mode of operation */ utmp = TSL258X_CNTL_PWR_ON | TSL258X_CNTL_ADC_ENBL; ret = i2c_smbus_write_byte_data(chip->client, TSL258X_CMD_REG | TSL258X_CNTRL, utmp); if (ret < 0) { dev_err(&chip->client->dev, "taos_chip_on failed on 2nd CTRL reg.\n"); return ret; } chip->taos_chip_status = TSL258X_CHIP_WORKING; return ret; } static int taos_chip_off(struct iio_dev *indio_dev) { struct tsl2583_chip *chip = iio_priv(indio_dev); /* turn device off */ chip->taos_chip_status = TSL258X_CHIP_SUSPENDED; return i2c_smbus_write_byte_data(chip->client, TSL258X_CMD_REG | TSL258X_CNTRL, 0x00); } /* Sysfs Interface Functions */ static ssize_t taos_power_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2583_chip *chip = iio_priv(indio_dev); return sprintf(buf, "%d\n", chip->taos_chip_status); } static ssize_t taos_power_state_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); int value; if (kstrtoint(buf, 0, &value)) return -EINVAL; if (!value) taos_chip_off(indio_dev); else taos_chip_on(indio_dev); return len; } static ssize_t taos_gain_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2583_chip *chip = iio_priv(indio_dev); char gain[4] = {0}; switch (chip->taos_settings.als_gain) { case 0: strcpy(gain, "001"); break; case 1: strcpy(gain, "008"); break; case 2: strcpy(gain, "016"); break; case 3: strcpy(gain, "111"); break; } return sprintf(buf, "%s\n", gain); } static ssize_t taos_gain_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2583_chip *chip = iio_priv(indio_dev); int value; if (kstrtoint(buf, 0, &value)) return -EINVAL; switch (value) { case 1: chip->taos_settings.als_gain = 0; break; case 8: chip->taos_settings.als_gain = 1; break; case 16: chip->taos_settings.als_gain = 2; break; case 111: chip->taos_settings.als_gain = 3; break; default: dev_err(dev, "Invalid Gain Index (must be 1,8,16,111)\n"); return -1; } return len; } static ssize_t taos_gain_available_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%s\n", "1 8 16 111"); } static ssize_t taos_als_time_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2583_chip *chip = iio_priv(indio_dev); return sprintf(buf, "%d\n", chip->taos_settings.als_time); } static ssize_t taos_als_time_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2583_chip *chip = iio_priv(indio_dev); int value; if (kstrtoint(buf, 0, &value)) return -EINVAL; if ((value < 50) || (value > 650)) return -EINVAL; if (value % 50) return -EINVAL; chip->taos_settings.als_time = value; return len; } static ssize_t taos_als_time_available_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%s\n", "50 100 150 200 250 300 350 400 450 500 550 600 650"); } static ssize_t taos_als_trim_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2583_chip *chip = iio_priv(indio_dev); return sprintf(buf, "%d\n", chip->taos_settings.als_gain_trim); } static ssize_t taos_als_trim_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2583_chip *chip = iio_priv(indio_dev); int value; if (kstrtoint(buf, 0, &value)) return -EINVAL; if (value) chip->taos_settings.als_gain_trim = value; return len; } static ssize_t taos_als_cal_target_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2583_chip *chip = iio_priv(indio_dev); return sprintf(buf, "%d\n", chip->taos_settings.als_cal_target); } static ssize_t taos_als_cal_target_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2583_chip *chip = iio_priv(indio_dev); int value; if (kstrtoint(buf, 0, &value)) return -EINVAL; if (value) chip->taos_settings.als_cal_target = value; return len; } static ssize_t taos_lux_show(struct device *dev, struct device_attribute *attr, char *buf) { int ret; ret = taos_get_lux(dev_to_iio_dev(dev)); if (ret < 0) return ret; return sprintf(buf, "%d\n", ret); } static ssize_t taos_do_calibrate(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); int value; if (kstrtoint(buf, 0, &value)) return -EINVAL; if (value == 1) taos_als_calibrate(indio_dev); return len; } static ssize_t taos_luxtable_show(struct device *dev, struct device_attribute *attr, char *buf) { int i; int offset = 0; for (i = 0; i < ARRAY_SIZE(taos_device_lux); i++) { offset += sprintf(buf + offset, "%u,%u,%u,", taos_device_lux[i].ratio, taos_device_lux[i].ch0, taos_device_lux[i].ch1); if (taos_device_lux[i].ratio == 0) { /* We just printed the first "0" entry. * Now get rid of the extra "," and break. */ offset--; break; } } offset += sprintf(buf + offset, "\n"); return offset; } static ssize_t taos_luxtable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2583_chip *chip = iio_priv(indio_dev); int value[ARRAY_SIZE(taos_device_lux)*3 + 1]; int n; get_options(buf, ARRAY_SIZE(value), value); /* We now have an array of ints starting at value[1], and * enumerated by value[0]. * We expect each group of three ints is one table entry, * and the last table entry is all 0. */ n = value[0]; if ((n % 3) || n < 6 || n > ((ARRAY_SIZE(taos_device_lux) - 1) * 3)) { dev_info(dev, "LUX TABLE INPUT ERROR 1 Value[0]=%d\n", n); return -EINVAL; } if ((value[(n - 2)] | value[(n - 1)] | value[n]) != 0) { dev_info(dev, "LUX TABLE INPUT ERROR 2 Value[0]=%d\n", n); return -EINVAL; } if (chip->taos_chip_status == TSL258X_CHIP_WORKING) taos_chip_off(indio_dev); /* Zero out the table */ memset(taos_device_lux, 0, sizeof(taos_device_lux)); memcpy(taos_device_lux, &value[1], (value[0] * 4)); taos_chip_on(indio_dev); return len; } static DEVICE_ATTR(power_state, S_IRUGO | S_IWUSR, taos_power_state_show, taos_power_state_store); static DEVICE_ATTR(illuminance0_calibscale, S_IRUGO | S_IWUSR, taos_gain_show, taos_gain_store); static DEVICE_ATTR(illuminance0_calibscale_available, S_IRUGO, taos_gain_available_show, NULL); static DEVICE_ATTR(illuminance0_integration_time, S_IRUGO | S_IWUSR, taos_als_time_show, taos_als_time_store); static DEVICE_ATTR(illuminance0_integration_time_available, S_IRUGO, taos_als_time_available_show, NULL); static DEVICE_ATTR(illuminance0_calibbias, S_IRUGO | S_IWUSR, taos_als_trim_show, taos_als_trim_store); static DEVICE_ATTR(illuminance0_input_target, S_IRUGO | S_IWUSR, taos_als_cal_target_show, taos_als_cal_target_store); static DEVICE_ATTR(illuminance0_input, S_IRUGO, taos_lux_show, NULL); static DEVICE_ATTR(illuminance0_calibrate, S_IWUSR, NULL, taos_do_calibrate); static DEVICE_ATTR(illuminance0_lux_table, S_IRUGO | S_IWUSR, taos_luxtable_show, taos_luxtable_store); static struct attribute *sysfs_attrs_ctrl[] = { &dev_attr_power_state.attr, &dev_attr_illuminance0_calibscale.attr, /* Gain */ &dev_attr_illuminance0_calibscale_available.attr, &dev_attr_illuminance0_integration_time.attr, /* I time*/ &dev_attr_illuminance0_integration_time_available.attr, &dev_attr_illuminance0_calibbias.attr, /* trim */ &dev_attr_illuminance0_input_target.attr, &dev_attr_illuminance0_input.attr, &dev_attr_illuminance0_calibrate.attr, &dev_attr_illuminance0_lux_table.attr, NULL }; static struct attribute_group tsl2583_attribute_group = { .attrs = sysfs_attrs_ctrl, }; /* Use the default register values to identify the Taos device */ static int taos_tsl258x_device(unsigned char *bufp) { return ((bufp[TSL258X_CHIPID] & 0xf0) == 0x90); } static const struct iio_info tsl2583_info = { .attrs = &tsl2583_attribute_group, .driver_module = THIS_MODULE, }; /* * Client probe function - When a valid device is found, the driver's device * data structure is updated, and initialization completes successfully. */ static int taos_probe(struct i2c_client *clientp, const struct i2c_device_id *idp) { int i, ret; unsigned char buf[TSL258X_MAX_DEVICE_REGS]; struct tsl2583_chip *chip; struct iio_dev *indio_dev; if (!i2c_check_functionality(clientp->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { dev_err(&clientp->dev, "taos_probe() - i2c smbus byte data func unsupported\n"); return -EOPNOTSUPP; } indio_dev = devm_iio_device_alloc(&clientp->dev, sizeof(*chip)); if (!indio_dev) return -ENOMEM; chip = iio_priv(indio_dev); chip->client = clientp; i2c_set_clientdata(clientp, indio_dev); mutex_init(&chip->als_mutex); chip->taos_chip_status = TSL258X_CHIP_UNKNOWN; memcpy(chip->taos_config, taos_config, sizeof(chip->taos_config)); for (i = 0; i < TSL258X_MAX_DEVICE_REGS; i++) { ret = i2c_smbus_write_byte(clientp, (TSL258X_CMD_REG | (TSL258X_CNTRL + i))); if (ret < 0) { dev_err(&clientp->dev, "i2c_smbus_write_byte to cmd reg failed in taos_probe(), err = %d\n", ret); return ret; } ret = i2c_smbus_read_byte(clientp); if (ret < 0) { dev_err(&clientp->dev, "i2c_smbus_read_byte from reg failed in taos_probe(), err = %d\n", ret); return ret; } buf[i] = ret; } if (!taos_tsl258x_device(buf)) { dev_info(&clientp->dev, "i2c device found but does not match expected id in taos_probe()\n"); return -EINVAL; } ret = i2c_smbus_write_byte(clientp, (TSL258X_CMD_REG | TSL258X_CNTRL)); if (ret < 0) { dev_err(&clientp->dev, "i2c_smbus_write_byte() to cmd reg failed in taos_probe(), err = %d\n", ret); return ret; } indio_dev->info = &tsl2583_info; indio_dev->dev.parent = &clientp->dev; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->name = chip->client->name; ret = devm_iio_device_register(indio_dev->dev.parent, indio_dev); if (ret) { dev_err(&clientp->dev, "iio registration failed\n"); return ret; } /* Load up the V2 defaults (these are hard coded defaults for now) */ taos_defaults(chip); /* Make sure the chip is on */ taos_chip_on(indio_dev); dev_info(&clientp->dev, "Light sensor found.\n"); return 0; } #ifdef CONFIG_PM_SLEEP static int taos_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct tsl2583_chip *chip = iio_priv(indio_dev); int ret = 0; mutex_lock(&chip->als_mutex); if (chip->taos_chip_status == TSL258X_CHIP_WORKING) { ret = taos_chip_off(indio_dev); chip->taos_chip_status = TSL258X_CHIP_SUSPENDED; } mutex_unlock(&chip->als_mutex); return ret; } static int taos_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct tsl2583_chip *chip = iio_priv(indio_dev); int ret = 0; mutex_lock(&chip->als_mutex); if (chip->taos_chip_status == TSL258X_CHIP_SUSPENDED) ret = taos_chip_on(indio_dev); mutex_unlock(&chip->als_mutex); return ret; } static SIMPLE_DEV_PM_OPS(taos_pm_ops, taos_suspend, taos_resume); #define TAOS_PM_OPS (&taos_pm_ops) #else #define TAOS_PM_OPS NULL #endif static struct i2c_device_id taos_idtable[] = { { "tsl2580", 0 }, { "tsl2581", 1 }, { "tsl2583", 2 }, {} }; MODULE_DEVICE_TABLE(i2c, taos_idtable); /* Driver definition */ static struct i2c_driver taos_driver = { .driver = { .name = "tsl2583", .pm = TAOS_PM_OPS, }, .id_table = taos_idtable, .probe = taos_probe, }; module_i2c_driver(taos_driver); MODULE_AUTHOR("J. August Brenner"); MODULE_DESCRIPTION("TAOS tsl2583 ambient light sensor driver"); MODULE_LICENSE("GPL");