/* * sst-atom-controls.c - Intel MID Platform driver DPCM ALSA controls for Mrfld * * Copyright (C) 2013-14 Intel Corp * Author: Omair Mohammed Abdullah * Vinod Koul * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * In the dpcm driver modelling when a particular FE/BE/Mixer/Pipe is active * we forward the settings and parameters, rest we keep the values in * driver and forward when DAPM enables them * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include "sst-mfld-platform.h" #include "sst-atom-controls.h" static int sst_fill_byte_control(struct sst_data *drv, u8 ipc_msg, u8 block, u8 task_id, u8 pipe_id, u16 len, void *cmd_data) { struct snd_sst_bytes_v2 *byte_data = drv->byte_stream; byte_data->type = SST_CMD_BYTES_SET; byte_data->ipc_msg = ipc_msg; byte_data->block = block; byte_data->task_id = task_id; byte_data->pipe_id = pipe_id; if (len > SST_MAX_BIN_BYTES - sizeof(*byte_data)) { dev_err(&drv->pdev->dev, "command length too big (%u)", len); return -EINVAL; } byte_data->len = len; memcpy(byte_data->bytes, cmd_data, len); print_hex_dump_bytes("writing to lpe: ", DUMP_PREFIX_OFFSET, byte_data, len + sizeof(*byte_data)); return 0; } static int sst_fill_and_send_cmd_unlocked(struct sst_data *drv, u8 ipc_msg, u8 block, u8 task_id, u8 pipe_id, void *cmd_data, u16 len) { int ret = 0; ret = sst_fill_byte_control(drv, ipc_msg, block, task_id, pipe_id, len, cmd_data); if (ret < 0) return ret; return sst->ops->send_byte_stream(sst->dev, drv->byte_stream); } /** * sst_fill_and_send_cmd - generate the IPC message and send it to the FW * @ipc_msg: type of IPC (CMD, SET_PARAMS, GET_PARAMS) * @cmd_data: the IPC payload */ static int sst_fill_and_send_cmd(struct sst_data *drv, u8 ipc_msg, u8 block, u8 task_id, u8 pipe_id, void *cmd_data, u16 len) { int ret; mutex_lock(&drv->lock); ret = sst_fill_and_send_cmd_unlocked(drv, ipc_msg, block, task_id, pipe_id, cmd_data, len); mutex_unlock(&drv->lock); return ret; } /** * tx map value is a bitfield where each bit represents a FW channel * * 3 2 1 0 # 0 = codec0, 1 = codec1 * RLRLRLRL # 3, 4 = reserved * * e.g. slot 0 rx map = 00001100b -> data from slot 0 goes into codec_in1 L,R */ static u8 sst_ssp_tx_map[SST_MAX_TDM_SLOTS] = { 0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80, /* default rx map */ }; /** * rx map value is a bitfield where each bit represents a slot * * 76543210 # 0 = slot 0, 1 = slot 1 * * e.g. codec1_0 tx map = 00000101b -> data from codec_out1_0 goes into slot 0, 2 */ static u8 sst_ssp_rx_map[SST_MAX_TDM_SLOTS] = { 0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80, /* default tx map */ }; /** * NOTE: this is invoked with lock held */ static int sst_send_slot_map(struct sst_data *drv) { struct sst_param_sba_ssp_slot_map cmd; SST_FILL_DEFAULT_DESTINATION(cmd.header.dst); cmd.header.command_id = SBA_SET_SSP_SLOT_MAP; cmd.header.length = sizeof(struct sst_param_sba_ssp_slot_map) - sizeof(struct sst_dsp_header); cmd.param_id = SBA_SET_SSP_SLOT_MAP; cmd.param_len = sizeof(cmd.rx_slot_map) + sizeof(cmd.tx_slot_map) + sizeof(cmd.ssp_index); cmd.ssp_index = SSP_CODEC; memcpy(cmd.rx_slot_map, &sst_ssp_tx_map[0], sizeof(cmd.rx_slot_map)); memcpy(cmd.tx_slot_map, &sst_ssp_rx_map[0], sizeof(cmd.tx_slot_map)); return sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_SET_PARAMS, SST_FLAG_BLOCKED, SST_TASK_SBA, 0, &cmd, sizeof(cmd.header) + cmd.header.length); } static int sst_slot_enum_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct sst_enum *e = (struct sst_enum *)kcontrol->private_value; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = e->max; if (uinfo->value.enumerated.item > e->max - 1) uinfo->value.enumerated.item = e->max - 1; strcpy(uinfo->value.enumerated.name, e->texts[uinfo->value.enumerated.item]); return 0; } /** * sst_slot_get - get the status of the interleaver/deinterleaver control * * Searches the map where the control status is stored, and gets the * channel/slot which is currently set for this enumerated control. Since it is * an enumerated control, there is only one possible value. */ static int sst_slot_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct sst_enum *e = (void *)kcontrol->private_value; struct snd_soc_component *c = snd_kcontrol_chip(kcontrol); struct sst_data *drv = snd_soc_component_get_drvdata(c); unsigned int ctl_no = e->reg; unsigned int is_tx = e->tx; unsigned int val, mux; u8 *map = is_tx ? sst_ssp_rx_map : sst_ssp_tx_map; mutex_lock(&drv->lock); val = 1 << ctl_no; /* search which slot/channel has this bit set - there should be only one */ for (mux = e->max; mux > 0; mux--) if (map[mux - 1] & val) break; ucontrol->value.enumerated.item[0] = mux; mutex_unlock(&drv->lock); dev_dbg(c->dev, "%s - %s map = %#x\n", is_tx ? "tx channel" : "rx slot", e->texts[mux], mux ? map[mux - 1] : -1); return 0; } /* sst_check_and_send_slot_map - helper for checking power state and sending * slot map cmd * * called with lock held */ static int sst_check_and_send_slot_map(struct sst_data *drv, struct snd_kcontrol *kcontrol) { struct sst_enum *e = (void *)kcontrol->private_value; int ret = 0; if (e->w && e->w->power) ret = sst_send_slot_map(drv); else dev_err(&drv->pdev->dev, "Slot control: %s doesn't have DAPM widget!!!\n", kcontrol->id.name); return ret; } /** * sst_slot_put - set the status of interleaver/deinterleaver control * * (de)interleaver controls are defined in opposite sense to be user-friendly * * Instead of the enum value being the value written to the register, it is the * register address; and the kcontrol number (register num) is the value written * to the register. This is so that there can be only one value for each * slot/channel since there is only one control for each slot/channel. * * This means that whenever an enum is set, we need to clear the bit * for that kcontrol_no for all the interleaver OR deinterleaver registers */ static int sst_slot_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *c = snd_soc_kcontrol_component(kcontrol); struct sst_data *drv = snd_soc_component_get_drvdata(c); struct sst_enum *e = (void *)kcontrol->private_value; int i, ret = 0; unsigned int ctl_no = e->reg; unsigned int is_tx = e->tx; unsigned int slot_channel_no; unsigned int val, mux; u8 *map; map = is_tx ? sst_ssp_rx_map : sst_ssp_tx_map; val = 1 << ctl_no; mux = ucontrol->value.enumerated.item[0]; if (mux > e->max - 1) return -EINVAL; mutex_lock(&drv->lock); /* first clear all registers of this bit */ for (i = 0; i < e->max; i++) map[i] &= ~val; if (mux == 0) { /* kctl set to 'none' and we reset the bits so send IPC */ ret = sst_check_and_send_slot_map(drv, kcontrol); mutex_unlock(&drv->lock); return ret; } /* offset by one to take "None" into account */ slot_channel_no = mux - 1; map[slot_channel_no] |= val; dev_dbg(c->dev, "%s %s map = %#x\n", is_tx ? "tx channel" : "rx slot", e->texts[mux], map[slot_channel_no]); ret = sst_check_and_send_slot_map(drv, kcontrol); mutex_unlock(&drv->lock); return ret; } static int sst_send_algo_cmd(struct sst_data *drv, struct sst_algo_control *bc) { int len, ret = 0; struct sst_cmd_set_params *cmd; /*bc->max includes sizeof algos + length field*/ len = sizeof(cmd->dst) + sizeof(cmd->command_id) + bc->max; cmd = kzalloc(len, GFP_KERNEL); if (cmd == NULL) return -ENOMEM; SST_FILL_DESTINATION(2, cmd->dst, bc->pipe_id, bc->module_id); cmd->command_id = bc->cmd_id; memcpy(cmd->params, bc->params, bc->max); ret = sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_SET_PARAMS, SST_FLAG_BLOCKED, bc->task_id, 0, cmd, len); kfree(cmd); return ret; } /** * sst_find_and_send_pipe_algo - send all the algo parameters for a pipe * * The algos which are in each pipeline are sent to the firmware one by one * * Called with lock held */ static int sst_find_and_send_pipe_algo(struct sst_data *drv, const char *pipe, struct sst_ids *ids) { int ret = 0; struct sst_algo_control *bc; struct sst_module *algo = NULL; dev_dbg(&drv->pdev->dev, "Enter: widget=%s\n", pipe); list_for_each_entry(algo, &ids->algo_list, node) { bc = (void *)algo->kctl->private_value; dev_dbg(&drv->pdev->dev, "Found algo control name=%s pipe=%s\n", algo->kctl->id.name, pipe); ret = sst_send_algo_cmd(drv, bc); if (ret) return ret; } return ret; } static int sst_algo_bytes_ctl_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct sst_algo_control *bc = (void *)kcontrol->private_value; uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; uinfo->count = bc->max; return 0; } static int sst_algo_control_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct sst_algo_control *bc = (void *)kcontrol->private_value; struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); switch (bc->type) { case SST_ALGO_PARAMS: memcpy(ucontrol->value.bytes.data, bc->params, bc->max); break; default: dev_err(component->dev, "Invalid Input- algo type:%d\n", bc->type); return -EINVAL; } return 0; } static int sst_algo_control_set(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int ret = 0; struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol); struct sst_data *drv = snd_soc_component_get_drvdata(cmpnt); struct sst_algo_control *bc = (void *)kcontrol->private_value; dev_dbg(cmpnt->dev, "control_name=%s\n", kcontrol->id.name); mutex_lock(&drv->lock); switch (bc->type) { case SST_ALGO_PARAMS: memcpy(bc->params, ucontrol->value.bytes.data, bc->max); break; default: mutex_unlock(&drv->lock); dev_err(cmpnt->dev, "Invalid Input- algo type:%d\n", bc->type); return -EINVAL; } /*if pipe is enabled, need to send the algo params from here*/ if (bc->w && bc->w->power) ret = sst_send_algo_cmd(drv, bc); mutex_unlock(&drv->lock); return ret; } static int sst_gain_ctl_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct sst_gain_mixer_control *mc = (void *)kcontrol->private_value; uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = mc->stereo ? 2 : 1; uinfo->value.integer.min = mc->min; uinfo->value.integer.max = mc->max; return 0; } /** * sst_send_gain_cmd - send the gain algorithm IPC to the FW * @gv: the stored value of gain (also contains rampduration) * @mute: flag that indicates whether this was called from the * digital_mute callback or directly. If called from the * digital_mute callback, module will be muted/unmuted based on this * flag. The flag is always 0 if called directly. * * Called with sst_data.lock held * * The user-set gain value is sent only if the user-controllable 'mute' control * is OFF (indicated by gv->mute). Otherwise, the mute value (MIN value) is * sent. */ static int sst_send_gain_cmd(struct sst_data *drv, struct sst_gain_value *gv, u16 task_id, u16 loc_id, u16 module_id, int mute) { struct sst_cmd_set_gain_dual cmd; dev_dbg(&drv->pdev->dev, "Enter\n"); cmd.header.command_id = MMX_SET_GAIN; SST_FILL_DEFAULT_DESTINATION(cmd.header.dst); cmd.gain_cell_num = 1; if (mute || gv->mute) { cmd.cell_gains[0].cell_gain_left = SST_GAIN_MIN_VALUE; cmd.cell_gains[0].cell_gain_right = SST_GAIN_MIN_VALUE; } else { cmd.cell_gains[0].cell_gain_left = gv->l_gain; cmd.cell_gains[0].cell_gain_right = gv->r_gain; } SST_FILL_DESTINATION(2, cmd.cell_gains[0].dest, loc_id, module_id); cmd.cell_gains[0].gain_time_constant = gv->ramp_duration; cmd.header.length = sizeof(struct sst_cmd_set_gain_dual) - sizeof(struct sst_dsp_header); /* we are with lock held, so call the unlocked api to send */ return sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_SET_PARAMS, SST_FLAG_BLOCKED, task_id, 0, &cmd, sizeof(cmd.header) + cmd.header.length); } static int sst_gain_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct sst_gain_mixer_control *mc = (void *)kcontrol->private_value; struct sst_gain_value *gv = mc->gain_val; switch (mc->type) { case SST_GAIN_TLV: ucontrol->value.integer.value[0] = gv->l_gain; ucontrol->value.integer.value[1] = gv->r_gain; break; case SST_GAIN_MUTE: ucontrol->value.integer.value[0] = gv->mute ? 1 : 0; break; case SST_GAIN_RAMP_DURATION: ucontrol->value.integer.value[0] = gv->ramp_duration; break; default: dev_err(component->dev, "Invalid Input- gain type:%d\n", mc->type); return -EINVAL; } return 0; } static int sst_gain_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int ret = 0; struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol); struct sst_data *drv = snd_soc_component_get_drvdata(cmpnt); struct sst_gain_mixer_control *mc = (void *)kcontrol->private_value; struct sst_gain_value *gv = mc->gain_val; mutex_lock(&drv->lock); switch (mc->type) { case SST_GAIN_TLV: gv->l_gain = ucontrol->value.integer.value[0]; gv->r_gain = ucontrol->value.integer.value[1]; dev_dbg(cmpnt->dev, "%s: Volume %d, %d\n", mc->pname, gv->l_gain, gv->r_gain); break; case SST_GAIN_MUTE: gv->mute = !!ucontrol->value.integer.value[0]; dev_dbg(cmpnt->dev, "%s: Mute %d\n", mc->pname, gv->mute); break; case SST_GAIN_RAMP_DURATION: gv->ramp_duration = ucontrol->value.integer.value[0]; dev_dbg(cmpnt->dev, "%s: Ramp Delay%d\n", mc->pname, gv->ramp_duration); break; default: mutex_unlock(&drv->lock); dev_err(cmpnt->dev, "Invalid Input- gain type:%d\n", mc->type); return -EINVAL; } if (mc->w && mc->w->power) ret = sst_send_gain_cmd(drv, gv, mc->task_id, mc->pipe_id | mc->instance_id, mc->module_id, 0); mutex_unlock(&drv->lock); return ret; } static int sst_set_pipe_gain(struct sst_ids *ids, struct sst_data *drv, int mute); static int sst_send_pipe_module_params(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol) { struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm); struct sst_data *drv = snd_soc_component_get_drvdata(c); struct sst_ids *ids = w->priv; mutex_lock(&drv->lock); sst_find_and_send_pipe_algo(drv, w->name, ids); sst_set_pipe_gain(ids, drv, 0); mutex_unlock(&drv->lock); return 0; } static int sst_generic_modules_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { if (SND_SOC_DAPM_EVENT_ON(event)) return sst_send_pipe_module_params(w, k); return 0; } static const DECLARE_TLV_DB_SCALE(sst_gain_tlv_common, SST_GAIN_MIN_VALUE * 10, 10, 0); /* Look up table to convert MIXER SW bit regs to SWM inputs */ static const uint swm_mixer_input_ids[SST_SWM_INPUT_COUNT] = { [SST_IP_CODEC0] = SST_SWM_IN_CODEC0, [SST_IP_CODEC1] = SST_SWM_IN_CODEC1, [SST_IP_LOOP0] = SST_SWM_IN_SPROT_LOOP, [SST_IP_LOOP1] = SST_SWM_IN_MEDIA_LOOP1, [SST_IP_LOOP2] = SST_SWM_IN_MEDIA_LOOP2, [SST_IP_PCM0] = SST_SWM_IN_PCM0, [SST_IP_PCM1] = SST_SWM_IN_PCM1, [SST_IP_MEDIA0] = SST_SWM_IN_MEDIA0, [SST_IP_MEDIA1] = SST_SWM_IN_MEDIA1, [SST_IP_MEDIA2] = SST_SWM_IN_MEDIA2, [SST_IP_MEDIA3] = SST_SWM_IN_MEDIA3, }; /** * fill_swm_input - fill in the SWM input ids given the register * * The register value is a bit-field inicated which mixer inputs are ON. Use the * lookup table to get the input-id and fill it in the structure. */ static int fill_swm_input(struct snd_soc_component *cmpnt, struct swm_input_ids *swm_input, unsigned int reg) { uint i, is_set, nb_inputs = 0; u16 input_loc_id; dev_dbg(cmpnt->dev, "reg: %#x\n", reg); for (i = 0; i < SST_SWM_INPUT_COUNT; i++) { is_set = reg & BIT(i); if (!is_set) continue; input_loc_id = swm_mixer_input_ids[i]; SST_FILL_DESTINATION(2, swm_input->input_id, input_loc_id, SST_DEFAULT_MODULE_ID); nb_inputs++; swm_input++; dev_dbg(cmpnt->dev, "input id: %#x, nb_inputs: %d\n", input_loc_id, nb_inputs); if (nb_inputs == SST_CMD_SWM_MAX_INPUTS) { dev_warn(cmpnt->dev, "SET_SWM cmd max inputs reached"); break; } } return nb_inputs; } /** * called with lock held */ static int sst_set_pipe_gain(struct sst_ids *ids, struct sst_data *drv, int mute) { int ret = 0; struct sst_gain_mixer_control *mc; struct sst_gain_value *gv; struct sst_module *gain = NULL; list_for_each_entry(gain, &ids->gain_list, node) { struct snd_kcontrol *kctl = gain->kctl; dev_dbg(&drv->pdev->dev, "control name=%s\n", kctl->id.name); mc = (void *)kctl->private_value; gv = mc->gain_val; ret = sst_send_gain_cmd(drv, gv, mc->task_id, mc->pipe_id | mc->instance_id, mc->module_id, mute); if (ret) return ret; } return ret; } static int sst_swm_mixer_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct sst_cmd_set_swm cmd; struct snd_soc_component *cmpnt = snd_soc_dapm_to_component(w->dapm); struct sst_data *drv = snd_soc_component_get_drvdata(cmpnt); struct sst_ids *ids = w->priv; bool set_mixer = false; struct soc_mixer_control *mc; int val = 0; int i = 0; dev_dbg(cmpnt->dev, "widget = %s\n", w->name); /* * Identify which mixer input is on and send the bitmap of the * inputs as an IPC to the DSP. */ for (i = 0; i < w->num_kcontrols; i++) { if (dapm_kcontrol_get_value(w->kcontrols[i])) { mc = (struct soc_mixer_control *)(w->kcontrols[i])->private_value; val |= 1 << mc->shift; } } dev_dbg(cmpnt->dev, "val = %#x\n", val); switch (event) { case SND_SOC_DAPM_PRE_PMU: case SND_SOC_DAPM_POST_PMD: set_mixer = true; break; case SND_SOC_DAPM_POST_REG: if (w->power) set_mixer = true; break; default: set_mixer = false; } if (set_mixer == false) return 0; if (SND_SOC_DAPM_EVENT_ON(event) || event == SND_SOC_DAPM_POST_REG) cmd.switch_state = SST_SWM_ON; else cmd.switch_state = SST_SWM_OFF; SST_FILL_DEFAULT_DESTINATION(cmd.header.dst); /* MMX_SET_SWM == SBA_SET_SWM */ cmd.header.command_id = SBA_SET_SWM; SST_FILL_DESTINATION(2, cmd.output_id, ids->location_id, SST_DEFAULT_MODULE_ID); cmd.nb_inputs = fill_swm_input(cmpnt, &cmd.input[0], val); cmd.header.length = offsetof(struct sst_cmd_set_swm, input) - sizeof(struct sst_dsp_header) + (cmd.nb_inputs * sizeof(cmd.input[0])); return sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED, ids->task_id, 0, &cmd, sizeof(cmd.header) + cmd.header.length); } /* SBA mixers - 16 inputs */ #define SST_SBA_DECLARE_MIX_CONTROLS(kctl_name) \ static const struct snd_kcontrol_new kctl_name[] = { \ SOC_DAPM_SINGLE("codec_in0 Switch", SND_SOC_NOPM, SST_IP_CODEC0, 1, 0), \ SOC_DAPM_SINGLE("codec_in1 Switch", SND_SOC_NOPM, SST_IP_CODEC1, 1, 0), \ SOC_DAPM_SINGLE("sprot_loop_in Switch", SND_SOC_NOPM, SST_IP_LOOP0, 1, 0), \ SOC_DAPM_SINGLE("media_loop1_in Switch", SND_SOC_NOPM, SST_IP_LOOP1, 1, 0), \ SOC_DAPM_SINGLE("media_loop2_in Switch", SND_SOC_NOPM, SST_IP_LOOP2, 1, 0), \ SOC_DAPM_SINGLE("pcm0_in Switch", SND_SOC_NOPM, SST_IP_PCM0, 1, 0), \ SOC_DAPM_SINGLE("pcm1_in Switch", SND_SOC_NOPM, SST_IP_PCM1, 1, 0), \ } #define SST_SBA_MIXER_GRAPH_MAP(mix_name) \ { mix_name, "codec_in0 Switch", "codec_in0" }, \ { mix_name, "codec_in1 Switch", "codec_in1" }, \ { mix_name, "sprot_loop_in Switch", "sprot_loop_in" }, \ { mix_name, "media_loop1_in Switch", "media_loop1_in" }, \ { mix_name, "media_loop2_in Switch", "media_loop2_in" }, \ { mix_name, "pcm0_in Switch", "pcm0_in" }, \ { mix_name, "pcm1_in Switch", "pcm1_in" } #define SST_MMX_DECLARE_MIX_CONTROLS(kctl_name) \ static const struct snd_kcontrol_new kctl_name[] = { \ SOC_DAPM_SINGLE("media0_in Switch", SND_SOC_NOPM, SST_IP_MEDIA0, 1, 0), \ SOC_DAPM_SINGLE("media1_in Switch", SND_SOC_NOPM, SST_IP_MEDIA1, 1, 0), \ SOC_DAPM_SINGLE("media2_in Switch", SND_SOC_NOPM, SST_IP_MEDIA2, 1, 0), \ SOC_DAPM_SINGLE("media3_in Switch", SND_SOC_NOPM, SST_IP_MEDIA3, 1, 0), \ } SST_MMX_DECLARE_MIX_CONTROLS(sst_mix_media0_controls); SST_MMX_DECLARE_MIX_CONTROLS(sst_mix_media1_controls); /* 18 SBA mixers */ SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_pcm0_controls); SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_pcm1_controls); SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_pcm2_controls); SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_sprot_l0_controls); SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_media_l1_controls); SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_media_l2_controls); SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_voip_controls); SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_codec0_controls); SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_codec1_controls); /* * sst_handle_vb_timer - Start/Stop the DSP scheduler * * The DSP expects first cmd to be SBA_VB_START, so at first startup send * that. * DSP expects last cmd to be SBA_VB_IDLE, so at last shutdown send that. * * Do refcount internally so that we send command only at first start * and last end. Since SST driver does its own ref count, invoke sst's * power ops always! */ int sst_handle_vb_timer(struct snd_soc_dai *dai, bool enable) { int ret = 0; struct sst_cmd_generic cmd; struct sst_data *drv = snd_soc_dai_get_drvdata(dai); static int timer_usage; if (enable) cmd.header.command_id = SBA_VB_START; else cmd.header.command_id = SBA_IDLE; dev_dbg(dai->dev, "enable=%u, usage=%d\n", enable, timer_usage); SST_FILL_DEFAULT_DESTINATION(cmd.header.dst); cmd.header.length = 0; if (enable) { ret = sst->ops->power(sst->dev, true); if (ret < 0) return ret; } mutex_lock(&drv->lock); if (enable) timer_usage++; else timer_usage--; /* * Send the command only if this call is the first enable or last * disable */ if ((enable && (timer_usage == 1)) || (!enable && (timer_usage == 0))) { ret = sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED, SST_TASK_SBA, 0, &cmd, sizeof(cmd.header) + cmd.header.length); if (ret && enable) { timer_usage--; enable = false; } } mutex_unlock(&drv->lock); if (!enable) sst->ops->power(sst->dev, false); return ret; } int sst_fill_ssp_slot(struct snd_soc_dai *dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct sst_data *ctx = snd_soc_dai_get_drvdata(dai); ctx->ssp_cmd.nb_slots = slots; ctx->ssp_cmd.active_tx_slot_map = tx_mask; ctx->ssp_cmd.active_rx_slot_map = rx_mask; ctx->ssp_cmd.nb_bits_per_slots = slot_width; return 0; } static int sst_get_frame_sync_polarity(struct snd_soc_dai *dai, unsigned int fmt) { int format; format = fmt & SND_SOC_DAIFMT_INV_MASK; dev_dbg(dai->dev, "Enter:%s, format=%x\n", __func__, format); switch (format) { case SND_SOC_DAIFMT_NB_NF: return SSP_FS_ACTIVE_LOW; case SND_SOC_DAIFMT_NB_IF: return SSP_FS_ACTIVE_HIGH; case SND_SOC_DAIFMT_IB_IF: return SSP_FS_ACTIVE_LOW; case SND_SOC_DAIFMT_IB_NF: return SSP_FS_ACTIVE_HIGH; default: dev_err(dai->dev, "Invalid frame sync polarity %d\n", format); } return -EINVAL; } static int sst_get_ssp_mode(struct snd_soc_dai *dai, unsigned int fmt) { int format; format = (fmt & SND_SOC_DAIFMT_MASTER_MASK); dev_dbg(dai->dev, "Enter:%s, format=%x\n", __func__, format); switch (format) { case SND_SOC_DAIFMT_CBS_CFS: return SSP_MODE_MASTER; case SND_SOC_DAIFMT_CBM_CFM: return SSP_MODE_SLAVE; default: dev_err(dai->dev, "Invalid ssp protocol: %d\n", format); } return -EINVAL; } int sst_fill_ssp_config(struct snd_soc_dai *dai, unsigned int fmt) { unsigned int mode; int fs_polarity; struct sst_data *ctx = snd_soc_dai_get_drvdata(dai); mode = fmt & SND_SOC_DAIFMT_FORMAT_MASK; switch (mode) { case SND_SOC_DAIFMT_DSP_B: ctx->ssp_cmd.ssp_protocol = SSP_MODE_PCM; ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NETWORK << 1); ctx->ssp_cmd.start_delay = 0; ctx->ssp_cmd.data_polarity = 1; ctx->ssp_cmd.frame_sync_width = 1; break; case SND_SOC_DAIFMT_DSP_A: ctx->ssp_cmd.ssp_protocol = SSP_MODE_PCM; ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NETWORK << 1); ctx->ssp_cmd.start_delay = 1; ctx->ssp_cmd.data_polarity = 1; ctx->ssp_cmd.frame_sync_width = 1; break; case SND_SOC_DAIFMT_I2S: ctx->ssp_cmd.ssp_protocol = SSP_MODE_I2S; ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NORMAL << 1); ctx->ssp_cmd.start_delay = 1; ctx->ssp_cmd.data_polarity = 0; ctx->ssp_cmd.frame_sync_width = ctx->ssp_cmd.nb_bits_per_slots; break; case SND_SOC_DAIFMT_LEFT_J: ctx->ssp_cmd.ssp_protocol = SSP_MODE_I2S; ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NORMAL << 1); ctx->ssp_cmd.start_delay = 0; ctx->ssp_cmd.data_polarity = 0; ctx->ssp_cmd.frame_sync_width = ctx->ssp_cmd.nb_bits_per_slots; break; default: dev_dbg(dai->dev, "using default ssp configs\n"); } fs_polarity = sst_get_frame_sync_polarity(dai, fmt); if (fs_polarity < 0) return fs_polarity; ctx->ssp_cmd.frame_sync_polarity = fs_polarity; return 0; } /** * sst_ssp_config - contains SSP configuration for media UC * this can be overwritten by set_dai_xxx APIs */ static const struct sst_ssp_config sst_ssp_configs = { .ssp_id = SSP_CODEC, .bits_per_slot = 24, .slots = 4, .ssp_mode = SSP_MODE_MASTER, .pcm_mode = SSP_PCM_MODE_NETWORK, .duplex = SSP_DUPLEX, .ssp_protocol = SSP_MODE_PCM, .fs_width = 1, .fs_frequency = SSP_FS_48_KHZ, .active_slot_map = 0xF, .start_delay = 0, .frame_sync_polarity = SSP_FS_ACTIVE_HIGH, .data_polarity = 1, }; void sst_fill_ssp_defaults(struct snd_soc_dai *dai) { const struct sst_ssp_config *config; struct sst_data *ctx = snd_soc_dai_get_drvdata(dai); config = &sst_ssp_configs; ctx->ssp_cmd.selection = config->ssp_id; ctx->ssp_cmd.nb_bits_per_slots = config->bits_per_slot; ctx->ssp_cmd.nb_slots = config->slots; ctx->ssp_cmd.mode = config->ssp_mode | (config->pcm_mode << 1); ctx->ssp_cmd.duplex = config->duplex; ctx->ssp_cmd.active_tx_slot_map = config->active_slot_map; ctx->ssp_cmd.active_rx_slot_map = config->active_slot_map; ctx->ssp_cmd.frame_sync_frequency = config->fs_frequency; ctx->ssp_cmd.frame_sync_polarity = config->frame_sync_polarity; ctx->ssp_cmd.data_polarity = config->data_polarity; ctx->ssp_cmd.frame_sync_width = config->fs_width; ctx->ssp_cmd.ssp_protocol = config->ssp_protocol; ctx->ssp_cmd.start_delay = config->start_delay; ctx->ssp_cmd.reserved1 = ctx->ssp_cmd.reserved2 = 0xFF; } int send_ssp_cmd(struct snd_soc_dai *dai, const char *id, bool enable) { struct sst_data *drv = snd_soc_dai_get_drvdata(dai); const struct sst_ssp_config *config; dev_info(dai->dev, "Enter: enable=%d port_name=%s\n", enable, id); SST_FILL_DEFAULT_DESTINATION(drv->ssp_cmd.header.dst); drv->ssp_cmd.header.command_id = SBA_HW_SET_SSP; drv->ssp_cmd.header.length = sizeof(struct sst_cmd_sba_hw_set_ssp) - sizeof(struct sst_dsp_header); config = &sst_ssp_configs; dev_dbg(dai->dev, "ssp_id: %u\n", config->ssp_id); if (enable) drv->ssp_cmd.switch_state = SST_SWITCH_ON; else drv->ssp_cmd.switch_state = SST_SWITCH_OFF; return sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED, SST_TASK_SBA, 0, &drv->ssp_cmd, sizeof(drv->ssp_cmd.header) + drv->ssp_cmd.header.length); } static int sst_set_be_modules(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { int ret = 0; struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm); struct sst_data *drv = snd_soc_component_get_drvdata(c); dev_dbg(c->dev, "Enter: widget=%s\n", w->name); if (SND_SOC_DAPM_EVENT_ON(event)) { mutex_lock(&drv->lock); ret = sst_send_slot_map(drv); mutex_unlock(&drv->lock); if (ret) return ret; ret = sst_send_pipe_module_params(w, k); } return ret; } static int sst_set_media_path(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { int ret = 0; struct sst_cmd_set_media_path cmd; struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm); struct sst_data *drv = snd_soc_component_get_drvdata(c); struct sst_ids *ids = w->priv; dev_dbg(c->dev, "widget=%s\n", w->name); dev_dbg(c->dev, "task=%u, location=%#x\n", ids->task_id, ids->location_id); if (SND_SOC_DAPM_EVENT_ON(event)) cmd.switch_state = SST_PATH_ON; else cmd.switch_state = SST_PATH_OFF; SST_FILL_DESTINATION(2, cmd.header.dst, ids->location_id, SST_DEFAULT_MODULE_ID); /* MMX_SET_MEDIA_PATH == SBA_SET_MEDIA_PATH */ cmd.header.command_id = MMX_SET_MEDIA_PATH; cmd.header.length = sizeof(struct sst_cmd_set_media_path) - sizeof(struct sst_dsp_header); ret = sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED, ids->task_id, 0, &cmd, sizeof(cmd.header) + cmd.header.length); if (ret) return ret; if (SND_SOC_DAPM_EVENT_ON(event)) ret = sst_send_pipe_module_params(w, k); return ret; } static int sst_set_media_loop(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { int ret = 0; struct sst_cmd_sba_set_media_loop_map cmd; struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm); struct sst_data *drv = snd_soc_component_get_drvdata(c); struct sst_ids *ids = w->priv; dev_dbg(c->dev, "Enter:widget=%s\n", w->name); if (SND_SOC_DAPM_EVENT_ON(event)) cmd.switch_state = SST_SWITCH_ON; else cmd.switch_state = SST_SWITCH_OFF; SST_FILL_DESTINATION(2, cmd.header.dst, ids->location_id, SST_DEFAULT_MODULE_ID); cmd.header.command_id = SBA_SET_MEDIA_LOOP_MAP; cmd.header.length = sizeof(struct sst_cmd_sba_set_media_loop_map) - sizeof(struct sst_dsp_header); cmd.param.part.cfg.rate = 2; /* 48khz */ cmd.param.part.cfg.format = ids->format; /* stereo/Mono */ cmd.param.part.cfg.s_length = 1; /* 24bit left justified */ cmd.map = 0; /* Algo sequence: Gain - DRP - FIR - IIR */ ret = sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED, SST_TASK_SBA, 0, &cmd, sizeof(cmd.header) + cmd.header.length); if (ret) return ret; if (SND_SOC_DAPM_EVENT_ON(event)) ret = sst_send_pipe_module_params(w, k); return ret; } static const struct snd_soc_dapm_widget sst_dapm_widgets[] = { SST_AIF_IN("codec_in0", sst_set_be_modules), SST_AIF_IN("codec_in1", sst_set_be_modules), SST_AIF_OUT("codec_out0", sst_set_be_modules), SST_AIF_OUT("codec_out1", sst_set_be_modules), /* Media Paths */ /* MediaX IN paths are set via ALLOC, so no SET_MEDIA_PATH command */ SST_PATH_INPUT("media0_in", SST_TASK_MMX, SST_SWM_IN_MEDIA0, sst_generic_modules_event), SST_PATH_INPUT("media1_in", SST_TASK_MMX, SST_SWM_IN_MEDIA1, NULL), SST_PATH_INPUT("media2_in", SST_TASK_MMX, SST_SWM_IN_MEDIA2, sst_set_media_path), SST_PATH_INPUT("media3_in", SST_TASK_MMX, SST_SWM_IN_MEDIA3, NULL), SST_PATH_OUTPUT("media0_out", SST_TASK_MMX, SST_SWM_OUT_MEDIA0, sst_set_media_path), SST_PATH_OUTPUT("media1_out", SST_TASK_MMX, SST_SWM_OUT_MEDIA1, sst_set_media_path), /* SBA PCM Paths */ SST_PATH_INPUT("pcm0_in", SST_TASK_SBA, SST_SWM_IN_PCM0, sst_set_media_path), SST_PATH_INPUT("pcm1_in", SST_TASK_SBA, SST_SWM_IN_PCM1, sst_set_media_path), SST_PATH_OUTPUT("pcm0_out", SST_TASK_SBA, SST_SWM_OUT_PCM0, sst_set_media_path), SST_PATH_OUTPUT("pcm1_out", SST_TASK_SBA, SST_SWM_OUT_PCM1, sst_set_media_path), SST_PATH_OUTPUT("pcm2_out", SST_TASK_SBA, SST_SWM_OUT_PCM2, sst_set_media_path), /* SBA Loops */ SST_PATH_INPUT("sprot_loop_in", SST_TASK_SBA, SST_SWM_IN_SPROT_LOOP, NULL), SST_PATH_INPUT("media_loop1_in", SST_TASK_SBA, SST_SWM_IN_MEDIA_LOOP1, NULL), SST_PATH_INPUT("media_loop2_in", SST_TASK_SBA, SST_SWM_IN_MEDIA_LOOP2, NULL), SST_PATH_MEDIA_LOOP_OUTPUT("sprot_loop_out", SST_TASK_SBA, SST_SWM_OUT_SPROT_LOOP, SST_FMT_MONO, sst_set_media_loop), SST_PATH_MEDIA_LOOP_OUTPUT("media_loop1_out", SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP1, SST_FMT_MONO, sst_set_media_loop), SST_PATH_MEDIA_LOOP_OUTPUT("media_loop2_out", SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP2, SST_FMT_STEREO, sst_set_media_loop), /* Media Mixers */ SST_SWM_MIXER("media0_out mix 0", SND_SOC_NOPM, SST_TASK_MMX, SST_SWM_OUT_MEDIA0, sst_mix_media0_controls, sst_swm_mixer_event), SST_SWM_MIXER("media1_out mix 0", SND_SOC_NOPM, SST_TASK_MMX, SST_SWM_OUT_MEDIA1, sst_mix_media1_controls, sst_swm_mixer_event), /* SBA PCM mixers */ SST_SWM_MIXER("pcm0_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_PCM0, sst_mix_pcm0_controls, sst_swm_mixer_event), SST_SWM_MIXER("pcm1_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_PCM1, sst_mix_pcm1_controls, sst_swm_mixer_event), SST_SWM_MIXER("pcm2_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_PCM2, sst_mix_pcm2_controls, sst_swm_mixer_event), /* SBA Loop mixers */ SST_SWM_MIXER("sprot_loop_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_SPROT_LOOP, sst_mix_sprot_l0_controls, sst_swm_mixer_event), SST_SWM_MIXER("media_loop1_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP1, sst_mix_media_l1_controls, sst_swm_mixer_event), SST_SWM_MIXER("media_loop2_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP2, sst_mix_media_l2_controls, sst_swm_mixer_event), /* SBA Backend mixers */ SST_SWM_MIXER("codec_out0 mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_CODEC0, sst_mix_codec0_controls, sst_swm_mixer_event), SST_SWM_MIXER("codec_out1 mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_CODEC1, sst_mix_codec1_controls, sst_swm_mixer_event), }; static const struct snd_soc_dapm_route intercon[] = { {"media0_in", NULL, "Compress Playback"}, {"media1_in", NULL, "Headset Playback"}, {"media2_in", NULL, "pcm0_out"}, {"media0_out mix 0", "media0_in Switch", "media0_in"}, {"media0_out mix 0", "media1_in Switch", "media1_in"}, {"media0_out mix 0", "media2_in Switch", "media2_in"}, {"media0_out mix 0", "media3_in Switch", "media3_in"}, {"media1_out mix 0", "media0_in Switch", "media0_in"}, {"media1_out mix 0", "media1_in Switch", "media1_in"}, {"media1_out mix 0", "media2_in Switch", "media2_in"}, {"media1_out mix 0", "media3_in Switch", "media3_in"}, {"media0_out", NULL, "media0_out mix 0"}, {"media1_out", NULL, "media1_out mix 0"}, {"pcm0_in", NULL, "media0_out"}, {"pcm1_in", NULL, "media1_out"}, {"Headset Capture", NULL, "pcm1_out"}, {"Headset Capture", NULL, "pcm2_out"}, {"pcm0_out", NULL, "pcm0_out mix 0"}, SST_SBA_MIXER_GRAPH_MAP("pcm0_out mix 0"), {"pcm1_out", NULL, "pcm1_out mix 0"}, SST_SBA_MIXER_GRAPH_MAP("pcm1_out mix 0"), {"pcm2_out", NULL, "pcm2_out mix 0"}, SST_SBA_MIXER_GRAPH_MAP("pcm2_out mix 0"), {"media_loop1_in", NULL, "media_loop1_out"}, {"media_loop1_out", NULL, "media_loop1_out mix 0"}, SST_SBA_MIXER_GRAPH_MAP("media_loop1_out mix 0"), {"media_loop2_in", NULL, "media_loop2_out"}, {"media_loop2_out", NULL, "media_loop2_out mix 0"}, SST_SBA_MIXER_GRAPH_MAP("media_loop2_out mix 0"), {"sprot_loop_in", NULL, "sprot_loop_out"}, {"sprot_loop_out", NULL, "sprot_loop_out mix 0"}, SST_SBA_MIXER_GRAPH_MAP("sprot_loop_out mix 0"), {"codec_out0", NULL, "codec_out0 mix 0"}, SST_SBA_MIXER_GRAPH_MAP("codec_out0 mix 0"), {"codec_out1", NULL, "codec_out1 mix 0"}, SST_SBA_MIXER_GRAPH_MAP("codec_out1 mix 0"), }; static const char * const slot_names[] = { "none", "slot 0", "slot 1", "slot 2", "slot 3", "slot 4", "slot 5", "slot 6", "slot 7", /* not supported by FW */ }; static const char * const channel_names[] = { "none", "codec_out0_0", "codec_out0_1", "codec_out1_0", "codec_out1_1", "codec_out2_0", "codec_out2_1", "codec_out3_0", "codec_out3_1", /* not supported by FW */ }; #define SST_INTERLEAVER(xpname, slot_name, slotno) \ SST_SSP_SLOT_CTL(xpname, "tx interleaver", slot_name, slotno, true, \ channel_names, sst_slot_get, sst_slot_put) #define SST_DEINTERLEAVER(xpname, channel_name, channel_no) \ SST_SSP_SLOT_CTL(xpname, "rx deinterleaver", channel_name, channel_no, false, \ slot_names, sst_slot_get, sst_slot_put) static const struct snd_kcontrol_new sst_slot_controls[] = { SST_INTERLEAVER("codec_out", "slot 0", 0), SST_INTERLEAVER("codec_out", "slot 1", 1), SST_INTERLEAVER("codec_out", "slot 2", 2), SST_INTERLEAVER("codec_out", "slot 3", 3), SST_DEINTERLEAVER("codec_in", "codec_in0_0", 0), SST_DEINTERLEAVER("codec_in", "codec_in0_1", 1), SST_DEINTERLEAVER("codec_in", "codec_in1_0", 2), SST_DEINTERLEAVER("codec_in", "codec_in1_1", 3), }; /* Gain helper with min/max set */ #define SST_GAIN(name, path_id, task_id, instance, gain_var) \ SST_GAIN_KCONTROLS(name, "Gain", SST_GAIN_MIN_VALUE, SST_GAIN_MAX_VALUE, \ SST_GAIN_TC_MIN, SST_GAIN_TC_MAX, \ sst_gain_get, sst_gain_put, \ SST_MODULE_ID_GAIN_CELL, path_id, instance, task_id, \ sst_gain_tlv_common, gain_var) #define SST_VOLUME(name, path_id, task_id, instance, gain_var) \ SST_GAIN_KCONTROLS(name, "Volume", SST_GAIN_MIN_VALUE, SST_GAIN_MAX_VALUE, \ SST_GAIN_TC_MIN, SST_GAIN_TC_MAX, \ sst_gain_get, sst_gain_put, \ SST_MODULE_ID_VOLUME, path_id, instance, task_id, \ sst_gain_tlv_common, gain_var) static struct sst_gain_value sst_gains[]; static const struct snd_kcontrol_new sst_gain_controls[] = { SST_GAIN("media0_in", SST_PATH_INDEX_MEDIA0_IN, SST_TASK_MMX, 0, &sst_gains[0]), SST_GAIN("media1_in", SST_PATH_INDEX_MEDIA1_IN, SST_TASK_MMX, 0, &sst_gains[1]), SST_GAIN("media2_in", SST_PATH_INDEX_MEDIA2_IN, SST_TASK_MMX, 0, &sst_gains[2]), SST_GAIN("media3_in", SST_PATH_INDEX_MEDIA3_IN, SST_TASK_MMX, 0, &sst_gains[3]), SST_GAIN("pcm0_in", SST_PATH_INDEX_PCM0_IN, SST_TASK_SBA, 0, &sst_gains[4]), SST_GAIN("pcm1_in", SST_PATH_INDEX_PCM1_IN, SST_TASK_SBA, 0, &sst_gains[5]), SST_GAIN("pcm1_out", SST_PATH_INDEX_PCM1_OUT, SST_TASK_SBA, 0, &sst_gains[6]), SST_GAIN("pcm2_out", SST_PATH_INDEX_PCM2_OUT, SST_TASK_SBA, 0, &sst_gains[7]), SST_GAIN("codec_in0", SST_PATH_INDEX_CODEC_IN0, SST_TASK_SBA, 0, &sst_gains[8]), SST_GAIN("codec_in1", SST_PATH_INDEX_CODEC_IN1, SST_TASK_SBA, 0, &sst_gains[9]), SST_GAIN("codec_out0", SST_PATH_INDEX_CODEC_OUT0, SST_TASK_SBA, 0, &sst_gains[10]), SST_GAIN("codec_out1", SST_PATH_INDEX_CODEC_OUT1, SST_TASK_SBA, 0, &sst_gains[11]), SST_GAIN("media_loop1_out", SST_PATH_INDEX_MEDIA_LOOP1_OUT, SST_TASK_SBA, 0, &sst_gains[12]), SST_GAIN("media_loop2_out", SST_PATH_INDEX_MEDIA_LOOP2_OUT, SST_TASK_SBA, 0, &sst_gains[13]), SST_GAIN("sprot_loop_out", SST_PATH_INDEX_SPROT_LOOP_OUT, SST_TASK_SBA, 0, &sst_gains[14]), SST_VOLUME("media0_in", SST_PATH_INDEX_MEDIA0_IN, SST_TASK_MMX, 0, &sst_gains[15]), }; #define SST_GAIN_NUM_CONTROLS 3 /* the SST_GAIN macro above will create three alsa controls for each * instance invoked, gain, mute and ramp duration, which use the same gain * cell sst_gain to keep track of data * To calculate number of gain cell instances we need to device by 3 in * below caulcation for gain cell memory. * This gets rid of static number and issues while adding new controls */ static struct sst_gain_value sst_gains[ARRAY_SIZE(sst_gain_controls)/SST_GAIN_NUM_CONTROLS]; static const struct snd_kcontrol_new sst_algo_controls[] = { SST_ALGO_KCONTROL_BYTES("media_loop1_out", "fir", 272, SST_MODULE_ID_FIR_24, SST_PATH_INDEX_MEDIA_LOOP1_OUT, 0, SST_TASK_SBA, SBA_VB_SET_FIR), SST_ALGO_KCONTROL_BYTES("media_loop1_out", "iir", 300, SST_MODULE_ID_IIR_24, SST_PATH_INDEX_MEDIA_LOOP1_OUT, 0, SST_TASK_SBA, SBA_VB_SET_IIR), SST_ALGO_KCONTROL_BYTES("media_loop1_out", "mdrp", 286, SST_MODULE_ID_MDRP, SST_PATH_INDEX_MEDIA_LOOP1_OUT, 0, SST_TASK_SBA, SBA_SET_MDRP), SST_ALGO_KCONTROL_BYTES("media_loop2_out", "fir", 272, SST_MODULE_ID_FIR_24, SST_PATH_INDEX_MEDIA_LOOP2_OUT, 0, SST_TASK_SBA, SBA_VB_SET_FIR), SST_ALGO_KCONTROL_BYTES("media_loop2_out", "iir", 300, SST_MODULE_ID_IIR_24, SST_PATH_INDEX_MEDIA_LOOP2_OUT, 0, SST_TASK_SBA, SBA_VB_SET_IIR), SST_ALGO_KCONTROL_BYTES("media_loop2_out", "mdrp", 286, SST_MODULE_ID_MDRP, SST_PATH_INDEX_MEDIA_LOOP2_OUT, 0, SST_TASK_SBA, SBA_SET_MDRP), SST_ALGO_KCONTROL_BYTES("sprot_loop_out", "lpro", 192, SST_MODULE_ID_SPROT, SST_PATH_INDEX_SPROT_LOOP_OUT, 0, SST_TASK_SBA, SBA_VB_LPRO), SST_ALGO_KCONTROL_BYTES("codec_in0", "dcr", 52, SST_MODULE_ID_FILT_DCR, SST_PATH_INDEX_CODEC_IN0, 0, SST_TASK_SBA, SBA_VB_SET_IIR), SST_ALGO_KCONTROL_BYTES("codec_in1", "dcr", 52, SST_MODULE_ID_FILT_DCR, SST_PATH_INDEX_CODEC_IN1, 0, SST_TASK_SBA, SBA_VB_SET_IIR), }; static int sst_algo_control_init(struct device *dev) { int i = 0; struct sst_algo_control *bc; /*allocate space to cache the algo parameters in the driver*/ for (i = 0; i < ARRAY_SIZE(sst_algo_controls); i++) { bc = (struct sst_algo_control *)sst_algo_controls[i].private_value; bc->params = devm_kzalloc(dev, bc->max, GFP_KERNEL); if (bc->params == NULL) return -ENOMEM; } return 0; } static bool is_sst_dapm_widget(struct snd_soc_dapm_widget *w) { switch (w->id) { case snd_soc_dapm_pga: case snd_soc_dapm_aif_in: case snd_soc_dapm_aif_out: case snd_soc_dapm_input: case snd_soc_dapm_output: case snd_soc_dapm_mixer: return true; default: return false; } } /** * sst_send_pipe_gains - send gains for the front-end DAIs * * The gains in the pipes connected to the front-ends are muted/unmuted * automatically via the digital_mute() DAPM callback. This function sends the * gains for the front-end pipes. */ int sst_send_pipe_gains(struct snd_soc_dai *dai, int stream, int mute) { struct sst_data *drv = snd_soc_dai_get_drvdata(dai); struct snd_soc_dapm_widget *w; struct snd_soc_dapm_path *p = NULL; dev_dbg(dai->dev, "enter, dai-name=%s dir=%d\n", dai->name, stream); if (stream == SNDRV_PCM_STREAM_PLAYBACK) { dev_dbg(dai->dev, "Stream name=%s\n", dai->playback_widget->name); w = dai->playback_widget; snd_soc_dapm_widget_for_each_sink_path(w, p) { if (p->connected && !p->connected(w, p->sink)) continue; if (p->connect && p->sink->power && is_sst_dapm_widget(p->sink)) { struct sst_ids *ids = p->sink->priv; dev_dbg(dai->dev, "send gains for widget=%s\n", p->sink->name); mutex_lock(&drv->lock); sst_set_pipe_gain(ids, drv, mute); mutex_unlock(&drv->lock); } } } else { dev_dbg(dai->dev, "Stream name=%s\n", dai->capture_widget->name); w = dai->capture_widget; snd_soc_dapm_widget_for_each_source_path(w, p) { if (p->connected && !p->connected(w, p->source)) continue; if (p->connect && p->source->power && is_sst_dapm_widget(p->source)) { struct sst_ids *ids = p->source->priv; dev_dbg(dai->dev, "send gain for widget=%s\n", p->source->name); mutex_lock(&drv->lock); sst_set_pipe_gain(ids, drv, mute); mutex_unlock(&drv->lock); } } } return 0; } /** * sst_fill_module_list - populate the list of modules/gains for a pipe * * * Fills the widget pointer in the kcontrol private data, and also fills the * kcontrol pointer in the widget private data. * * Widget pointer is used to send the algo/gain in the .put() handler if the * widget is powerd on. * * Kcontrol pointer is used to send the algo/gain in the widget power ON/OFF * event handler. Each widget (pipe) has multiple algos stored in the algo_list. */ static int sst_fill_module_list(struct snd_kcontrol *kctl, struct snd_soc_dapm_widget *w, int type) { struct sst_module *module = NULL; struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm); struct sst_ids *ids = w->priv; int ret = 0; module = devm_kzalloc(c->dev, sizeof(*module), GFP_KERNEL); if (!module) return -ENOMEM; if (type == SST_MODULE_GAIN) { struct sst_gain_mixer_control *mc = (void *)kctl->private_value; mc->w = w; module->kctl = kctl; list_add_tail(&module->node, &ids->gain_list); } else if (type == SST_MODULE_ALGO) { struct sst_algo_control *bc = (void *)kctl->private_value; bc->w = w; module->kctl = kctl; list_add_tail(&module->node, &ids->algo_list); } else { dev_err(c->dev, "invoked for unknown type %d module %s", type, kctl->id.name); ret = -EINVAL; } return ret; } /** * sst_fill_widget_module_info - fill list of gains/algos for the pipe * @widget: pipe modelled as a DAPM widget * * Fill the list of gains/algos for the widget by looking at all the card * controls and comparing the name of the widget with the first part of control * name. First part of control name contains the pipe name (widget name). */ static int sst_fill_widget_module_info(struct snd_soc_dapm_widget *w, struct snd_soc_platform *platform) { struct snd_kcontrol *kctl; int index, ret = 0; struct snd_card *card = platform->component.card->snd_card; char *idx; down_read(&card->controls_rwsem); list_for_each_entry(kctl, &card->controls, list) { idx = strchr(kctl->id.name, ' '); if (idx == NULL) continue; index = idx - (char*)kctl->id.name; if (strncmp(kctl->id.name, w->name, index)) continue; if (strstr(kctl->id.name, "Volume")) ret = sst_fill_module_list(kctl, w, SST_MODULE_GAIN); else if (strstr(kctl->id.name, "params")) ret = sst_fill_module_list(kctl, w, SST_MODULE_ALGO); else if (strstr(kctl->id.name, "Switch") && strstr(kctl->id.name, "Gain")) { struct sst_gain_mixer_control *mc = (void *)kctl->private_value; mc->w = w; } else if (strstr(kctl->id.name, "interleaver")) { struct sst_enum *e = (void *)kctl->private_value; e->w = w; } else if (strstr(kctl->id.name, "deinterleaver")) { struct sst_enum *e = (void *)kctl->private_value; e->w = w; } if (ret < 0) { up_read(&card->controls_rwsem); return ret; } } up_read(&card->controls_rwsem); return 0; } /** * sst_fill_linked_widgets - fill the parent pointer for the linked widget */ static void sst_fill_linked_widgets(struct snd_soc_platform *platform, struct sst_ids *ids) { struct snd_soc_dapm_widget *w; unsigned int len = strlen(ids->parent_wname); list_for_each_entry(w, &platform->component.card->widgets, list) { if (!strncmp(ids->parent_wname, w->name, len)) { ids->parent_w = w; break; } } } /** * sst_map_modules_to_pipe - fill algo/gains list for all pipes */ static int sst_map_modules_to_pipe(struct snd_soc_platform *platform) { struct snd_soc_dapm_widget *w; int ret = 0; list_for_each_entry(w, &platform->component.card->widgets, list) { if (is_sst_dapm_widget(w) && (w->priv)) { struct sst_ids *ids = w->priv; dev_dbg(platform->dev, "widget type=%d name=%s\n", w->id, w->name); INIT_LIST_HEAD(&ids->algo_list); INIT_LIST_HEAD(&ids->gain_list); ret = sst_fill_widget_module_info(w, platform); if (ret < 0) return ret; /* fill linked widgets */ if (ids->parent_wname != NULL) sst_fill_linked_widgets(platform, ids); } } return 0; } int sst_dsp_init_v2_dpcm(struct snd_soc_platform *platform) { int i, ret = 0; struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(&platform->component); struct sst_data *drv = snd_soc_platform_get_drvdata(platform); unsigned int gains = ARRAY_SIZE(sst_gain_controls)/3; drv->byte_stream = devm_kzalloc(platform->dev, SST_MAX_BIN_BYTES, GFP_KERNEL); if (!drv->byte_stream) return -ENOMEM; snd_soc_dapm_new_controls(dapm, sst_dapm_widgets, ARRAY_SIZE(sst_dapm_widgets)); snd_soc_dapm_add_routes(dapm, intercon, ARRAY_SIZE(intercon)); snd_soc_dapm_new_widgets(dapm->card); for (i = 0; i < gains; i++) { sst_gains[i].mute = SST_GAIN_MUTE_DEFAULT; sst_gains[i].l_gain = SST_GAIN_VOLUME_DEFAULT; sst_gains[i].r_gain = SST_GAIN_VOLUME_DEFAULT; sst_gains[i].ramp_duration = SST_GAIN_RAMP_DURATION_DEFAULT; } ret = snd_soc_add_platform_controls(platform, sst_gain_controls, ARRAY_SIZE(sst_gain_controls)); if (ret) return ret; /* Initialize algo control params */ ret = sst_algo_control_init(platform->dev); if (ret) return ret; ret = snd_soc_add_platform_controls(platform, sst_algo_controls, ARRAY_SIZE(sst_algo_controls)); if (ret) return ret; ret = snd_soc_add_platform_controls(platform, sst_slot_controls, ARRAY_SIZE(sst_slot_controls)); if (ret) return ret; ret = sst_map_modules_to_pipe(platform); return ret; }