/* * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for * any purpose with or without fee is hereby granted, provided that the * above copyright notice and this permission notice appear in all * copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ /** * DOC: qdf_util.h * This file defines utility functions. */ #ifndef _QDF_UTIL_H #define _QDF_UTIL_H #include #ifdef QCA_CONFIG_SMP #define QDF_MAX_AVAILABLE_CPU 8 #else #define QDF_MAX_AVAILABLE_CPU 1 #endif typedef __qdf_wait_queue_head_t qdf_wait_queue_head_t; /** * qdf_unlikely - Compiler-dependent macro denoting code likely to execute * @_expr: expression to be checked */ #define qdf_unlikely(_expr) __qdf_unlikely(_expr) /** * qdf_likely - Compiler-dependent macro denoting code unlikely to execute * @_expr: expression to be checked */ #define qdf_likely(_expr) __qdf_likely(_expr) /** * qdf_wmb - write memory barrier. */ #define qdf_wmb() __qdf_wmb() /** * qdf_rmb - read memory barrier. */ #define qdf_rmb() __qdf_rmb() /** * qdf_mb - read + write memory barrier. */ #define qdf_mb() __qdf_mb() /** * qdf_ioread32 - read a register * @offset: register address */ #define qdf_ioread32(offset) __qdf_ioread32(offset) /** * qdf_iowrite32 - write a register * @offset: register address * @value: value to write (32bit value) */ #define qdf_iowrite32(offset, value) __qdf_iowrite32(offset, value) /** * qdf_assert - assert "expr" evaluates to false. */ #ifdef QDF_DEBUG #define qdf_assert(expr) __qdf_assert(expr) #else #define qdf_assert(expr) #endif /* QDF_DEBUG */ /** * qdf_assert_always - alway assert "expr" evaluates to false. */ #define qdf_assert_always(expr) __qdf_assert(expr) /** * qdf_target_assert_always - alway target assert "expr" evaluates to false. */ #define qdf_target_assert_always(expr) __qdf_target_assert(expr) #define QDF_SET_PARAM(__param, __val) ((__param) |= (1 << (__val))) #define QDF_HAS_PARAM(__param, __val) ((__param) & (1 << (__val))) #define QDF_CLEAR_PARAM(__param, __val) ((__param) &= ((~1) << (__val))) /** * QDF_MAX - get maximum of two values * @_x: 1st argument * @_y: 2nd argument */ #define QDF_MAX(_x, _y) (((_x) > (_y)) ? (_x) : (_y)) /** * QDF_MIN - get minimum of two values * @_x: 1st argument * @_y: 2nd argument */ #define QDF_MIN(_x, _y) (((_x) < (_y)) ? (_x) : (_y)) /** * QDF_IS_ADDR_BROADCAST - is mac address broadcast mac address * @_a: pointer to mac address */ #define QDF_IS_ADDR_BROADCAST(_a) \ ((_a)[0] == 0xff && \ (_a)[1] == 0xff && \ (_a)[2] == 0xff && \ (_a)[3] == 0xff && \ (_a)[4] == 0xff && \ (_a)[5] == 0xff) /* Get number of bits from the index bit */ #define QDF_GET_BITS(_val, _index, _num_bits) \ (((_val) >> (_index)) & ((1 << (_num_bits)) - 1)) /* Set val to number of bits from the index bit */ #define QDF_SET_BITS(_var, _index, _num_bits, _val) do { \ (_var) &= ~(((1 << (_num_bits)) - 1) << (_index)); \ (_var) |= (((_val) & ((1 << (_num_bits)) - 1)) << (_index)); \ } while (0) /* Get number of bits from the index bit supporting 64 bits */ #define QDF_GET_BITS64(_val, _index, _num_bits) \ (((_val) >> (_index)) & ((1LLU << (_num_bits)) - 1)) #define QDF_DECLARE_EWMA(name, factor, weight) \ __QDF_DECLARE_EWMA(name, factor, weight) #define qdf_ewma_tx_lag __qdf_ewma_tx_lag #define qdf_ewma_tx_lag_init(tx_lag) \ __qdf_ewma_tx_lag_init(tx_lag) #define qdf_ewma_tx_lag_add(tx_lag, value) \ __qdf_ewma_tx_lag_add(tx_lag, value) #define qdf_ewma_tx_lag_read(tx_lag) \ __qdf_ewma_tx_lag_read(tx_lag) #define qdf_ewma_rx_rssi __qdf_ewma_rx_rssi #define qdf_ewma_rx_rssi_init(rx_rssi) \ __qdf_ewma_rx_rssi_init(rx_rssi) #define qdf_ewma_rx_rssi_add(rx_rssi, value) \ __qdf_ewma_rx_rssi_add(rx_rssi, value) #define qdf_ewma_rx_rssi_read(rx_rssi) \ __qdf_ewma_rx_rssi_read(rx_rssi) #define QDF_CHAR_BIT 8 /** * qdf_bitmap - Define a bitmap * @name: name of the bitmap * @bits: num of bits in the bitmap * * Return: none */ #define qdf_bitmap(name, bits) __qdf_bitmap(name, bits) /** * qdf_set_bit() - set bit in address * @nr: bit number to be set * @addr: address buffer pointer * * Return: none */ #define qdf_set_bit(nr, addr) __qdf_set_bit(nr, addr) /** * qdf_clear_bit() - clear bit in address * @nr: bit number to be clear * @addr: address buffer pointer * * Return: none */ #define qdf_clear_bit(nr, addr) __qdf_clear_bit(nr, addr) /** * qdf_test_bit() - test bit position in address * @nr: bit number to be tested * @addr: address buffer pointer * * Return: none */ #define qdf_test_bit(nr, addr) __qdf_test_bit(nr, addr) /** * qdf_test_and_clear_bit() - test and clear bit position in address * @nr: bit number to be tested * @addr: address buffer pointer * * Return: none */ #define qdf_test_and_clear_bit(nr, addr) __qdf_test_and_clear_bit(nr, addr) /** * qdf_find_first_bit() - find first bit position in address * @addr: address buffer pointer * @nbits: number of bits * * Return: position first set bit in addr */ #define qdf_find_first_bit(addr, nbits) __qdf_find_first_bit(addr, nbits) /** * qdf_bitmap_empty() - Check if bitmap is empty * @addr: Address buffer pointer * @nbits: Number of bits * * Return: True if no bit set, else false */ #define qdf_bitmap_empty(addr, nbits) __qdf_bitmap_empty(addr, nbits) /** * qdf_bitmap_and() - AND operation on the bitmap * @dst: Destination buffer pointer * @src1: First source buffer pointer * @src2: Second source buffer pointer * @nbits: Number of bits * * Return: Bitwise and of src1 and src2 in dst */ #define qdf_bitmap_and(dst, src1, src2, nbits) \ __qdf_bitmap_and(dst, src1, src2, nbits) #define qdf_wait_queue_interruptible(wait_queue, condition) \ __qdf_wait_queue_interruptible(wait_queue, condition) /** * qdf_wait_queue_timeout() - wait for specified time on given condition * @wait_queue: wait queue to wait on * @condition: condition to wait on * @timeout: timeout value in jiffies * * Return: 0 if condition becomes false after timeout * 1 or remaining jiffies, if condition becomes true during timeout */ #define qdf_wait_queue_timeout(wait_queue, condition, timeout) \ __qdf_wait_queue_timeout(wait_queue, \ condition, timeout) #define qdf_init_waitqueue_head(_q) __qdf_init_waitqueue_head(_q) #define qdf_wake_up_interruptible(_q) __qdf_wake_up_interruptible(_q) /** * qdf_wake_up() - wakes up sleeping waitqueue * @wait_queue: wait queue, which needs wake up * * Return: none */ #define qdf_wake_up(_q) __qdf_wake_up(_q) #define qdf_wake_up_completion(_q) __qdf_wake_up_completion(_q) /** * qdf_container_of - cast a member of a structure out to the containing * structure * @ptr: the pointer to the member. * @type: the type of the container struct this is embedded in. * @member: the name of the member within the struct. */ #define qdf_container_of(ptr, type, member) \ __qdf_container_of(ptr, type, member) /** * qdf_is_pwr2 - test input value is power of 2 integer * @value: input integer */ #define QDF_IS_PWR2(value) (((value) ^ ((value)-1)) == ((value) << 1) - 1) /** * qdf_roundup() - roundup the input value * @x: value to roundup * @y: input value rounded to multiple of this * * Return: rounded value */ #define qdf_roundup(x, y) __qdf_roundup(x, y) /** * qdf_ceil() - roundup of x/y * @x: dividend * @y: divisor * * Return: rounded value */ #define qdf_ceil(x, y) __qdf_ceil(x, y) /** * qdf_in_interrupt - returns true if in interrupt context */ #define qdf_in_interrupt __qdf_in_interrupt /** * qdf_is_macaddr_equal() - compare two QDF MacAddress * @mac_addr1: Pointer to one qdf MacAddress to compare * @mac_addr2: Pointer to the other qdf MacAddress to compare * * This function returns a bool that tells if a two QDF MacAddress' * are equivalent. * * Return: true if the MacAddress's are equal * not true if the MacAddress's are not equal */ static inline bool qdf_is_macaddr_equal(struct qdf_mac_addr *mac_addr1, struct qdf_mac_addr *mac_addr2) { return __qdf_is_macaddr_equal(mac_addr1, mac_addr2); } /** * qdf_is_macaddr_zero() - check for a MacAddress of all zeros. * @mac_addr: pointer to the struct qdf_mac_addr to check. * * This function returns a bool that tells if a MacAddress is made up of * all zeros. * * Return: true if the MacAddress is all Zeros * false if the MacAddress is not all Zeros. */ static inline bool qdf_is_macaddr_zero(struct qdf_mac_addr *mac_addr) { struct qdf_mac_addr zero_mac_addr = QDF_MAC_ADDR_ZERO_INIT; return qdf_is_macaddr_equal(mac_addr, &zero_mac_addr); } /** * qdf_zero_macaddr() - zero out a MacAddress * @mac_addr: pointer to the struct qdf_mac_addr to zero. * * This function zeros out a QDF MacAddress type. * * Return: none */ static inline void qdf_zero_macaddr(struct qdf_mac_addr *mac_addr) { __qdf_zero_macaddr(mac_addr); } /** * qdf_is_macaddr_group() - check for a MacAddress is a 'group' address * @mac_addr1: pointer to the qdf MacAddress to check * * This function returns a bool that tells if a the input QDF MacAddress * is a "group" address. Group addresses have the 'group address bit' turned * on in the MacAddress. Group addresses are made up of Broadcast and * Multicast addresses. * * Return: true if the input MacAddress is a Group address * false if the input MacAddress is not a Group address */ static inline bool qdf_is_macaddr_group(struct qdf_mac_addr *mac_addr) { return mac_addr->bytes[0] & 0x01; } /** * qdf_is_macaddr_broadcast() - check for a MacAddress is a broadcast address * @mac_addr: Pointer to the qdf MacAddress to check * * This function returns a bool that tells if a the input QDF MacAddress * is a "broadcast" address. * * Return: true if the input MacAddress is a broadcast address * flase if the input MacAddress is not a broadcast address */ static inline bool qdf_is_macaddr_broadcast(struct qdf_mac_addr *mac_addr) { struct qdf_mac_addr broadcast_mac_addr = QDF_MAC_ADDR_BCAST_INIT; return qdf_is_macaddr_equal(mac_addr, &broadcast_mac_addr); } /** * qdf_copy_macaddr() - copy a QDF MacAddress * @dst_addr: pointer to the qdf MacAddress to copy TO (the destination) * @src_addr: pointer to the qdf MacAddress to copy FROM (the source) * * This function copies a QDF MacAddress into another QDF MacAddress. * * Return: none */ static inline void qdf_copy_macaddr(struct qdf_mac_addr *dst_addr, struct qdf_mac_addr *src_addr) { *dst_addr = *src_addr; } /** * qdf_set_macaddr_broadcast() - set a QDF MacAddress to the 'broadcast' * @mac_addr: pointer to the qdf MacAddress to set to broadcast * * This function sets a QDF MacAddress to the 'broadcast' MacAddress. Broadcast * MacAddress contains all 0xFF bytes. * * Return: none */ static inline void qdf_set_macaddr_broadcast(struct qdf_mac_addr *mac_addr) { __qdf_set_macaddr_broadcast(mac_addr); } /** * qdf_set_u16() - Assign 16-bit unsigned value to a byte array base on CPU's * endianness. * @ptr: Starting address of a byte array * @value: The value to assign to the byte array * * Caller must validate the byte array has enough space to hold the vlaue * * Return: The address to the byte after the assignment. This may or may not * be valid. Caller to verify. */ static inline uint8_t *qdf_set_u16(uint8_t *ptr, uint16_t value) { #if defined(ANI_BIG_BYTE_ENDIAN) *(ptr) = (uint8_t) (value >> 8); *(ptr + 1) = (uint8_t) (value); #else *(ptr + 1) = (uint8_t) (value >> 8); *(ptr) = (uint8_t) (value); #endif return ptr + 2; } /** * qdf_get_u16() - Retrieve a 16-bit unsigned value from a byte array base on * CPU's endianness. * @ptr: Starting address of a byte array * @value: Pointer to a caller allocated buffer for 16 bit value. Value is to * assign to this location. * * Caller must validate the byte array has enough space to hold the vlaue * * Return: The address to the byte after the assignment. This may or may not * be valid. Caller to verify. */ static inline uint8_t *qdf_get_u16(uint8_t *ptr, uint16_t *value) { #if defined(ANI_BIG_BYTE_ENDIAN) *value = (((uint16_t) (*ptr << 8)) | ((uint16_t) (*(ptr + 1)))); #else *value = (((uint16_t) (*(ptr + 1) << 8)) | ((uint16_t) (*ptr))); #endif return ptr + 2; } /** * qdf_get_u32() - retrieve a 32-bit unsigned value from a byte array base on * CPU's endianness. * @ptr: Starting address of a byte array * @value: Pointer to a caller allocated buffer for 32 bit value. Value is to * assign to this location. * * Caller must validate the byte array has enough space to hold the vlaue * * Return: The address to the byte after the assignment. This may or may not * be valid. Caller to verify. */ static inline uint8_t *qdf_get_u32(uint8_t *ptr, uint32_t *value) { #if defined(ANI_BIG_BYTE_ENDIAN) *value = ((uint32_t) (*(ptr) << 24) | (uint32_t) (*(ptr + 1) << 16) | (uint32_t) (*(ptr + 2) << 8) | (uint32_t) (*(ptr + 3))); #else *value = ((uint32_t) (*(ptr + 3) << 24) | (uint32_t) (*(ptr + 2) << 16) | (uint32_t) (*(ptr + 1) << 8) | (uint32_t) (*(ptr))); #endif return ptr + 4; } /** * qdf_ntohs - Convert a 16-bit value from network byte order to host byte order */ #define qdf_ntohs(x) __qdf_ntohs(x) /** * qdf_ntohl - Convert a 32-bit value from network byte order to host byte order */ #define qdf_ntohl(x) __qdf_ntohl(x) /** * qdf_htons - Convert a 16-bit value from host byte order to network byte order */ #define qdf_htons(x) __qdf_htons(x) /** * qdf_htonl - Convert a 32-bit value from host byte order to network byte order */ #define qdf_htonl(x) __qdf_htonl(x) /** * qdf_cpu_to_le16 - Convert a 16-bit value from CPU byte order to * little-endian byte order * * @x: value to be converted */ #define qdf_cpu_to_le16(x) __qdf_cpu_to_le16(x) /** * qdf_cpu_to_le32 - Convert a 32-bit value from CPU byte order to * little-endian byte order * * @x: value to be converted */ #define qdf_cpu_to_le32(x) __qdf_cpu_to_le32(x) /** * qdf_cpu_to_le64 - Convert a 64-bit value from CPU byte order to * little-endian byte order * * @x: value to be converted */ #define qdf_cpu_to_le64(x) __qdf_cpu_to_le64(x) /** * qdf_le16_to_cpu - Convert a 16-bit value from little-endian byte order * to CPU byte order * * @x: value to be converted */ #define qdf_le16_to_cpu(x) __qdf_le16_to_cpu(x) /** * qdf_le32_to_cpu - Convert a 32-bit value from little-endian byte * order to CPU byte order * * @x: value to be converted */ #define qdf_le32_to_cpu(x) __qdf_le32_to_cpu(x) /** * qdf_le64_to_cpu - Convert a 64-bit value from little-endian byte * order to CPU byte order * * @x: value to be converted */ #define qdf_le64_to_cpu(x) __qdf_le64_to_cpu(x) /** * qdf_cpu_to_be16 - Convert a 16-bit value from CPU byte order to * big-endian byte order * * @x: value to be converted */ #define qdf_cpu_to_be16(x) __qdf_cpu_to_be16(x) /** * qdf_cpu_to_be32 - Convert a 32-bit value from CPU byte order to * big-endian byte order * * @x: value to be converted */ #define qdf_cpu_to_be32(x) __qdf_cpu_to_be32(x) /** * qdf_cpu_to_be64 - Convert a 64-bit value from CPU byte order to * big-endian byte order * * @x: value to be converted */ #define qdf_cpu_to_be64(x) __qdf_cpu_to_be64(x) /** * qdf_be16_to_cpu - Convert a 16-bit value from big-endian byte order * to CPU byte order * * @x: value to be converted */ #define qdf_be16_to_cpu(x) __qdf_be16_to_cpu(x) /** * qdf_be32_to_cpu - Convert a 32-bit value from big-endian byte order * to CPU byte order * * @x: value to be converted */ #define qdf_be32_to_cpu(x) __qdf_be32_to_cpu(x) /** * qdf_be64_to_cpu - Convert a 64-bit value from big-endian byte order * to CPU byte order * * @x: value to be converted */ #define qdf_be64_to_cpu(x) __qdf_be64_to_cpu(x) /** * qdf_function - replace with the name of the current function */ #define qdf_function __qdf_function /** * qdf_min - minimum of two numbers */ #define qdf_min(a, b) __qdf_min(a, b) /** * qdf_ffz() - find first (least significant) zero bit * @mask: the bitmask to check * * Return: The zero-based index of the first zero bit, or -1 if none are found */ #define qdf_ffz(mask) __qdf_ffz(mask) /** * qdf_prefetch - prefetches the cacheline for read * * @x: address to be prefetched */ #define qdf_prefetch(x) __qdf_prefetch(x) /** * qdf_get_pwr2() - get next power of 2 integer from input value * @value: input value to find next power of 2 integer * * Get next power of 2 integer from input value * * Return: Power of 2 integer */ static inline int qdf_get_pwr2(int value) { int log2; if (QDF_IS_PWR2(value)) return value; log2 = 0; while (value) { value >>= 1; log2++; } return 1 << log2; } static inline int qdf_get_cpu(void) { return __qdf_get_cpu(); } /** * qdf_get_hweight8() - count num of 1's in 8-bit bitmap * @value: input bitmap * * Count num of 1's set in the 8-bit bitmap * * Return: num of 1's */ static inline unsigned int qdf_get_hweight8(unsigned int w) { unsigned int res = w - ((w >> 1) & 0x55); res = (res & 0x33) + ((res >> 2) & 0x33); return (res + (res >> 4)) & 0x0F; } /** * qdf_get_hweight16() - count num of 1's in 16-bit bitmap * @value: input bitmap * * Count num of 1's set in the 16-bit bitmap * * Return: num of 1's */ static inline unsigned int qdf_get_hweight16(unsigned int w) { unsigned int res = (w & 0x5555) + ((w >> 1) & 0x5555); res = (res & 0x3333) + ((res >> 2) & 0x3333); res = (res & 0x0F0F) + ((res >> 4) & 0x0F0F); return (res & 0x00FF) + ((res >> 8) & 0x00FF); } /** * qdf_get_hweight32() - count num of 1's in 32-bit bitmap * @value: input bitmap * * Count num of 1's set in the 32-bit bitmap * * Return: num of 1's */ static inline unsigned int qdf_get_hweight32(unsigned int w) { unsigned int res = (w & 0x55555555) + ((w >> 1) & 0x55555555); res = (res & 0x33333333) + ((res >> 2) & 0x33333333); res = (res & 0x0F0F0F0F) + ((res >> 4) & 0x0F0F0F0F); res = (res & 0x00FF00FF) + ((res >> 8) & 0x00FF00FF); return (res & 0x0000FFFF) + ((res >> 16) & 0x0000FFFF); } /** * qdf_device_init_wakeup() - allow a device to wake up the aps system * @qdf_dev: the qdf device context * @enable: enable/disable the device as a wakup source * * Return: 0 or errno */ static inline int qdf_device_init_wakeup(qdf_device_t qdf_dev, bool enable) { return __qdf_device_init_wakeup(qdf_dev, enable); } static inline uint64_t qdf_get_totalramsize(void) { return __qdf_get_totalramsize(); } /** * qdf_get_lower_32_bits() - get lower 32 bits from an address. * @addr: address * * This api returns the lower 32 bits of an address. * * Return: lower 32 bits. */ static inline uint32_t qdf_get_lower_32_bits(qdf_dma_addr_t addr) { return __qdf_get_lower_32_bits(addr); } /** * qdf_get_upper_32_bits() - get upper 32 bits from an address. * @addr: address * * This api returns the upper 32 bits of an address. * * Return: upper 32 bits. */ static inline uint32_t qdf_get_upper_32_bits(qdf_dma_addr_t addr) { return __qdf_get_upper_32_bits(addr); } /** * qdf_rounddown_pow_of_two() - Round down to nearest power of two * @n: number to be tested * * Test if the input number is power of two, and return the nearest power of two * * Return: number rounded down to the nearest power of two */ static inline unsigned long qdf_rounddown_pow_of_two(unsigned long n) { return __qdf_rounddown_pow_of_two(n); } /** * qdf_set_dma_coherent_mask() - set max number of bits allowed in dma addr * @dev: device pointer * @addr_bits: max number of bits allowed in dma address * * This API sets the maximum allowed number of bits in the dma address. * * Return: 0 - success, non zero - failure */ static inline int qdf_set_dma_coherent_mask(struct device *dev, uint8_t addr_bits) { return __qdf_set_dma_coherent_mask(dev, addr_bits); } /** * qdf_do_div() - wrapper function for kernel macro(do_div). * @dividend: Dividend value * @divisor : Divisor value * * Return: Quotient */ static inline uint64_t qdf_do_div(uint64_t dividend, uint32_t divisor) { return __qdf_do_div(dividend, divisor); } /** * qdf_do_div_rem() - wrapper function for kernel macro(do_div) * to get remainder. * @dividend: Dividend value * @divisor : Divisor value * * Return: remainder */ static inline uint64_t qdf_do_div_rem(uint64_t dividend, uint32_t divisor) { return __qdf_do_div_rem(dividend, divisor); } /** * qdf_get_random_bytes() - returns nbytes bytes of random * data * * Return: random bytes of data */ static inline void qdf_get_random_bytes(void *buf, int nbytes) { return __qdf_get_random_bytes(buf, nbytes); } /** * qdf_hex_to_bin() - QDF API to Convert hexa decimal ASCII character to * unsigned integer value. * @ch: hexa decimal ASCII character * * Return: For hexa decimal ASCII char return actual decimal value * else -1 for bad input. */ static inline int qdf_hex_to_bin(char ch) { return __qdf_hex_to_bin(ch); } /** * qdf_hex_str_to_binary() - QDF API to Convert string of hexa decimal * ASCII characters to array of unsigned integers. * @dst: output array to hold converted values * @src: input string of hexa decimal ASCII characters * @count: size of dst string * * This function is used to convert string of hexa decimal characters to * array of unsigned integers and caller should ensure: * a) @dst, @src are not NULL, * b) size of @dst should be (size of src / 2) * * Example 1: * src = 11aa, means, src[0] = '1', src[1] = '2', src[2] = 'a', src[3] = 'a' * count = (size of src / 2) = 2 * after conversion, dst[0] = 0x11, dst[1] = oxAA and return (0). * * Example 2: * src = 11az, means, src[0] = '1', src[1] = '2', src[2] = 'a', src[3] = 'z' * src[3] is not ASCII hexa decimal character, return negative value (-1). * * Return: For a string of hexa decimal ASCII characters return 0 * else -1 for bad input. */ static inline int qdf_hex_str_to_binary(u8 *dst, const char *src, size_t count) { return __qdf_hex_str_to_binary(dst, src, count); } /** * qdf_fls() - find last set bit in a given 32 bit input * @x: 32 bit mask * * Return: zero if the input is zero, otherwise returns the bit * position of the last set bit, where the LSB is 1 and MSB is 32. */ static inline int qdf_fls(uint32_t x) { return __qdf_fls(x); } #endif /*_QDF_UTIL_H*/