/* * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for * any purpose with or without fee is hereby granted, provided that the * above copyright notice and this permission notice appear in all * copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ /** * DOC: i_qdf_mem.h * Linux-specific definitions for QDF memory API's */ #ifndef __I_QDF_MEM_H #define __I_QDF_MEM_H #ifdef __KERNEL__ #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 17) #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 33) #include #else #include #endif #endif #include #include #include #include /* pci_alloc_consistent */ #include /* L1_CACHE_BYTES */ #define __qdf_cache_line_sz L1_CACHE_BYTES #include "queue.h" #else /* * Provide dummy defs for kernel data types, functions, and enums * used in this header file. */ #define GFP_KERNEL 0 #define GFP_ATOMIC 0 #define kzalloc(size, flags) NULL #define vmalloc(size) NULL #define kfree(buf) #define vfree(buf) #define pci_alloc_consistent(dev, size, paddr) NULL #define __qdf_mempool_t void* #define QDF_RET_IP NULL #endif /* __KERNEL__ */ #include #if IS_ENABLED(CONFIG_ARM_SMMU) #include #ifdef ENABLE_SMMU_S1_TRANSLATION #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 4, 0)) #include #endif #endif #include #endif #ifdef __KERNEL__ typedef struct mempool_elem { STAILQ_ENTRY(mempool_elem) mempool_entry; } mempool_elem_t; /** * typedef __qdf_mempool_ctxt_t - Memory pool context * @pool_id: pool identifier * @flags: flags * @elem_size: size of each pool element in bytes * @pool_mem: pool_addr address of the pool created * @mem_size: Total size of the pool in bytes * @free_list: free pool list * @lock: spinlock object * @max_elem: Maximum number of elements in tha pool * @free_cnt: Number of free elements available */ typedef struct __qdf_mempool_ctxt { int pool_id; u_int32_t flags; size_t elem_size; void *pool_mem; u_int32_t mem_size; STAILQ_HEAD(, mempool_elem) free_list; spinlock_t lock; u_int32_t max_elem; u_int32_t free_cnt; } __qdf_mempool_ctxt_t; #endif /* __KERNEL__ */ #define __page_size ((size_t)PAGE_SIZE) #define __qdf_align(a, mask) ALIGN(a, mask) #ifdef DISABLE_MEMDEBUG_PANIC #define QDF_MEMDEBUG_PANIC(reason_fmt, args...) \ do { \ /* no-op */ \ } while (false) #else #define QDF_MEMDEBUG_PANIC(reason_fmt, args...) \ QDF_DEBUG_PANIC(reason_fmt, ## args) #endif /* typedef for dma_data_direction */ typedef enum dma_data_direction __dma_data_direction; /** * __qdf_dma_dir_to_os() - Convert DMA data direction to OS specific enum * @dir: QDF DMA data direction * * Return: * enum dma_data_direction */ static inline enum dma_data_direction __qdf_dma_dir_to_os(qdf_dma_dir_t qdf_dir) { switch (qdf_dir) { case QDF_DMA_BIDIRECTIONAL: return DMA_BIDIRECTIONAL; case QDF_DMA_TO_DEVICE: return DMA_TO_DEVICE; case QDF_DMA_FROM_DEVICE: return DMA_FROM_DEVICE; default: return DMA_NONE; } } /** * __qdf_mem_map_nbytes_single - Map memory for DMA * @osdev: pomter OS device context * @buf: pointer to memory to be dma mapped * @dir: DMA map direction * @nbytes: number of bytes to be mapped. * @phy_addr: ponter to recive physical address. * * Return: success/failure */ static inline uint32_t __qdf_mem_map_nbytes_single(qdf_device_t osdev, void *buf, qdf_dma_dir_t dir, int nbytes, qdf_dma_addr_t *phy_addr) { /* assume that the OS only provides a single fragment */ *phy_addr = dma_map_single(osdev->dev, buf, nbytes, __qdf_dma_dir_to_os(dir)); return dma_mapping_error(osdev->dev, *phy_addr) ? QDF_STATUS_E_FAILURE : QDF_STATUS_SUCCESS; } #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20) static inline void __qdf_mem_dma_cache_sync(qdf_device_t osdev, qdf_dma_addr_t buf, qdf_dma_dir_t dir, int nbytes) { dma_cache_sync(osdev->dev, buf, nbytes, __qdf_dma_dir_to_os(dir)); } #else static inline void __qdf_mem_dma_cache_sync(qdf_device_t osdev, qdf_dma_addr_t buf, qdf_dma_dir_t dir, int nbytes) { dma_sync_single_for_cpu(osdev->dev, buf, nbytes, __qdf_dma_dir_to_os(dir)); } #endif /** * __qdf_mem_unmap_nbytes_single() - un_map memory for DMA * * @osdev: pomter OS device context * @phy_addr: physical address of memory to be dma unmapped * @dir: DMA unmap direction * @nbytes: number of bytes to be unmapped. * * Return - none */ static inline void __qdf_mem_unmap_nbytes_single(qdf_device_t osdev, qdf_dma_addr_t phy_addr, qdf_dma_dir_t dir, int nbytes) { dma_unmap_single(osdev->dev, phy_addr, nbytes, __qdf_dma_dir_to_os(dir)); } #ifdef __KERNEL__ typedef __qdf_mempool_ctxt_t *__qdf_mempool_t; int __qdf_mempool_init(qdf_device_t osdev, __qdf_mempool_t *pool, int pool_cnt, size_t pool_entry_size, u_int32_t flags); void __qdf_mempool_destroy(qdf_device_t osdev, __qdf_mempool_t pool); void *__qdf_mempool_alloc(qdf_device_t osdev, __qdf_mempool_t pool); void __qdf_mempool_free(qdf_device_t osdev, __qdf_mempool_t pool, void *buf); #define QDF_RET_IP ((void *)_RET_IP_) #define __qdf_mempool_elem_size(_pool) ((_pool)->elem_size) #endif /** * __qdf_mem_smmu_s1_enabled() - Return SMMU stage 1 translation enable status * @osdev parent device instance * * Return: true if smmu s1 enabled, false if smmu s1 is bypassed */ static inline bool __qdf_mem_smmu_s1_enabled(qdf_device_t osdev) { return osdev->smmu_s1_enabled; } #if IS_ENABLED(CONFIG_ARM_SMMU) && defined(ENABLE_SMMU_S1_TRANSLATION) #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 19, 0)) /** * __qdf_dev_get_domain() - get iommu domain from osdev * @osdev: parent device instance * * Return: iommu domain */ static inline struct iommu_domain * __qdf_dev_get_domain(qdf_device_t osdev) { return osdev->domain; } #else static inline struct iommu_domain * __qdf_dev_get_domain(qdf_device_t osdev) { if (osdev->iommu_mapping) return osdev->iommu_mapping->domain; return NULL; } #endif /** * __qdf_mem_paddr_from_dmaaddr() - get actual physical address from dma_addr * @osdev: parent device instance * @dma_addr: dma_addr * * Get actual physical address from dma_addr based on SMMU enablement status. * IF SMMU Stage 1 translation is enabled, DMA APIs return IO virtual address * (IOVA) otherwise returns physical address. So get SMMU physical address * mapping from IOVA. * * Return: dmaable physical address */ static inline unsigned long __qdf_mem_paddr_from_dmaaddr(qdf_device_t osdev, qdf_dma_addr_t dma_addr) { struct iommu_domain *domain; if (__qdf_mem_smmu_s1_enabled(osdev)) { domain = __qdf_dev_get_domain(osdev); if (domain) return iommu_iova_to_phys(domain, dma_addr); } return dma_addr; } #else static inline unsigned long __qdf_mem_paddr_from_dmaaddr(qdf_device_t osdev, qdf_dma_addr_t dma_addr) { return dma_addr; } #endif /** * __qdf_os_mem_dma_get_sgtable() - Returns DMA memory scatter gather table * @dev: device instace * @sgt: scatter gather table pointer * @cpu_addr: HLOS virtual address * @dma_addr: dma/iova * @size: allocated memory size * * Return: physical address */ static inline int __qdf_os_mem_dma_get_sgtable(struct device *dev, void *sgt, void *cpu_addr, qdf_dma_addr_t dma_addr, size_t size) { return dma_get_sgtable(dev, (struct sg_table *)sgt, cpu_addr, dma_addr, size); } /** * __qdf_os_mem_free_sgtable() - Free a previously allocated sg table * @sgt: the mapped sg table header * * Return: None */ static inline void __qdf_os_mem_free_sgtable(struct sg_table *sgt) { sg_free_table(sgt); } /** * __qdf_dma_get_sgtable_dma_addr()-Assigns DMA address to scatterlist elements * @sgt: scatter gather table pointer * * Return: None */ static inline void __qdf_dma_get_sgtable_dma_addr(struct sg_table *sgt) { struct scatterlist *sg; int i; for_each_sg(sgt->sgl, sg, sgt->nents, i) { if (!sg) break; sg->dma_address = sg_phys(sg); } } /** * __qdf_mem_get_dma_addr() - Return dma addr based on SMMU translation status * @osdev: parent device instance * @mem_info: Pointer to allocated memory information * * Based on smmu stage 1 translation enablement status, return corresponding dma * address from qdf_mem_info_t. If stage 1 translation enabled, return * IO virtual address otherwise return physical address. * * Return: dma address */ static inline qdf_dma_addr_t __qdf_mem_get_dma_addr(qdf_device_t osdev, qdf_mem_info_t *mem_info) { if (__qdf_mem_smmu_s1_enabled(osdev)) return (qdf_dma_addr_t)mem_info->iova; else return (qdf_dma_addr_t)mem_info->pa; } /** * __qdf_mem_get_dma_addr_ptr() - Return DMA address storage pointer * @osdev: parent device instance * @mem_info: Pointer to allocated memory information * * Based on smmu stage 1 translation enablement status, return corresponding * dma address pointer from qdf_mem_info_t structure. If stage 1 translation * enabled, return pointer to IO virtual address otherwise return pointer to * physical address * * Return: dma address storage pointer */ static inline qdf_dma_addr_t * __qdf_mem_get_dma_addr_ptr(qdf_device_t osdev, qdf_mem_info_t *mem_info) { if (__qdf_mem_smmu_s1_enabled(osdev)) return (qdf_dma_addr_t *)(&mem_info->iova); else return (qdf_dma_addr_t *)(&mem_info->pa); } /** * __qdf_update_mem_map_table() - Update DMA memory map info * @osdev: Parent device instance * @mem_info: Pointer to shared memory information * @dma_addr: dma address * @mem_size: memory size allocated * * Store DMA shared memory information * * Return: none */ static inline void __qdf_update_mem_map_table(qdf_device_t osdev, qdf_mem_info_t *mem_info, qdf_dma_addr_t dma_addr, uint32_t mem_size) { mem_info->pa = __qdf_mem_paddr_from_dmaaddr(osdev, dma_addr); mem_info->iova = dma_addr; mem_info->size = mem_size; } /** * __qdf_mem_get_dma_size() - Return DMA memory size * @osdev: parent device instance * @mem_info: Pointer to allocated memory information * * Return: DMA memory size */ static inline uint32_t __qdf_mem_get_dma_size(qdf_device_t osdev, qdf_mem_info_t *mem_info) { return mem_info->size; } /** * __qdf_mem_set_dma_size() - Set DMA memory size * @osdev: parent device instance * @mem_info: Pointer to allocated memory information * @mem_size: memory size allocated * * Return: none */ static inline void __qdf_mem_set_dma_size(qdf_device_t osdev, qdf_mem_info_t *mem_info, uint32_t mem_size) { mem_info->size = mem_size; } /** * __qdf_mem_get_dma_size() - Return DMA physical address * @osdev: parent device instance * @mem_info: Pointer to allocated memory information * * Return: DMA physical address */ static inline qdf_dma_addr_t __qdf_mem_get_dma_pa(qdf_device_t osdev, qdf_mem_info_t *mem_info) { return mem_info->pa; } /** * __qdf_mem_set_dma_size() - Set DMA physical address * @osdev: parent device instance * @mem_info: Pointer to allocated memory information * @dma_pa: DMA phsical address * * Return: none */ static inline void __qdf_mem_set_dma_pa(qdf_device_t osdev, qdf_mem_info_t *mem_info, qdf_dma_addr_t dma_pa) { mem_info->pa = dma_pa; } /** * __qdf_mem_alloc_consistent() - allocates consistent qdf memory * @osdev: OS device handle * @dev: Pointer to device handle * @size: Size to be allocated * @paddr: Physical address * @func: Function name of the call site * @line: line numbe rof the call site * * Return: pointer of allocated memory or null if memory alloc fails */ void *__qdf_mem_alloc_consistent(qdf_device_t osdev, void *dev, qdf_size_t size, qdf_dma_addr_t *paddr, const char *func, uint32_t line); /** * __qdf_mem_malloc() - allocates QDF memory * @size: Number of bytes of memory to allocate. * * @func: Function name of the call site * @line: line numbe rof the call site * * This function will dynamicallly allocate the specified number of bytes of * memory. * * Return: * Upon successful allocate, returns a non-NULL pointer to the allocated * memory. If this function is unable to allocate the amount of memory * specified (for any reason) it returns NULL. */ void *__qdf_mem_malloc(qdf_size_t size, const char *func, uint32_t line); /** * __qdf_mem_free() - free QDF memory * @ptr: Pointer to the starting address of the memory to be freed. * * This function will free the memory pointed to by 'ptr'. * Return: None */ void __qdf_mem_free(void *ptr); #ifdef QCA_WIFI_MODULE_PARAMS_FROM_INI /** * __qdf_untracked_mem_malloc() - allocates non-QDF memory * @size: Number of bytes of memory to allocate. * * @func: Function name of the call site * @line: line number of the call site * * This function will dynamically allocate the specified number of bytes of * memory. Memory allocated is not tracked by qdf memory debug framework. * * Return: * Upon successful allocation, returns a non-NULL pointer to the allocated * memory. If this function is unable to allocate the amount of memory * specified (for any reason) it returns NULL. */ void *__qdf_untracked_mem_malloc(qdf_size_t size, const char *func, uint32_t line); /** * __qdf_untracked_mem_free() - free non-QDF memory * @ptr: Pointer to the starting address of the memory to be freed. * * This function will free the memory pointed to by 'ptr'. * Return: None */ void __qdf_untracked_mem_free(void *ptr); #endif /** * __qdf_mem_free_consistent() - free consistent qdf memory * @osdev: OS device handle * @dev: Pointer to device handle * @size: Size to be allocated * @vaddr: virtual address * @paddr: Physical address * @memctx: Pointer to DMA context * * Return: none */ void __qdf_mem_free_consistent(qdf_device_t osdev, void *dev, qdf_size_t size, void *vaddr, qdf_dma_addr_t paddr, qdf_dma_context_t memctx); #endif /* __I_QDF_MEM_H */