// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2015, The Linux Foundation. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include "qcom_scm.h" #define ICE_CRYPTO_ALGO_MODE_AES_XTS 0x3 #define QCOM_SCM_FNID(s, c) ((((s) & 0xFF) << 8) | ((c) & 0xFF)) #define QCOM_SCM_ARGS_IMPL(num, a, b, c, d, e, f, g, h, i, j, ...) (\ (((a) & 0x3) << 4) | \ (((b) & 0x3) << 6) | \ (((c) & 0x3) << 8) | \ (((d) & 0x3) << 10) | \ (((e) & 0x3) << 12) | \ (((f) & 0x3) << 14) | \ (((g) & 0x3) << 16) | \ (((h) & 0x3) << 18) | \ (((i) & 0x3) << 20) | \ (((j) & 0x3) << 22) | \ ((num) & 0xf)) #define QCOM_SCM_ARGS(...) QCOM_SCM_ARGS_IMPL(__VA_ARGS__, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) /** * struct qcom_scm_desc * @arginfo: Metadata describing the arguments in args[] * @args: The array of arguments for the secure syscall * @res: The values returned by the secure syscall */ struct qcom_scm_desc { u32 arginfo; u64 args[MAX_QCOM_SCM_ARGS]; }; static u64 qcom_smccc_convention = -1; static DEFINE_MUTEX(qcom_scm_lock); #define N_EXT_QCOM_SCM_ARGS 7 #define FIRST_EXT_ARG_IDX 3 #define N_REGISTER_ARGS (MAX_QCOM_SCM_ARGS - N_EXT_QCOM_SCM_ARGS + 1) /* This function is used to find whether TZ is in AARCH64 mode. * Here we return true since TZ will be in AARCH64 mode for * 64bit Linux. */ bool is_scm_armv8(void) { return true; } /** * qcom_scm_call() - Invoke a syscall in the secure world * @dev: device * @owner_id: owner identifier * @svc_id: service identifier * @cmd_id: command identifier * @desc: Descriptor structure containing arguments and return values * * Sends a command to the SCM and waits for the command to finish processing. * This should *only* be called in pre-emptible context. */ static int qcom_scm_call(struct device *dev, u32 owner_id, u32 svc_id, u32 cmd_id, const struct qcom_scm_desc *desc, struct arm_smccc_res *res) { int arglen = desc->arginfo & 0xf; int retry_count = 0, i; u32 fn_id = QCOM_SCM_FNID(svc_id, cmd_id); u64 cmd, x5 = desc->args[FIRST_EXT_ARG_IDX]; dma_addr_t args_phys = 0; void *args_virt = NULL; size_t alloc_len; struct arm_smccc_quirk quirk = {.id = ARM_SMCCC_QUIRK_QCOM_A6}; if (unlikely(arglen > N_REGISTER_ARGS)) { alloc_len = N_EXT_QCOM_SCM_ARGS * sizeof(u64); args_virt = kzalloc(PAGE_ALIGN(alloc_len), GFP_KERNEL); if (!args_virt) return -ENOMEM; if (qcom_smccc_convention == ARM_SMCCC_SMC_32) { __le32 *args = args_virt; for (i = 0; i < N_EXT_QCOM_SCM_ARGS; i++) args[i] = cpu_to_le32(desc->args[i + FIRST_EXT_ARG_IDX]); } else { __le64 *args = args_virt; for (i = 0; i < N_EXT_QCOM_SCM_ARGS; i++) args[i] = cpu_to_le64(desc->args[i + FIRST_EXT_ARG_IDX]); } args_phys = dma_map_single(dev, args_virt, alloc_len, DMA_TO_DEVICE); if (dma_mapping_error(dev, args_phys)) { kfree(args_virt); return -ENOMEM; } x5 = args_phys; } do { mutex_lock(&qcom_scm_lock); cmd = ARM_SMCCC_CALL_VAL(ARM_SMCCC_STD_CALL, qcom_smccc_convention, owner_id, fn_id); quirk.state.a6 = 0; do { arm_smccc_smc_quirk(cmd, desc->arginfo, desc->args[0], desc->args[1], desc->args[2], x5, quirk.state.a6, 0, res, &quirk); if (res->a0 == QCOM_SCM_INTERRUPTED) cmd = res->a0; } while (res->a0 == QCOM_SCM_INTERRUPTED); mutex_unlock(&qcom_scm_lock); if (res->a0 == QCOM_SCM_V2_EBUSY) { if (retry_count++ > QCOM_SCM_EBUSY_MAX_RETRY) break; msleep(QCOM_SCM_EBUSY_WAIT_MS); } } while (res->a0 == QCOM_SCM_V2_EBUSY); if (args_virt) { dma_unmap_single(dev, args_phys, alloc_len, DMA_TO_DEVICE); kfree(args_virt); } if ((long)res->a0 < 0) return qcom_scm_remap_error(res->a0); return 0; } /** * qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus * @entry: Entry point function for the cpus * @cpus: The cpumask of cpus that will use the entry point * * Set the cold boot address of the cpus. Any cpu outside the supported * range would be removed from the cpu present mask. */ int __qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus) { return -ENOTSUPP; } /** * qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus * @dev: Device pointer * @entry: Entry point function for the cpus * @cpus: The cpumask of cpus that will use the entry point * * Set the Linux entry point for the SCM to transfer control to when coming * out of a power down. CPU power down may be executed on cpuidle or hotplug. */ int __qcom_scm_set_warm_boot_addr(struct device *dev, void *entry, const cpumask_t *cpus) { return -ENOTSUPP; } /** * qcom_scm_cpu_power_down() - Power down the cpu * @flags - Flags to flush cache * * This is an end point to power down cpu. If there was a pending interrupt, * the control would return from this function, otherwise, the cpu jumps to the * warm boot entry point set for this cpu upon reset. */ void __qcom_scm_cpu_power_down(u32 flags) { } int __qcom_remove_xpu_scm_call_available(struct device *dev, u32 svc_id, u32 cmd_id) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.arginfo = QCOM_SCM_ARGS(1); desc.args[0] = SCM_QSEEOS_FNID(svc_id, cmd_id) | (ARM_SMCCC_OWNER_TRUSTED_OS << ARM_SMCCC_OWNER_SHIFT); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_INFO, QCOM_IS_CALL_AVAIL_CMD, &desc, &res); return ret ? : res.a1; } int __qcom_scm_is_call_available(struct device *dev, u32 svc_id, u32 cmd_id) { int ret; int fn_id; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; fn_id = QCOM_SCM_FNID(svc_id, cmd_id); if (cmd_id == QCOM_SCM_IS_TZ_LOG_ENCRYPTED) fn_id |= (ARM_SMCCC_OWNER_TRUSTED_OS << ARM_SMCCC_OWNER_SHIFT); else fn_id |= (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT); desc.arginfo = QCOM_SCM_ARGS(1); desc.args[0] = fn_id; ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_INFO, QCOM_IS_CALL_AVAIL_CMD, &desc, &res); return ret ? : res.a1; } int __qcom_scm_hdcp_req(struct device *dev, struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT) return -ERANGE; desc.args[0] = req[0].addr; desc.args[1] = req[0].val; desc.args[2] = req[1].addr; desc.args[3] = req[1].val; desc.args[4] = req[2].addr; desc.args[5] = req[2].val; desc.args[6] = req[3].addr; desc.args[7] = req[3].val; desc.args[8] = req[4].addr; desc.args[9] = req[4].val; desc.arginfo = QCOM_SCM_ARGS(10); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_HDCP, QCOM_SCM_CMD_HDCP, &desc, &res); *resp = res.a1; return ret; } void __qcom_scm_init(void) { u64 cmd; struct arm_smccc_res res; u32 function = QCOM_SCM_FNID(QCOM_SCM_SVC_INFO, QCOM_IS_CALL_AVAIL_CMD); /* First try a SMC64 call */ cmd = ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL, ARM_SMCCC_SMC_64, ARM_SMCCC_OWNER_SIP, function); arm_smccc_smc(cmd, QCOM_SCM_ARGS(1), cmd & (~BIT(ARM_SMCCC_TYPE_SHIFT)), 0, 0, 0, 0, 0, &res); if (!res.a0 && res.a1) qcom_smccc_convention = ARM_SMCCC_SMC_64; else qcom_smccc_convention = ARM_SMCCC_SMC_32; } bool __qcom_scm_pas_supported(struct device *dev, u32 peripheral) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = peripheral; desc.arginfo = QCOM_SCM_ARGS(1); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_IS_SUPPORTED_CMD, &desc, &res); return ret ? false : !!res.a1; } int __qcom_scm_pas_init_image_v2(struct device *dev, u32 peripheral, dma_addr_t metadata_phys, size_t size) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = peripheral; desc.args[1] = metadata_phys; desc.args[2] = size; desc.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_VAL, QCOM_SCM_RW, QCOM_SCM_VAL); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_INIT_IMAGE_V2_CMD, &desc, &res); return ret ? : res.a1; } int __qcom_scm_pas_init_image(struct device *dev, u32 peripheral, dma_addr_t metadata_phys) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = peripheral; desc.args[1] = metadata_phys; desc.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_INIT_IMAGE_CMD, &desc, &res); return ret ? : res.a1; } int __qcom_scm_pas_mem_setup(struct device *dev, u32 peripheral, phys_addr_t addr, phys_addr_t size) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = peripheral; desc.args[1] = addr; desc.args[2] = size; desc.arginfo = QCOM_SCM_ARGS(3); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_MEM_SETUP_CMD, &desc, &res); return ret ? : res.a1; } int __qcom_scm_pas_auth_and_reset(struct device *dev, u32 peripheral, u32 debug, u32 reset_cmd_id) { int ret; int break_support = 0; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; if (debug) { ret = __qcom_scm_is_call_available(dev, QCOM_SCM_SVC_PIL, reset_cmd_id); if (ret) break_support = 1; else dev_err(dev, "breat at start not supported\n"); } if (break_support) { desc.args[0] = debug; desc.arginfo = QCOM_SCM_ARGS(1); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_PIL, reset_cmd_id, &desc, &res); if (ret || res.a1) goto end; } desc.args[0] = peripheral; desc.arginfo = QCOM_SCM_ARGS(1); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_AUTH_AND_RESET_CMD, &desc, &res); end: return ret ? : res.a1; } int __qcom_scm_pas_shutdown(struct device *dev, u32 peripheral) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = peripheral; desc.arginfo = QCOM_SCM_ARGS(1); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_SHUTDOWN_CMD, &desc, &res); return ret ? : res.a1; } int __qcom_scm_pas_mss_reset(struct device *dev, bool reset) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = reset; desc.args[1] = 0; desc.arginfo = QCOM_SCM_ARGS(2); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_MSS_RESET, &desc, &res); return ret ? : res.a1; } int __qcom_scm_set_remote_state(struct device *dev, u32 state, u32 id) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = state; desc.args[1] = id; desc.arginfo = QCOM_SCM_ARGS(2); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_BOOT, QCOM_SCM_SET_REMOTE_STATE, &desc, &res); return ret ? : res.a1; } int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region, size_t mem_sz, phys_addr_t src, size_t src_sz, phys_addr_t dest, size_t dest_sz) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = mem_region; desc.args[1] = mem_sz; desc.args[2] = src; desc.args[3] = src_sz; desc.args[4] = dest; desc.args[5] = dest_sz; desc.args[6] = 0; desc.arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_MP, QCOM_MEM_PROT_ASSIGN_ID, &desc, &res); return ret ? : res.a1; } int __qcom_scm_restore_sec_cfg(struct device *dev, u32 device_id, u32 spare) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = device_id; desc.args[1] = spare; desc.arginfo = QCOM_SCM_ARGS(2); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_MP, QCOM_SCM_RESTORE_SEC_CFG, &desc, &res); return ret ? : res.a1; } int __qcom_scm_iommu_secure_ptbl_size(struct device *dev, u32 spare, size_t *size) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = spare; desc.arginfo = QCOM_SCM_ARGS(1); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_MP, QCOM_SCM_IOMMU_SECURE_PTBL_SIZE, &desc, &res); if (size) *size = res.a1; return ret ? : res.a2; } int __qcom_scm_iommu_secure_ptbl_init(struct device *dev, u64 addr, u32 size, u32 spare) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = addr; desc.args[1] = size; desc.args[2] = spare; desc.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL, QCOM_SCM_VAL); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_MP, QCOM_SCM_IOMMU_SECURE_PTBL_INIT, &desc, &res); /* the pg table has been initialized already, ignore the error */ if (ret == -EPERM) ret = 0; return ret; } int __qti_scm_wcss_boot(struct device *dev, u32 svc_id, u32 cmd_id, void *cmd_buf) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; unsigned int enable; enable = cmd_buf ? *((unsigned int *)cmd_buf) : 0; desc.args[0] = TCSR_Q6SS_BOOT_TRIG_REG; desc.args[1] = enable; desc.arginfo = SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_VAL); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, SCM_SVC_IO_ACCESS, SCM_IO_WRITE, &desc, &res); return ret ? : res.a1; } int __qti_scm_pdseg_memcpy_v2(struct device *dev, u32 peripheral, int phno, dma_addr_t dma, int seg_cnt) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = peripheral; desc.args[1] = phno; desc.args[2] = dma; desc.args[3] = seg_cnt; desc.arginfo = SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL, QCOM_SCM_RW, QCOM_SCM_VAL); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, PD_LOAD_SVC_ID, PD_LOAD_V2_CMD_ID, &desc, &res); return ret ? : res.a1; } int __qti_scm_pdseg_memcpy(struct device *dev, u32 peripheral, int phno, dma_addr_t dma, size_t size) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = peripheral; desc.args[1] = phno; desc.args[2] = dma; desc.args[3] = size; desc.arginfo = SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL, QCOM_SCM_RW, QCOM_SCM_VAL); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, PD_LOAD_SVC_ID, PD_LOAD_CMD_ID, &desc, &res); return ret ? : res.a1; } int __qti_scm_int_radio_powerup(struct device *dev, u32 peripheral) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = peripheral; desc.arginfo = SCM_ARGS(1, QCOM_SCM_VAL); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, PD_LOAD_SVC_ID, INT_RAD_PWR_UP_CMD_ID, &desc, &res); return ret ? : res.a1; } int __qti_scm_int_radio_powerdown(struct device *dev, u32 peripheral) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = peripheral; desc.arginfo = SCM_ARGS(1, QCOM_SCM_VAL); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, PD_LOAD_SVC_ID, INT_RAD_PWR_DN_CMD_ID, &desc, &res); return ret ? : res.a1; } int __qcom_scm_set_dload_mode(struct device *dev, bool enable) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = QCOM_SCM_SET_DLOAD_MODE; desc.args[1] = enable ? QCOM_SCM_SET_DLOAD_MODE : 0; desc.arginfo = QCOM_SCM_ARGS(2); return qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_BOOT, QCOM_SCM_SET_DLOAD_MODE, &desc, &res); } int __qcom_scm_io_readl(struct device *dev, phys_addr_t addr, unsigned int *val) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = addr; desc.arginfo = QCOM_SCM_ARGS(1); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_IO, QCOM_SCM_IO_READ, &desc, &res); if (ret >= 0) *val = res.a1; return ret < 0 ? ret : 0; } int __qcom_scm_io_writel(struct device *dev, phys_addr_t addr, unsigned int val) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = addr; desc.args[1] = val; desc.arginfo = QCOM_SCM_ARGS(2); return qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_IO, QCOM_SCM_IO_WRITE, &desc, &res); } int __qti_qfprom_show_authenticate(struct device *dev, char *buf) { int ret; struct arm_smccc_res res; struct qcom_scm_desc desc = {0}; dma_addr_t auth_phys; void *auth_buf; auth_buf = dma_alloc_coherent(dev, sizeof(*buf), &auth_phys, GFP_KERNEL); if (!auth_buf) { dev_err(dev, "Allocation for auth buffer failed\n"); return -ENOMEM; } desc.args[0] = (u64)auth_phys; desc.args[1] = sizeof(char); desc.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_RO); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QTI_SCM_SVC_FUSE, QTI_QFPROM_IS_AUTHENTICATE_CMD, &desc, &res); memcpy(buf, auth_buf, sizeof(char)); dma_free_coherent(dev, sizeof(*buf), auth_buf, auth_phys); return ret ? : res.a1; } int __qti_qfprom_write_version(struct device *dev, uint32_t sw_type, uint32_t value, uint32_t qfprom_ret_ptr) { int ret; struct arm_smccc_res res; struct qcom_scm_desc desc = {0}; ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QTI_SCM_SVC_FUSE, QTI_QFPROM_ROW_WRITE_CMD, &desc, &res); return ret ? : res.a1; } int __qti_qfprom_read_version(struct device *dev, uint32_t sw_type, uint32_t value, uint32_t qfprom_ret_ptr) { int ret; struct arm_smccc_res res; struct qcom_scm_desc desc = {0}; desc.args[0] = sw_type; desc.args[1] = (u64)value; desc.args[2] = sizeof(uint32_t); desc.args[3] = (u64)qfprom_ret_ptr; desc.args[4] = sizeof(uint32_t); desc.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW, QCOM_SCM_VAL, QCOM_SCM_RW, QCOM_SCM_VAL); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QTI_SCM_SVC_FUSE, QTI_QFPROM_ROW_READ_CMD, &desc, &res); return ret ? : res.a1; } int __qti_sec_upgrade_auth(struct device *dev, unsigned int scm_cmd_id, unsigned int sw_type, unsigned int img_size, unsigned int load_addr) { int ret; struct arm_smccc_res res; struct qcom_scm_desc desc = {0}; desc.args[0] = sw_type; desc.args[1] = img_size; desc.args[2] = (u64)load_addr; desc.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_VAL, QCOM_SCM_VAL, QCOM_SCM_RW); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_BOOT, scm_cmd_id, &desc, &res); return ret ? : res.a1; } int __qti_sec_upgrade_auth_meta_data(struct device *dev, unsigned int scm_cmd_id, unsigned int sw_type, unsigned int img_size, unsigned int load_addr, void* hash_addr, unsigned int hash_size) { int ret; struct arm_smccc_res res; struct qcom_scm_desc desc = {0}; dma_addr_t hash_address; hash_address = dma_map_single(dev, hash_addr, hash_size, DMA_FROM_DEVICE); ret = dma_mapping_error(dev, hash_address); if (ret != 0) { pr_err("%s: DMA Mapping Error : %d\n", __func__, ret); return ret; } desc.args[0] = sw_type; desc.args[1] = (u64)load_addr; desc.args[2] = img_size; desc.args[3] = hash_address; desc.args[4] = hash_size; desc.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW, QCOM_SCM_VAL, QCOM_SCM_RW, QCOM_SCM_VAL); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_BOOT, scm_cmd_id, &desc, &res); dma_unmap_single(dev, hash_address, hash_size, DMA_FROM_DEVICE); return ret ? : res.a1; } int __qcom_config_ice_sec(struct device *dev, void *conf_buf, int size) { int ret; struct arm_smccc_res res; struct qcom_scm_desc desc = {0}; dma_addr_t conf_phys; conf_phys = dma_map_single(dev, conf_buf, size, DMA_TO_DEVICE); ret = dma_mapping_error(dev, conf_phys); if (ret) { dev_err(dev, "Allocation fail for conf buffer\n"); return -ENOMEM; } desc.arginfo = QCOM_SCM_ARGS(2, QTI_SCM_PARAM_BUF_RO, QTI_SCM_PARAM_VAL); desc.args[0] = (u64)conf_phys; desc.args[1] = size; ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QTI_SVC_ICE, QTI_SCM_ICE_CMD, &desc, &res); dma_unmap_single(dev, conf_phys, size, DMA_TO_DEVICE); return ret ? : res.a1; } int __qcom_context_ice_sec(struct device *dev, u32 type, u8 key_size, u8 algo_mode, u8 *data_ctxt, u32 data_ctxt_len, u8 *salt_ctxt, u32 salt_ctxt_len) { int ret; struct arm_smccc_res res; struct qcom_scm_desc desc = {0}; void *data_ctxbuf = NULL, *salt_ctxbuf = NULL; dma_addr_t data_context_phy, salt_context_phy = 0; data_ctxbuf = dma_alloc_coherent(dev, data_ctxt_len, &data_context_phy, GFP_KERNEL); if (!data_ctxbuf) return -ENOMEM; if (algo_mode == ICE_CRYPTO_ALGO_MODE_AES_XTS && salt_ctxt != NULL) { salt_ctxbuf = dma_alloc_coherent(dev, salt_ctxt_len, &salt_context_phy, GFP_KERNEL); if (!salt_ctxbuf) { ret = -ENOMEM; goto dma_unmap_data_ctxbuf; } memcpy(salt_ctxbuf, salt_ctxt, salt_ctxt_len); } if (data_ctxt != NULL) { memcpy(data_ctxbuf, data_ctxt, data_ctxt_len); } else { ret = -EINVAL; goto dma_unmap_data_ctxbuf; } desc.arginfo = QCOM_SCM_ARGS(7, QTI_SCM_PARAM_VAL, QTI_SCM_PARAM_VAL, QTI_SCM_PARAM_VAL, QTI_SCM_PARAM_BUF_RO, QTI_SCM_PARAM_VAL, QTI_SCM_PARAM_BUF_RO, QTI_SCM_PARAM_VAL); desc.args[0] = type; desc.args[1] = key_size; desc.args[2] = algo_mode; desc.args[3] = data_context_phy; desc.args[4] = data_ctxt_len; desc.args[5] = salt_context_phy; desc.args[6] = salt_ctxt_len; ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QTI_SVC_ICE, QTI_SCM_ICE_CONTEXT_CMD, &desc, &res); if (algo_mode == ICE_CRYPTO_ALGO_MODE_AES_XTS && salt_ctxt != NULL) { memzero_explicit(salt_ctxt, salt_ctxt_len); dma_free_coherent(dev, salt_ctxt_len, salt_ctxbuf, salt_context_phy); } dma_unmap_data_ctxbuf: memzero_explicit(data_ctxbuf, data_ctxt_len); dma_free_coherent(dev, data_ctxt_len, data_ctxbuf, data_context_phy); return ret ? : res.a1; } int __qti_fuseipq_scm_call(struct device *dev, u32 svc_id, u32 cmd_id, void *cmd_buf, size_t size) { int ret; struct arm_smccc_res res; struct qcom_scm_desc desc = {0}; uint64_t *status; struct fuse_blow *fuse_blow = cmd_buf; desc.args[0] = fuse_blow->address; if (fuse_blow->size) { desc.args[1] = fuse_blow->size; desc.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_RO, QCOM_SCM_VAL); } else { desc.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_RO); } ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, svc_id, cmd_id, &desc, &res); status = (uint64_t *)fuse_blow->status; *status = res.a1; return ret; } int __qti_scm_dload(struct device *dev, u32 svc_id, u32 cmd_id, void *cmd_buf, u64 dload_mode_addr, void __iomem *dload_reg) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; unsigned int enable; enable = cmd_buf ? *((unsigned int *)cmd_buf) : 0; desc.args[0] = dload_mode_addr; desc.args[1] = readl(dload_reg); if (enable == SET_MAGIC_WARMRESET) desc.args[1] |= DLOAD_MODE_ENABLE_WARMRESET; else if (enable == ABNORMAL_MAGIC) desc.args[1] |= DLOAD_MODE_DISABLE_ABNORMALRESET; else if (enable == CLEAR_ABNORMAL_MAGIC) desc.args[1] &= ~(DLOAD_MODE_DISABLE_ABNORMALRESET); else if (enable == SET_MAGIC) desc.args[1] |= DLOAD_MODE_ENABLE; else if (enable == CLEAR_MAGIC) desc.args[1] &= DLOAD_MODE_DISABLE; desc.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_VAL); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_IO, QCOM_SCM_IO_WRITE, &desc, &res); return ret ? : res.a1; } int __qti_scm_sdi(struct device *dev, u32 svc_id, u32 cmd_id) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = 1ull; /* Disable wdog debug */ desc.args[1] = 0ull; /* SDI Enable */ desc.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_VAL); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_BOOT, SCM_CMD_TZ_CONFIG_HW_FOR_RAM_DUMP_ID, &desc, &res); return ret ? : res.a1; } int __qti_scm_qseecom_remove_xpu(struct device *dev) { int ret = 0; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; ret = __qcom_remove_xpu_scm_call_available(dev, QTI_SVC_APP_MGR, QTI_ARMv8_CMD_REMOVE_XPU); if (ret <= 0) return -ENOTSUPP; ret = qcom_scm_call(dev, QTI_OWNER_QSEE_OS, QTI_SVC_APP_MGR, QTI_ARMv8_CMD_REMOVE_XPU, &desc, &res); return ret; } int __qti_scm_qseecom_notify(struct device *dev, struct qsee_notify_app *req, size_t req_size, struct qseecom_command_scm_resp *resp, size_t resp_size) { int ret = 0; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_RW, QCOM_SCM_VAL); desc.args[0] = req->applications_region_addr; desc.args[1] = req->applications_region_size; ret = qcom_scm_call(dev, QTI_OWNER_QSEE_OS, QTI_SVC_APP_MGR, QTI_CMD_NOTIFY_REGION_ID, &desc, &res); resp->result = res.a1; resp->resp_type = res.a2; resp->data = res.a3; return ret; } int __qti_scm_qseecom_load(struct device *dev, uint32_t smc_id, uint32_t cmd_id, union qseecom_load_ireq *req, size_t req_size, struct qseecom_command_scm_resp *resp, size_t resp_size) { int ret = 0; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_VAL, QCOM_SCM_VAL, QCOM_SCM_VAL); desc.args[0] = req->load_lib_req.mdt_len; desc.args[1] = req->load_lib_req.img_len; desc.args[2] = req->load_lib_req.phy_addr; if (cmd_id == QSEOS_APP_START_COMMAND) ret = qcom_scm_call(dev, QTI_OWNER_QSEE_OS, QTI_SVC_APP_MGR, QTI_CMD_LOAD_APP_ID, &desc, &res); else ret = qcom_scm_call(dev, QTI_OWNER_QSEE_OS, QTI_SVC_APP_MGR, QTI_CMD_LOAD_LIB, &desc, &res); resp->result = res.a1; resp->resp_type = res.a2; resp->data = res.a3; return ret; } int __qti_scm_qseecom_send_data(struct device *dev, union qseecom_client_send_data_ireq *req, size_t req_size, struct qseecom_command_scm_resp *resp, size_t resp_size) { int ret = 0; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW, QCOM_SCM_VAL, QCOM_SCM_RW, QCOM_SCM_VAL); desc.args[0] = req->v1.app_id; desc.args[1] = req->v1.req_ptr; desc.args[2] = req->v1.req_len; desc.args[3] = req->v1.rsp_ptr; desc.args[4] = req->v1.rsp_len; ret = qcom_scm_call(dev, QTI_OWNER_TZ_APPS, QTI_SVC_APP_ID_PLACEHOLDER, QTI_CMD_SEND_DATA_ID, &desc, &res); resp->result = res.a1; resp->resp_type = res.a2; resp->data = res.a3; return ret; } int __qti_scm_qseecom_unload(struct device *dev, uint32_t smc_id, uint32_t cmd_id, struct qseecom_unload_ireq *req, size_t req_size, struct qseecom_command_scm_resp *resp, size_t resp_size) { int ret = 0; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; switch (cmd_id) { case QSEOS_APP_SHUTDOWN_COMMAND: desc.arginfo = QCOM_SCM_ARGS(1); desc.args[0] = req->app_id; ret = qcom_scm_call(dev, QTI_OWNER_QSEE_OS, QTI_SVC_APP_MGR, QTI_CMD_UNLOAD_APP_ID, &desc, &res); break; case QSEE_UNLOAD_SERV_IMAGE_COMMAND: ret = qcom_scm_call(dev, QTI_OWNER_QSEE_OS, QTI_SVC_APP_MGR, QTI_CMD_UNLOAD_LIB, &desc, &res); break; default: pr_info("\nIncorrect command id has been passed"); return -EINVAL; } resp->result = res.a1; resp->resp_type = res.a2; resp->data = res.a3; return ret; } int __qti_scm_register_log_buf(struct device *dev, struct qsee_reg_log_buf_req *request, size_t req_size, struct qseecom_command_scm_resp *response, size_t resp_size) { int ret = 0; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_RW, QCOM_SCM_VAL); desc.args[0] = request->phy_addr; desc.args[1] = request->len; ret = qcom_scm_call(dev, QTI_OWNER_QSEE_OS, QTI_SVC_APP_MGR, QTI_CMD_REGISTER_LOG_BUF, &desc, &res); response->result = res.a1; response->resp_type = res.a2; response->data = res.a3; return ret; } int __qti_scm_tls_hardening(struct device *dev, uint32_t req_addr, uint32_t req_size, uint32_t resp_addr, uint32_t resp_size, u32 cmd_id) { int ret = 0; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.arginfo = SCM_ARGS(4, QCOM_SCM_RW, QCOM_SCM_VAL, QCOM_SCM_RW, QCOM_SCM_VAL); desc.args[0] = req_addr; desc.args[1] = req_size; desc.args[2] = resp_addr; desc.args[3] = resp_size; ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QTI_SVC_CRYPTO, cmd_id, &desc, &res); if (res.a1 == QCOM_SCM_EINVAL_SIZE) { pr_err("%s: TZ does not support data larger than 2K bytes: -%ld\n", __func__, res.a1); } return ret ? : res.a1; } int __qti_scm_aes(struct device *dev, uint32_t req_addr, uint32_t req_size, u32 cmd_id) { int ret = 0; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.arginfo = SCM_ARGS(2, QCOM_SCM_RW, QCOM_SCM_VAL); desc.args[0] = req_addr; desc.args[1] = req_size; ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QTI_SVC_CRYPTO, cmd_id, &desc, &res); return res.a1; } int __qti_scm_aes_clear_key_handle(struct device *dev, uint32_t key_handle, u32 cmd_id) { int ret = 0; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.arginfo = SCM_ARGS(1); desc.args[0] = key_handle; ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QTI_SVC_CRYPTO, cmd_id, &desc, &res); return ret ? : res.a1; } /** * __qti_scm_tz_hvc_log() - Get trustzone diag log or hypervisor diag log * @svc_id: SCM service id * @cmd_id: SCM command id * ker_buf: kernel buffer to store the diag log * buf_len: kernel buffer length * * This function can be used to get either the trustzone diag log * or the hypervisor diag log based on the command id passed to this * function. */ int __qti_scm_tz_hvc_log(struct device *dev, u32 svc_id, u32 cmd_id, void *ker_buf, u32 buf_len) { int ret; dma_addr_t dma_buf; struct arm_smccc_res res; struct qcom_scm_desc desc = {0}; dma_buf = dma_map_single(dev, ker_buf, buf_len, DMA_FROM_DEVICE); ret = dma_mapping_error(dev, dma_buf); if (ret != 0) { pr_err("DMA Mapping Error : %d\n", ret); return ret; } desc.args[0] = dma_buf; desc.args[1] = buf_len; desc.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_RW, QCOM_SCM_VAL); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, svc_id, cmd_id, &desc, &res); dma_unmap_single(dev, dma_buf, buf_len, DMA_FROM_DEVICE); return ret ? : res.a1; } /** * __qti_scm_get_ecdsa_blob() - Get the ECDSA blob from TME-L by sending NONCE * * @svc_id: SCM service id * @cmd_id: SCM command id * nonce_buf: NONCE buffer which contains the NONCE recieved from Q6. * nonce_buf_len: Variable for NONCE buffer length * ecdsa_buf: ECDSA buffer, used to receive the ECDSA blob from TME * ecdsa_buf_len: Variable which holds the total ECDSA buffer lenght * *ecdsa_consumed_len: Pointer to get the consumed ECDSA buffer lenght from TME * * This function can be used to get the ECDSA blob from TME-L by passing the * NONCE through nonce_buf. nonce_buf and ecdsa_buf should be DMA alloc * coherent and caller should take care of it. */ int __qti_scm_get_ecdsa_blob(struct device *dev, u32 svc_id, u32 cmd_id, dma_addr_t nonce_buf, u32 nonce_buf_len, dma_addr_t ecdsa_buf, u32 ecdsa_buf_len, u32 *ecdsa_consumed_len) { int ret; struct arm_smccc_res res; struct qcom_scm_desc desc = {0}; dma_addr_t dma_ecdsa_consumed_len; dma_ecdsa_consumed_len = dma_map_single(dev, ecdsa_consumed_len, sizeof(u32), DMA_FROM_DEVICE); ret = dma_mapping_error(dev, dma_ecdsa_consumed_len); if (ret != 0) { pr_err("%s: DMA Mapping Error : %d\n", __func__, ret); return ret; } desc.args[0] = nonce_buf; desc.args[1] = nonce_buf_len; desc.args[2] = ecdsa_buf; desc.args[3] = ecdsa_buf_len; desc.args[4] = dma_ecdsa_consumed_len; desc.arginfo = SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_VAL, QCOM_SCM_VAL, QCOM_SCM_VAL, QCOM_SCM_RW); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, svc_id, cmd_id, &desc, &res); if (res.a1 != 0) pr_err("%s: Response error code is : %x\n", __func__, (unsigned int)res.a1); dma_unmap_single(dev, dma_ecdsa_consumed_len, sizeof(u32), DMA_FROM_DEVICE); return ret ? : res.a1; } /** * __qti_scm_get_ipq5332_fuse_list() - Get OEM Fuse parameter from TME-L * * @svc_id: SCM service id * @cmd_id: SCM command id * @fuse: QFPROM CORR addresses * @size: size of fuse structure * * This function can be used to get the OEM Fuse parameters from TME-L. */ int __qti_scm_get_ipq5332_fuse_list(struct device *dev, u32 svc_id, u32 cmd_id, struct fuse_payload *fuse, size_t size) { int ret; dma_addr_t dma_fuse; struct arm_smccc_res res; struct qcom_scm_desc desc = {0}; dma_fuse = dma_map_single(dev, fuse, size, DMA_FROM_DEVICE); ret = dma_mapping_error(dev, dma_fuse); if (ret != 0) { pr_err("DMA Mapping Error : %d\n", ret); return -EINVAL; } desc.args[0] = dma_fuse; desc.args[1] = size; desc.arginfo = SCM_ARGS(2, QCOM_SCM_RW, QCOM_SCM_VAL); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, svc_id, cmd_id, &desc, &res); if(res.a1 != 0) { pr_err("%s : Response error code is : %#x\n", __func__, (unsigned int)res.a1); } dma_unmap_single(dev, dma_fuse, size, DMA_FROM_DEVICE); return ret ? : res.a1; } /** * __qti_scm_get_device_attestation_ephimeral_key() - Get M3 public ephimeral key from TME-L * * @svc_id: SCM service id * @cmd_id: SCM command id * key_buf: key buffer to store the M3 public ephimeral key and this is populated by TME-L * key_buf_len: key buffer length * key_len : Size of the M3 Ephimeral public key. This is populated by TME-L after * storing the key in the key buffer. * * This function can be used to get the M3 public ephimeral key from the TME-L. */ int __qti_scm_get_device_attestation_ephimeral_key(struct device *dev, u32 svc_id, u32 cmd_id, void *key_buf, u32 key_buf_len, u32 *key_len) { int ret; dma_addr_t dma_key_buf; dma_addr_t dma_key_len; struct arm_smccc_res res; struct qcom_scm_desc desc = {0}; dma_key_buf = dma_map_single(dev, key_buf, key_buf_len, DMA_FROM_DEVICE); ret = dma_mapping_error(dev, dma_key_buf); if (ret != 0) { pr_err("DMA Mapping Error : %d\n", ret); return ret; } dma_key_len = dma_map_single(dev, key_len, sizeof(unsigned int), DMA_FROM_DEVICE); ret = dma_mapping_error(dev, dma_key_len); if (ret != 0) { pr_err("DMA Mapping Error : %d\n", ret); goto dma_unmap_key_buf; } desc.args[0] = dma_key_buf; desc.args[1] = key_buf_len; desc.args[2] = dma_key_len; desc.arginfo = SCM_ARGS(3, QCOM_SCM_VAL, QCOM_SCM_VAL, QCOM_SCM_RW); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, svc_id, cmd_id, &desc, &res); if(res.a1 != 0) { pr_err("%s : Response error code is : %#x\n", __func__, (unsigned int)res.a1); } dma_unmap_single(dev, dma_key_len, sizeof(unsigned int), DMA_FROM_DEVICE); dma_unmap_key_buf: dma_unmap_single(dev, dma_key_buf, key_buf_len, DMA_FROM_DEVICE); return ret ? : res.a1; } /** * __qti_scm_get_device_attestation_response() - Get attestation response from TME-L * * @svc_id: SCM service id * @cmd_id: SCM command id * req_buf: attestation request buffer, it contains a attestation request. * req_buf_len: attestation request buffer length * extclaim_buf: External claim buffer, it also contains attestation request when the attestation request is more than 2KB. * extclaim_buf_len: size of external buffer. * resp_buf: Response Buffer passed to TME to store the Attestation report response. * TME will used this buffer to populate the Attestation report. * resp_buf_len: size of the response buffer. * attest_resp_len: Length of the Attestation report response. This is populated by TME * after storing the attestation response. * * This function can be used to get the attestation response binary from TME-L by * passing the attestation report through req_buf and extclaim_buf. */ int __qti_scm_get_device_attestation_response(struct device *dev, u32 svc_id, u32 cmd_id, void *req_buf, u32 req_buf_len, void *extclaim_buf, u32 extclaim_buf_len, void *resp_buf, u32 resp_buf_len, u32 *attest_resp_len) { int ret; dma_addr_t dma_req_buf; dma_addr_t dma_claim_buf = 0; dma_addr_t dma_resp_buf; dma_addr_t dma_resp_len; struct arm_smccc_res res; struct qcom_scm_desc desc = {0}; dma_req_buf = dma_map_single(dev, req_buf, req_buf_len, DMA_FROM_DEVICE); ret = dma_mapping_error(dev, dma_req_buf); if (ret != 0) { pr_err("DMA Mapping Error : %d\n", ret); return ret; } if(extclaim_buf != NULL) { dma_claim_buf = dma_map_single(dev, extclaim_buf, extclaim_buf_len, DMA_FROM_DEVICE); ret = dma_mapping_error(dev, dma_claim_buf); if (ret != 0) { pr_err("DMA Mapping Error : %d\n", ret); goto dma_unmap_req_buf; } } dma_resp_buf = dma_map_single(dev, resp_buf, resp_buf_len, DMA_FROM_DEVICE); ret = dma_mapping_error(dev, dma_resp_buf); if (ret != 0) { pr_err("DMA Mapping Error : %d\n", ret); goto dma_unmap_extclaim_buf; } dma_resp_len = dma_map_single(dev, attest_resp_len, sizeof(unsigned int), DMA_FROM_DEVICE); ret = dma_mapping_error(dev, dma_resp_len); if (ret != 0) { pr_err("DMA Mapping Error : %d\n", ret); goto dma_unmap_resp_buf; } desc.args[0] = dma_req_buf; desc.args[1] = req_buf_len; desc.args[2] = dma_claim_buf; desc.args[3] = extclaim_buf_len; desc.args[4] = dma_resp_buf; desc.args[5] = resp_buf_len; desc.args[6] = dma_resp_len; desc.arginfo = SCM_ARGS(7, QCOM_SCM_VAL, QCOM_SCM_VAL, QCOM_SCM_VAL, QCOM_SCM_VAL, QCOM_SCM_VAL, QCOM_SCM_VAL, QCOM_SCM_RW); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, svc_id, cmd_id, &desc, &res); if(res.a1 != 0) { pr_err("%s: Response error code is : %x\n", __func__, (unsigned int)res.a1); } dma_unmap_single(dev, dma_resp_len, sizeof(unsigned int), DMA_FROM_DEVICE); dma_unmap_resp_buf: dma_unmap_single(dev, dma_resp_buf, resp_buf_len, DMA_FROM_DEVICE); dma_unmap_extclaim_buf: if(extclaim_buf != NULL) { dma_unmap_single(dev, dma_claim_buf, extclaim_buf_len, DMA_FROM_DEVICE); } dma_unmap_req_buf: dma_unmap_single(dev, dma_req_buf, req_buf_len, DMA_FROM_DEVICE); return ret ? : res.a1; } /** *__qti_scm_get_device_provision_response() - Get device provisioning response from TME-L * * @svc_id: SCM service id * @cmd_id: SCM command id * provreq_buf: Provsion request buffer, it contains a provision request. * provreq_buf_len: Provision request buffer length. * provresp_buf: Provision response buffer passed to TME to store the Provision response. * TME will used this buffer to populate the provision response. * provresp_buf_len: size allocated to provision response buffer. * attest_resp_len: Length of the provision response. This is populated by TME * after storing the provision response. * * This function can be used to get the provision response from TME-L by * passing the provision report through prov_req.bin file. */ int __qti_scm_get_device_provision_response(struct device *dev, u32 svc_id, u32 cmd_id, void *provreq_buf, u32 provreq_buf_len, void *provresp_buf, u32 provresp_buf_len, u32 *prov_resp_size) { int ret; dma_addr_t dma_req_buf; dma_addr_t dma_resp_buf; dma_addr_t dma_prov_resp_size; struct arm_smccc_res res; struct qcom_scm_desc desc = {0}; dma_req_buf = dma_map_single(dev, provreq_buf, provreq_buf_len, DMA_FROM_DEVICE); ret = dma_mapping_error(dev, dma_req_buf); if (ret != 0) { pr_err("DMA Mapping Error : %d\n", ret); return ret; } dma_resp_buf = dma_map_single(dev, provresp_buf, provresp_buf_len, DMA_FROM_DEVICE); ret = dma_mapping_error(dev, dma_resp_buf); if (ret != 0) { pr_err("DMA Mapping Error : %d\n", ret); goto dma_unmap_req_buf; } dma_prov_resp_size = dma_map_single(dev, prov_resp_size, sizeof(unsigned int), DMA_FROM_DEVICE); ret = dma_mapping_error(dev, dma_prov_resp_size); if (ret != 0) { pr_err("DMA Mapping Error : %d\n", ret); goto dma_unmap_resp_buf; } desc.args[0] = dma_req_buf; desc.args[1] = provreq_buf_len; desc.args[2] = dma_resp_buf; desc.args[3] = provresp_buf_len; desc.args[4] = dma_prov_resp_size; desc.arginfo = SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_VAL, QCOM_SCM_VAL, QCOM_SCM_VAL, QCOM_SCM_RW); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, svc_id, cmd_id, &desc, &res); if(res.a1 != 0) { pr_err("%s: Response error code is : %#x\n", __func__, (unsigned int)res.a1); } dma_unmap_single(dev, dma_prov_resp_size, sizeof(unsigned int), DMA_FROM_DEVICE); dma_unmap_resp_buf: dma_unmap_single(dev, dma_resp_buf, provresp_buf_len, DMA_FROM_DEVICE); dma_unmap_req_buf: dma_unmap_single(dev, dma_req_buf, provreq_buf_len, DMA_FROM_DEVICE); return ret ? : res.a1; } int __qti_scm_derive_and_share_key(struct device *dev, u32 svc_id, u32 cmd_id, u32 key_len, uint8_t *sw_context, u32 sw_context_len, uint8_t *derived_key, uint32_t derived_key_len) { dma_addr_t dma_sw_context_buf = 0; dma_addr_t dma_derived_key_buf; struct arm_smccc_res res; struct qcom_scm_desc desc = {0}; char *sw_context_buf = NULL, *derived_key_buf = NULL; int ret = -ENOMEM; if (sw_context_len != 0) { sw_context_buf = dma_alloc_coherent(dev, PAGE_SIZE, &dma_sw_context_buf, GFP_KERNEL); if (sw_context_buf == NULL) { pr_err("DMA Allocation failed for sw_context_buf\n"); return ret; } memcpy(sw_context_buf, sw_context, sw_context_len); } derived_key_buf = dma_alloc_coherent(dev, PAGE_SIZE, &dma_derived_key_buf, GFP_KERNEL); if (derived_key_buf == NULL) { pr_err("DMA Allocation failed for derived_key_buf\n"); goto dma_unmap_sw_context_buf; } desc.args[0] = key_len; desc.args[1] = dma_sw_context_buf; desc.args[2] = sw_context_len; desc.args[3] = dma_derived_key_buf; desc.args[4] = derived_key_len; desc.arginfo = SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RW, QCOM_SCM_VAL); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, svc_id, cmd_id, &desc, &res); if(res.a1 != 0) { pr_err("%s: Response error code is : 0x%x\n", __func__, (unsigned int)res.a1); } memcpy(derived_key, derived_key_buf, derived_key_len); dma_free_coherent(dev, PAGE_SIZE, derived_key_buf, dma_derived_key_buf); dma_unmap_sw_context_buf: if (sw_context_len != 0) { dma_free_coherent(dev, PAGE_SIZE, sw_context_buf, dma_sw_context_buf); } return ret ? : res.a1; } /** * __qti_scm_get_smmustate () - Get SMMU state * @svc_id: SCM service id * @cmd_id: SCM command id * * Returns 0 - SMMU_DISABLE_NONE * 1 - SMMU_DISABLE_S2 * 2 - SMMU_DISABLE_ALL on success. * -1 - Failure */ int __qti_scm_get_smmustate(struct device *dev, u32 svc_id, u32 cmd_id) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.arginfo = QCOM_SCM_ARGS(0); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, svc_id, cmd_id, &desc, &res); return ret ? -1 : res.a1; } int __qti_scm_regsave(struct device *dev, u32 svc_id, u32 cmd_id, void *scm_regsave, unsigned int buf_size) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = (u64)virt_to_phys(scm_regsave); desc.args[1] = buf_size; desc.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_RW, QCOM_SCM_VAL); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, svc_id, cmd_id, &desc, &res); return ret ? : res.a1; } int __qti_set_qcekey_sec(struct device *dev, void *confBuf, int size) { int ret; struct arm_smccc_res res; struct qcom_scm_desc desc = {0}; dma_addr_t conf_phys; conf_phys = dma_map_single(dev, confBuf, size, DMA_TO_DEVICE); ret = dma_mapping_error(dev, conf_phys); if (ret) { dev_err(dev, "Allocation fail for conf buffer\n"); return -ENOMEM; } desc.arginfo = SCM_ARGS(1, QCOM_SCM_RO); desc.args[0] = (u64)conf_phys; desc.args[1] = size; ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_QCE_CRYPTO_SIP, QCOM_SCM_QCE_CMD, &desc, &res); dma_unmap_single(dev, conf_phys, size, DMA_TO_DEVICE); return ret ? : res.a1; } int __qti_sec_crypt(struct device *dev, void *confBuf, int size) { int ret; struct arm_smccc_res res; struct qcom_scm_desc desc = {0}; dma_addr_t conf_phys; conf_phys = dma_map_single(dev, confBuf, size, DMA_TO_DEVICE); ret = dma_mapping_error(dev, conf_phys); if (ret) { dev_err(dev, "Allocation fail for conf buffer\n"); return -ENOMEM; } desc.arginfo = SCM_ARGS(2, QCOM_SCM_RW, QCOM_SCM_VAL); desc.args[0] = (u64)conf_phys; desc.args[1] = size; ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_QCE_CRYPTO_SIP, QCOM_SCM_QCE_ENC_DEC_CMD, &desc, &res); dma_unmap_single(dev, conf_phys, size, DMA_TO_DEVICE); return ret ? : res.a1; } int __qti_qcekey_release_xpu_prot(struct device *dev) { int ret; struct arm_smccc_res res; struct qcom_scm_desc desc = {0}; desc.arginfo = SCM_ARGS(0, QCOM_SCM_VAL); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_QCE_CRYPTO_SIP, QCOM_SCM_QCE_UNLOCK_CMD, &desc, &res); return ret ? : res.a1; } int __qti_seccrypt_clearkey(struct device *dev) { int ret; struct arm_smccc_res res; struct qcom_scm_desc desc = {0}; desc.arginfo = SCM_ARGS(0, QCOM_SCM_VAL); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_QCE_CRYPTO_SIP, QCOM_SCM_SECCRYPT_CLRKEY_CMD, &desc, &res); return ret ? : res.a1; } int __qti_scm_set_resettype(struct device *dev, u32 reset_type) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = reset_type; desc.arginfo = SCM_ARGS(1); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_BOOT, QTI_SCM_SVC_RESETTYPE_CMD, &desc, &res); return ret ? false : !!res.a1; } int __qti_scm_pshold(struct device *dev) { return -ENOTSUPP; } int __qti_scm_extwdt(struct device *dev, u32 svc_id, u32 cmd_id, unsigned int regaddr, unsigned int val) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = (u64)regaddr; desc.args[1] = val; desc.arginfo = SCM_ARGS(2, QCOM_SCM_RW, QCOM_SCM_VAL); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_IO, QTI_SCM_EXTWDT_CMD, &desc, &res); return ret ? : res.a1; } int __qti_scm_tcsr_reg_write(struct device *dev, u32 reg_addr, u32 value) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = reg_addr; desc.args[1] = value; desc.arginfo = SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_VAL); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_IO, QCOM_SCM_IO_WRITE, &desc, &res); return ret ? : res.a1; } int __qti_scm_is_tz_log_encrypted(struct device *dev) { int ret; struct arm_smccc_res res; struct qcom_scm_desc desc = {0}; desc.arginfo = SCM_ARGS(0); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_TRUSTED_OS, QTI_SVC_APP_MGR, QCOM_SCM_IS_TZ_LOG_ENCRYPTED, &desc, &res); return ret ? : res.a1; } int __qti_scm_get_encrypted_tz_log(struct device *dev, void *ker_buf, u32 buf_len, u32 log_id) { int ret; dma_addr_t log_buf; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; log_buf = dma_map_single(dev, ker_buf, buf_len, DMA_FROM_DEVICE); ret = dma_mapping_error(dev, log_buf); if (ret) { dev_err(dev, "DMA Mapping error: %d\n", ret); return ret; } desc.args[0] = log_buf; desc.args[1] = buf_len; desc.args[2] = log_id; desc.arginfo = SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL, QCOM_SCM_VAL); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_TRUSTED_OS, QTI_SVC_APP_MGR, QCOM_SCM_GET_TZ_LOG_ENCRYPTED, &desc, &res); dma_unmap_single(dev, log_buf, buf_len, DMA_FROM_DEVICE); return ret ? : res.a1; } int __qti_scm_load_otp(struct device *dev, u32 peripheral) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = peripheral; desc.arginfo = QCOM_SCM_ARGS(1); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QTI_SCM_SVC_OTP, QTI_SCM_CMD_OTP, &desc, &res); return ret ? false : !!res.a1; } int __qti_scm_pil_cfg(struct device *dev, u32 peripheral, u32 arg) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = peripheral; desc.args[1] = arg; desc.arginfo = QCOM_SCM_ARGS(2); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QTI_SCM_SVC_XO_TCXO, QTI_SCM_CMD_XO_TCXO, &desc, &res); return ret ? false : !!res.a1; } int __qti_scm_toggle_bt_eco(struct device *dev, u32 peripheral, u32 arg) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = peripheral; desc.args[1] = arg; desc.arginfo = QCOM_SCM_ARGS(2); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QTI_SCM_SVC_BT_ECO, QTI_SCM_CMD_BT_ECO, &desc, &res); return ret ? false : !!res.a1; } int __qti_scm_set_trybit(struct device *dev, u32 svc_id, u32 val, u64 dload_mode_addr) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = dload_mode_addr; desc.args[1] = val; desc.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_VAL); ret = qcom_scm_call(dev, ARM_SMCCC_OWNER_SIP, QCOM_SCM_SVC_IO, QCOM_SCM_IO_WRITE, &desc, &res); return ret ? : res.a1; }