// SPDX-License-Identifier: GPL-2.0-only /* * Qualcomm SCM driver * * Copyright (c) 2010,2015, The Linux Foundation. All rights reserved. * Copyright (C) 2015 Linaro Ltd. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "qcom_scm.h" static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT); module_param(download_mode, bool, 0); #define SCM_HAS_CORE_CLK BIT(0) #define SCM_HAS_IFACE_CLK BIT(1) #define SCM_HAS_BUS_CLK BIT(2) struct qcom_scm { struct device *dev; struct clk *core_clk; struct clk *iface_clk; struct clk *bus_clk; struct reset_controller_dev reset; void __iomem *dload_reg; u64 dload_mode_addr; u32 hvc_log_cmd_id; u32 smmu_state_cmd_id; }; struct qcom_scm_current_perm_info { __le32 vmid; __le32 perm; __le64 ctx; __le32 ctx_size; __le32 unused; }; struct qcom_scm_mem_map_info { __le64 mem_addr; __le64 mem_size; }; static struct qcom_scm *__scm; static int qcom_scm_clk_enable(void) { int ret; ret = clk_prepare_enable(__scm->core_clk); if (ret) goto bail; ret = clk_prepare_enable(__scm->iface_clk); if (ret) goto disable_core; ret = clk_prepare_enable(__scm->bus_clk); if (ret) goto disable_iface; return 0; disable_iface: clk_disable_unprepare(__scm->iface_clk); disable_core: clk_disable_unprepare(__scm->core_clk); bail: return ret; } static void qcom_scm_clk_disable(void) { clk_disable_unprepare(__scm->core_clk); clk_disable_unprepare(__scm->iface_clk); clk_disable_unprepare(__scm->bus_clk); } int qti_scm_qseecom_remove_xpu() { int ret = 0; ret = __qti_scm_qseecom_remove_xpu(__scm->dev); return ret; } EXPORT_SYMBOL(qti_scm_qseecom_remove_xpu); int qti_scm_qseecom_notify(struct qsee_notify_app *req, size_t req_size, struct qseecom_command_scm_resp *resp, size_t resp_size) { int ret = 0; ret = __qti_scm_qseecom_notify(__scm->dev, req, req_size, resp, resp_size); return ret; } EXPORT_SYMBOL(qti_scm_qseecom_notify); int qti_scm_qseecom_load(uint32_t smc_id, uint32_t cmd_id, union qseecom_load_ireq *req, size_t req_size, struct qseecom_command_scm_resp *resp, size_t resp_size) { int ret = 0; ret = __qti_scm_qseecom_load(__scm->dev, smc_id, cmd_id, req, req_size, resp, resp_size); return ret; } EXPORT_SYMBOL(qti_scm_qseecom_load); int qti_scm_qseecom_send_data(union qseecom_client_send_data_ireq *req, size_t req_size, struct qseecom_command_scm_resp *resp, size_t resp_size) { int ret = 0; ret = __qti_scm_qseecom_send_data(__scm->dev, req, req_size, resp, resp_size); return ret; } EXPORT_SYMBOL(qti_scm_qseecom_send_data); int qti_scm_qseecom_unload(uint32_t smc_id, uint32_t cmd_id, struct qseecom_unload_ireq *req, size_t req_size, struct qseecom_command_scm_resp *resp, size_t resp_size) { int ret = 0; ret = __qti_scm_qseecom_unload(__scm->dev, smc_id, cmd_id, req, req_size, resp, resp_size); return ret; } EXPORT_SYMBOL(qti_scm_qseecom_unload); int qti_scm_register_log_buf(struct device *dev, struct qsee_reg_log_buf_req *request, size_t req_size, struct qseecom_command_scm_resp *response, size_t resp_size) { int ret = 0; ret = __qti_scm_register_log_buf(__scm->dev, request, req_size, response, resp_size); return ret; } EXPORT_SYMBOL(qti_scm_register_log_buf); int qti_scm_aes(uint32_t req_addr, uint32_t req_size, u32 cmd_id) { int ret = 0; ret = __qti_scm_aes(__scm->dev, req_addr, req_size, cmd_id); return ret; } EXPORT_SYMBOL(qti_scm_aes); int qti_scm_aes_clear_key_handle(uint32_t key_handle, u32 cmd_id) { int ret = 0; ret = __qti_scm_aes_clear_key_handle(__scm->dev, key_handle, cmd_id); return ret; } EXPORT_SYMBOL(qti_scm_aes_clear_key_handle); int qti_scm_tls_hardening(uint32_t req_addr, uint32_t req_size, uint32_t resp_addr, uint32_t resp_size, u32 cmd_id) { int ret = 0; ret = __qti_scm_tls_hardening(__scm->dev, req_addr, req_size, resp_addr, resp_size, cmd_id); return ret; } EXPORT_SYMBOL(qti_scm_tls_hardening); /** * qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus * @entry: Entry point function for the cpus * @cpus: The cpumask of cpus that will use the entry point * * Set the cold boot address of the cpus. Any cpu outside the supported * range would be removed from the cpu present mask. */ int qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus) { return __qcom_scm_set_cold_boot_addr(entry, cpus); } EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr); /** * qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus * @entry: Entry point function for the cpus * @cpus: The cpumask of cpus that will use the entry point * * Set the Linux entry point for the SCM to transfer control to when coming * out of a power down. CPU power down may be executed on cpuidle or hotplug. */ int qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus) { return __qcom_scm_set_warm_boot_addr(__scm->dev, entry, cpus); } EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr); /** * qcom_scm_cpu_power_down() - Power down the cpu * @flags - Flags to flush cache * * This is an end point to power down cpu. If there was a pending interrupt, * the control would return from this function, otherwise, the cpu jumps to the * warm boot entry point set for this cpu upon reset. */ void qcom_scm_cpu_power_down(u32 flags) { __qcom_scm_cpu_power_down(flags); } EXPORT_SYMBOL(qcom_scm_cpu_power_down); /** * qcom_scm_hdcp_available() - Check if secure environment supports HDCP. * * Return true if HDCP is supported, false if not. */ bool qcom_scm_hdcp_available(void) { int ret = qcom_scm_clk_enable(); if (ret) return ret; ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP, QCOM_SCM_CMD_HDCP); qcom_scm_clk_disable(); return ret > 0 ? true : false; } EXPORT_SYMBOL(qcom_scm_hdcp_available); /** * qcom_scm_hdcp_req() - Send HDCP request. * @req: HDCP request array * @req_cnt: HDCP request array count * @resp: response buffer passed to SCM * * Write HDCP register(s) through SCM. */ int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp) { int ret = qcom_scm_clk_enable(); if (ret) return ret; ret = __qcom_scm_hdcp_req(__scm->dev, req, req_cnt, resp); qcom_scm_clk_disable(); return ret; } EXPORT_SYMBOL(qcom_scm_hdcp_req); /** * qcom_scm_pas_supported() - Check if the peripheral authentication service is * available for the given peripherial * @peripheral: peripheral id * * Returns true if PAS is supported for this peripheral, otherwise false. */ bool qcom_scm_pas_supported(u32 peripheral) { int ret; ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_IS_SUPPORTED_CMD); if (ret <= 0) return false; return __qcom_scm_pas_supported(__scm->dev, peripheral); } EXPORT_SYMBOL(qcom_scm_pas_supported); /** * qcom_scm_pas_init_image() - Initialize peripheral authentication service * state machine for a given peripheral, using the * metadata * @peripheral: peripheral id * @metadata: pointer to memory containing ELF header, program header table * and optional blob of data used for authenticating the metadata * and the rest of the firmware * @size: size of the metadata * * Returns 0 on success. */ int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size) { dma_addr_t mdata_phys; void *mdata_buf; int ret; /* * During the scm call memory protection will be enabled for the meta * data blob, so make sure it's physically contiguous, 4K aligned and * non-cachable to avoid XPU violations. */ mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys, GFP_KERNEL); if (!mdata_buf) { dev_err(__scm->dev, "Allocation of metadata buffer failed.\n"); return -ENOMEM; } memcpy(mdata_buf, metadata, size); ret = qcom_scm_clk_enable(); if (ret) goto free_metadata; if (__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_INIT_IMAGE_V2_CMD)) ret = __qcom_scm_pas_init_image_v2(__scm->dev, peripheral, mdata_phys, size); else ret = __qcom_scm_pas_init_image(__scm->dev, peripheral, mdata_phys); qcom_scm_clk_disable(); free_metadata: dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys); return ret; } EXPORT_SYMBOL(qcom_scm_pas_init_image); /** * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral * for firmware loading * @peripheral: peripheral id * @addr: start address of memory area to prepare * @size: size of the memory area to prepare * * Returns 0 on success. */ int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size) { int ret; ret = qcom_scm_clk_enable(); if (ret) return ret; ret = __qcom_scm_pas_mem_setup(__scm->dev, peripheral, addr, size); qcom_scm_clk_disable(); return ret; } EXPORT_SYMBOL(qcom_scm_pas_mem_setup); /** * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware * and reset the remote processor * @peripheral: peripheral id * * Return 0 on success. */ int qcom_scm_pas_auth_and_reset(u32 peripheral, u32 debug, u32 reset_cmd_id) { int ret; ret = qcom_scm_clk_enable(); if (ret) return ret; ret = __qcom_scm_pas_auth_and_reset(__scm->dev, peripheral, debug, reset_cmd_id); qcom_scm_clk_disable(); return ret; } EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset); /** * qcom_scm_pas_shutdown() - Shut down the remote processor * @peripheral: peripheral id * * Returns 0 on success. */ int qcom_scm_pas_shutdown(u32 peripheral) { int ret; ret = qcom_scm_clk_enable(); if (ret) return ret; ret = __qcom_scm_pas_shutdown(__scm->dev, peripheral); qcom_scm_clk_disable(); return ret; } EXPORT_SYMBOL(qcom_scm_pas_shutdown); static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev, unsigned long idx) { if (idx != 0) return -EINVAL; return __qcom_scm_pas_mss_reset(__scm->dev, 1); } static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev, unsigned long idx) { if (idx != 0) return -EINVAL; return __qcom_scm_pas_mss_reset(__scm->dev, 0); } static const struct reset_control_ops qcom_scm_pas_reset_ops = { .assert = qcom_scm_pas_reset_assert, .deassert = qcom_scm_pas_reset_deassert, }; int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare) { return __qcom_scm_restore_sec_cfg(__scm->dev, device_id, spare); } EXPORT_SYMBOL(qcom_scm_restore_sec_cfg); int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size) { return __qcom_scm_iommu_secure_ptbl_size(__scm->dev, spare, size); } EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size); int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare) { return __qcom_scm_iommu_secure_ptbl_init(__scm->dev, addr, size, spare); } EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init); int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val) { return __qcom_scm_io_readl(__scm->dev, addr, val); } EXPORT_SYMBOL(qcom_scm_io_readl); int qcom_scm_io_writel(phys_addr_t addr, unsigned int val) { return __qcom_scm_io_writel(__scm->dev, addr, val); } EXPORT_SYMBOL(qcom_scm_io_writel); static void qcom_scm_set_download_mode(bool enable) { bool avail; int ret = 0; avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_BOOT, QCOM_SCM_SET_DLOAD_MODE); if (avail) { ret = __qcom_scm_set_dload_mode(__scm->dev, enable); } else if (__scm->dload_mode_addr) { ret = __qcom_scm_io_writel(__scm->dev, __scm->dload_mode_addr, enable ? QCOM_SCM_SET_DLOAD_MODE : 0); } else { dev_err(__scm->dev, "No available mechanism for setting download mode\n"); } if (ret) dev_err(__scm->dev, "failed to set download mode: %d\n", ret); } static int qcom_scm_find_dload_address(struct device *dev, struct qcom_scm *scm) { struct device_node *tcsr; struct device_node *np = dev->of_node; struct resource res; u32 offset; int ret; tcsr = of_parse_phandle(np, "qcom,dload-mode", 0); if (!tcsr) return 0; ret = of_address_to_resource(tcsr, 0, &res); of_node_put(tcsr); if (ret) return ret; ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset); if (ret < 0) return ret; scm->dload_mode_addr = res.start + offset; scm->dload_reg = devm_ioremap(dev, res.start, resource_size(&res)); if (!scm->dload_reg) { pr_err("%s: Error mapping memory region!\n", __func__); return -ENOMEM; } return 0; } /** * qcom_scm_is_available() - Checks if SCM is available */ bool qcom_scm_is_available(void) { return !!__scm; } EXPORT_SYMBOL(qcom_scm_is_available); int qcom_scm_set_remote_state(u32 state, u32 id) { return __qcom_scm_set_remote_state(__scm->dev, state, id); } EXPORT_SYMBOL(qcom_scm_set_remote_state); /** * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership * @mem_addr: mem region whose ownership need to be reassigned * @mem_sz: size of the region. * @srcvm: vmid for current set of owners, each set bit in * flag indicate a unique owner * @newvm: array having new owners and corresponding permission * flags * @dest_cnt: number of owners in next set. * * Return negative errno on failure or 0 on success with @srcvm updated. */ int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz, unsigned int *srcvm, const struct qcom_scm_vmperm *newvm, unsigned int dest_cnt) { struct qcom_scm_current_perm_info *destvm; struct qcom_scm_mem_map_info *mem_to_map; phys_addr_t mem_to_map_phys; phys_addr_t dest_phys; dma_addr_t ptr_phys; size_t mem_to_map_sz; size_t dest_sz; size_t src_sz; size_t ptr_sz; int next_vm; __le32 *src; void *ptr; int ret, i, b; unsigned long srcvm_bits = *srcvm; src_sz = hweight_long(srcvm_bits) * sizeof(*src); mem_to_map_sz = sizeof(*mem_to_map); dest_sz = dest_cnt * sizeof(*destvm); ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(dest_sz, SZ_64); ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL); if (!ptr) return -ENOMEM; /* Fill source vmid detail */ src = ptr; i = 0; for_each_set_bit(b, &srcvm_bits, BITS_PER_LONG) src[i++] = cpu_to_le32(b); /* Fill details of mem buff to map */ mem_to_map = ptr + ALIGN(src_sz, SZ_64); mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64); mem_to_map->mem_addr = cpu_to_le64(mem_addr); mem_to_map->mem_size = cpu_to_le64(mem_sz); next_vm = 0; /* Fill details of next vmid detail */ destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64); dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64); for (i = 0; i < dest_cnt; i++, destvm++, newvm++) { destvm->vmid = cpu_to_le32(newvm->vmid); destvm->perm = cpu_to_le32(newvm->perm); destvm->ctx = 0; destvm->ctx_size = 0; next_vm |= BIT(newvm->vmid); } ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz, ptr_phys, src_sz, dest_phys, dest_sz); dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys); if (ret) { dev_err(__scm->dev, "Assign memory protection call failed %d\n", ret); return -EINVAL; } *srcvm = next_vm; return 0; } EXPORT_SYMBOL(qcom_scm_assign_mem); /** * qcom_qfprom_show_authenticate() - Check secure boot fuse is enabled */ int qti_qfprom_show_authenticate(void) { int ret; char buf; ret = __qti_qfprom_show_authenticate(__scm->dev, &buf); if (ret) { pr_err("%s: Error in QFPROM read : %d\n", __func__, ret); return -1; } return buf == 1 ? 1 : 0; } EXPORT_SYMBOL(qti_qfprom_show_authenticate); int qti_qfprom_write_version(uint32_t sw_type, uint32_t value, uint32_t qfprom_ret_ptr) { return __qti_qfprom_write_version(__scm->dev, sw_type, value, qfprom_ret_ptr); } int qti_qfprom_read_version(uint32_t sw_type, uint32_t value, uint32_t qfprom_ret_ptr) { return __qti_qfprom_read_version(__scm->dev, sw_type, value, qfprom_ret_ptr); } int qti_sec_upgrade_auth(unsigned int scm_cmd_id, unsigned int sw_type, unsigned int img_size, unsigned int load_addr) { return __qti_sec_upgrade_auth(__scm->dev, scm_cmd_id, sw_type, img_size, load_addr); } EXPORT_SYMBOL(qti_sec_upgrade_auth); int qti_sec_upgrade_auth_meta_data(unsigned int scm_cmd_id, unsigned int sw_type, unsigned int img_size, unsigned int load_addr, void* hash_addr, unsigned int hash_size) { return __qti_sec_upgrade_auth_meta_data(__scm->dev, scm_cmd_id, sw_type, img_size, load_addr, hash_addr, hash_size); } EXPORT_SYMBOL(qti_sec_upgrade_auth_meta_data); /** * qti_scm_sec_auth_available() - Check if SEC_AUTH is supported. * * Return true if SEC_AUTH is supported, false if not. */ bool qti_scm_sec_auth_available(unsigned int scm_cmd_id) { int ret; ret = __qcom_scm_is_call_available(__scm->dev, QTI_SCM_SVC_SEC_AUTH, scm_cmd_id); return ret > 0 ? true : false; } EXPORT_SYMBOL(qti_scm_sec_auth_available); int qti_fuseipq_scm_call(struct device *dev, u32 svc_id, u32 cmd_id, void *cmd_buf, size_t size) { return __qti_fuseipq_scm_call(dev, svc_id, cmd_id, cmd_buf, size); } EXPORT_SYMBOL(qti_fuseipq_scm_call); int qti_scm_dload(u32 svc_id, u32 cmd_id, void *cmd_buf) { int ret; ret = qcom_scm_clk_enable(); if (ret) return ret; ret = __qti_scm_dload(__scm->dev, svc_id, cmd_id, cmd_buf, __scm->dload_mode_addr, __scm->dload_reg); qcom_scm_clk_disable(); return ret; } EXPORT_SYMBOL(qti_scm_dload); int qti_scm_set_trybit(u32 svc_id) { int ret; unsigned int val; ret = qcom_scm_clk_enable(); if (ret) return ret; val = readl(__scm->dload_reg); val |= QTI_TRYBIT; ret = __qti_scm_set_trybit(__scm->dev, svc_id, val, __scm->dload_mode_addr); qcom_scm_clk_disable(); return ret; } EXPORT_SYMBOL(qti_scm_set_trybit); int qti_read_dload_reg() { return readl(__scm->dload_reg); } EXPORT_SYMBOL(qti_read_dload_reg); int qti_scm_get_ecdsa_blob(u32 svc_id, u32 cmd_id, dma_addr_t nonce_buf, u32 nonce_buf_len, dma_addr_t ecdsa_buf, u32 ecdsa_buf_len, u32 *ecdsa_consumed_len) { int ret; ret = __qti_scm_get_ecdsa_blob(__scm->dev, svc_id, cmd_id, nonce_buf, nonce_buf_len, ecdsa_buf, ecdsa_buf_len, ecdsa_consumed_len); return ret; } EXPORT_SYMBOL(qti_scm_get_ecdsa_blob); int qti_scm_get_device_attestation_ephimeral_key(u32 svc_id, u32 cmd_id, void *key_buf, u32 key_buf_len, u32 *key_len) { int ret; ret = __qti_scm_get_device_attestation_ephimeral_key(__scm->dev, svc_id, cmd_id, key_buf, key_buf_len, key_len); return ret; } EXPORT_SYMBOL(qti_scm_get_device_attestation_ephimeral_key); int qti_scm_get_ipq5332_fuse_list(u32 svc_id, u32 cmd_id, struct fuse_payload *fuse, size_t size) { int ret; ret = __qti_scm_get_ipq5332_fuse_list(__scm->dev, svc_id, cmd_id, fuse, size); return ret; } EXPORT_SYMBOL(qti_scm_get_ipq5332_fuse_list); int qti_scm_get_device_attestation_response(u32 svc_id, u32 cmd_id, void *req_buf, u32 req_buf_len, void *extclaim_buf, u32 extclaim_buf_len, void *resp_buf, u32 resp_buf_len, u32 *attest_resp_len) { int ret; ret = __qti_scm_get_device_attestation_response(__scm->dev, svc_id, cmd_id, req_buf, req_buf_len, extclaim_buf, extclaim_buf_len, resp_buf, resp_buf_len, attest_resp_len); return ret; } EXPORT_SYMBOL(qti_scm_get_device_attestation_response); int qti_scm_get_device_provision_response(u32 svc_id, u32 cmd_id, void *provreq_buf, u32 provreq_buf_len, void *provresp_buf, u32 provresp_buf_len, u32 *prov_resp_size) { int ret; ret = __qti_scm_get_device_provision_response(__scm->dev, svc_id, cmd_id, provreq_buf, provreq_buf_len, provresp_buf, provresp_buf_len, prov_resp_size); return ret; } EXPORT_SYMBOL(qti_scm_get_device_provision_response); int qti_scm_derive_and_share_key(u32 svc_id, u32 cmd_id, uint32_t key_len, uint8_t *sw_context, u32 sw_context_len, uint8_t *derived_key, u32 derived_key_len) { int ret; ret = __qti_scm_derive_and_share_key(__scm->dev, svc_id, cmd_id, key_len, sw_context, sw_context_len, derived_key, derived_key_len); return ret; } EXPORT_SYMBOL_GPL(qti_scm_derive_and_share_key); int qti_scm_wcss_boot(u32 svc_id, u32 cmd_id, void *cmd_buf) { int ret; ret = qcom_scm_clk_enable(); if (ret) return ret; ret = __qti_scm_wcss_boot(__scm->dev, svc_id, cmd_id, cmd_buf); qcom_scm_clk_disable(); return ret; } EXPORT_SYMBOL(qti_scm_wcss_boot); int qti_scm_pdseg_memcpy_v2(u32 peripheral, int phno, dma_addr_t dma, int seg_cnt) { int ret; ret = qcom_scm_clk_enable(); if (ret) return ret; ret = __qti_scm_pdseg_memcpy_v2(__scm->dev, peripheral, phno, dma, seg_cnt); qcom_scm_clk_disable(); return ret; } EXPORT_SYMBOL(qti_scm_pdseg_memcpy_v2); int qti_scm_pdseg_memcpy(u32 peripheral, int phno, dma_addr_t dma, size_t size) { int ret; ret = qcom_scm_clk_enable(); if (ret) return ret; ret = __qti_scm_pdseg_memcpy(__scm->dev, peripheral, phno, dma, size); qcom_scm_clk_disable(); return ret; } EXPORT_SYMBOL(qti_scm_pdseg_memcpy); int qti_scm_int_radio_powerup(u32 peripheral) { int ret; ret = qcom_scm_clk_enable(); if (ret) return ret; ret = __qti_scm_int_radio_powerup(__scm->dev, peripheral); qcom_scm_clk_disable(); return ret; } EXPORT_SYMBOL(qti_scm_int_radio_powerup); int qti_scm_int_radio_powerdown(u32 peripheral) { int ret; ret = qcom_scm_clk_enable(); if (ret) return ret; ret = __qti_scm_int_radio_powerdown(__scm->dev, peripheral); qcom_scm_clk_disable(); return ret; } EXPORT_SYMBOL(qti_scm_int_radio_powerdown); int qti_scm_sdi(u32 svc_id, u32 cmd_id) { int ret; ret = qcom_scm_clk_enable(); if (ret) return ret; ret = __qti_scm_sdi(__scm->dev, svc_id, cmd_id); qcom_scm_clk_disable(); return ret; } EXPORT_SYMBOL(qti_scm_sdi); /** * qti_scm_tz_log() - Get trustzone diag log * ker_buf: kernel buffer to store the diag log * buf_len: kernel buffer length * * Return negative errno on failure or 0 on success. Diag log will * be present in the kernel buffer passed. */ int qti_scm_tz_log(void *ker_buf, u32 buf_len) { return __qti_scm_tz_hvc_log(__scm->dev, QCOM_SCM_SVC_INFO, QTI_SCM_TZ_DIAG_CMD, ker_buf, buf_len); } EXPORT_SYMBOL(qti_scm_tz_log); /** * qti_scm_hvc_log() - Get hypervisor diag log * ker_buf: kernel buffer to store the diag log * buf_len: kernel buffer length * * Return negative errno on failure or 0 on success. Diag log will * be present in the kernel buffer passed. */ int qti_scm_hvc_log(void *ker_buf, u32 buf_len) { return __qti_scm_tz_hvc_log(__scm->dev, QCOM_SCM_SVC_INFO, __scm->hvc_log_cmd_id, ker_buf, buf_len); } EXPORT_SYMBOL(qti_scm_hvc_log); #ifdef CONFIG_AVM_FASTIRQ int qcom_scm_avm_wdt_config(u32 enable, u32 bark_ms, u32 bite_ms) { return __qcom_scm_avm_wdt_config(__scm->dev, enable, bark_ms, bite_ms); } EXPORT_SYMBOL(qcom_scm_avm_wdt_config); int qcom_scm_avm_wdt_pet(void) { return __qcom_scm_avm_wdt_pet(__scm->dev); } EXPORT_SYMBOL(qcom_scm_avm_wdt_pet); int qcom_scm_avm_tz_log_last(u32 svc_id, u32 cmd_id, void *ker_buf, u32 buf_len) { return __qti_scm_tz_hvc_log(__scm->dev, SCM_SVC_AVM, SCM_SVC_AVM_TZ_LOG_LAST, ker_buf, buf_len); } EXPORT_SYMBOL(qcom_scm_avm_tz_log_last); #endif /* CONFIG_AVM_FASTIRQ */ /** * qti_scm_get_smmustate () - Get SMMU state * * Returns 0 - SMMU_DISABLE_NONE * 1 - SMMU_DISABLE_S2 * 2 - SMMU_DISABLE_ALL on success. * -1 - Failure */ int qti_scm_get_smmustate(void) { int ret; ret = qcom_scm_clk_enable(); if (ret) return ret; ret = __qti_scm_get_smmustate(__scm->dev, QCOM_SCM_SVC_BOOT, __scm->smmu_state_cmd_id); qcom_scm_clk_disable(); return ret; } EXPORT_SYMBOL(qti_scm_get_smmustate); /** * qti_scm_regsave pass a buffer to tz for saving cpu context * Retruns 0 on success * Err otherwise */ int qti_scm_regsave(u32 svc_id, u32 cmd_id, void *scm_regsave, u32 buf_size) { int ret; ret = qcom_scm_clk_enable(); if (ret) return ret; ret = __qti_scm_regsave(__scm->dev, svc_id, cmd_id, scm_regsave, buf_size); qcom_scm_clk_disable(); return ret; } EXPORT_SYMBOL(qti_scm_regsave); /* * qcom_set_qcekey_sec() - Configure key securely */ int qti_set_qcekey_sec(void *buf, int size) { return __qti_set_qcekey_sec(__scm->dev, buf, size); } EXPORT_SYMBOL(qti_set_qcekey_sec); int qti_sec_crypt(void *buf, int size) { return __qti_sec_crypt(__scm->dev, buf, size); } EXPORT_SYMBOL(qti_sec_crypt); /* * qti_qcekey_release_xpu_prot() - release XPU protection */ int qti_qcekey_release_xpu_prot(void) { return __qti_qcekey_release_xpu_prot(__scm->dev); } EXPORT_SYMBOL(qti_qcekey_release_xpu_prot); int qti_seccrypt_clearkey(void) { return __qti_seccrypt_clearkey(__scm->dev); } EXPORT_SYMBOL(qti_seccrypt_clearkey); /** * qti_scm_resettype () - cold or warm reset * @reset type: 0 for cold 1 for warm * * Returns 0 on success. */ int qti_scm_set_resettype(u32 reset_type) { int ret; ret = qcom_scm_clk_enable(); if (ret) return ret; ret = __qti_scm_set_resettype(__scm->dev, reset_type); qcom_scm_clk_disable(); return ret; } EXPORT_SYMBOL(qti_scm_set_resettype); int qti_scm_tcsr_reg_write(u32 reg_addr, u32 value) { return __qti_scm_tcsr_reg_write(__scm->dev, reg_addr, value); } EXPORT_SYMBOL(qti_scm_tcsr_reg_write); /* * qti_config_sec_ice() - Configure ICE block securely */ int qcom_config_sec_ice(void *buf, int size) { return __qcom_config_ice_sec(__scm->dev, buf, size); } EXPORT_SYMBOL(qcom_config_sec_ice); int qcom_context_sec_ice(u32 type, u8 key_size, u8 algo_mode, u8 *data_ctxt, u32 data_ctxt_len, u8 *salt_ctxt, u32 salt_ctxt_len) { return __qcom_context_ice_sec(__scm->dev, type, key_size, algo_mode, data_ctxt, data_ctxt_len, salt_ctxt, salt_ctxt_len); } EXPORT_SYMBOL(qcom_context_sec_ice); /* * qti_scm_pshold() - TZ performs the PSHOLD operation */ int qti_scm_pshold(void) { int ret; ret = qcom_scm_clk_enable(); if (ret) return ret; ret = __qti_scm_pshold(__scm->dev); qcom_scm_clk_disable(); return ret; } EXPORT_SYMBOL(qti_scm_pshold); int qti_scm_extwdt(u32 svc_id, u32 cmd_id, unsigned int regaddr, unsigned int val) { return __qti_scm_extwdt(__scm->dev, svc_id, cmd_id, regaddr, val); } EXPORT_SYMBOL(qti_scm_extwdt); int qti_scm_is_tz_log_encryption_supported(void) { int ret; ret = __qcom_scm_is_call_available(__scm->dev, QTI_SVC_APP_MGR, QCOM_SCM_IS_TZ_LOG_ENCRYPTED); return (ret == 1) ? 1 : 0; } EXPORT_SYMBOL(qti_scm_is_tz_log_encryption_supported); int qti_scm_is_tz_log_encrypted(void) { int ret; ret = __qti_scm_is_tz_log_encrypted(__scm->dev); return (ret == 1) ? 1 : 0; } EXPORT_SYMBOL(qti_scm_is_tz_log_encrypted); int qti_scm_get_encrypted_tz_log(void *ker_buf, u32 buf_len, u32 log_id) { return __qti_scm_get_encrypted_tz_log(__scm->dev, ker_buf, buf_len, log_id); } EXPORT_SYMBOL(qti_scm_get_encrypted_tz_log); /** * qti_scm_load_otp () - Load OTP to device memory * @peripheral: peripheral id * * Return 0 on success. */ int qti_scm_load_otp(u32 peripheral) { int ret; ret = qcom_scm_clk_enable(); if (ret) return ret; ret = __qti_scm_load_otp(__scm->dev, peripheral); qcom_scm_clk_disable(); return ret; } EXPORT_SYMBOL(qti_scm_load_otp); bool qti_scm_pil_cfg_available(void) { int ret; ret = __qcom_scm_is_call_available(__scm->dev, QTI_SCM_SVC_XO_TCXO, QTI_SCM_CMD_XO_TCXO); return ret > 0 ? true : false; } EXPORT_SYMBOL(qti_scm_pil_cfg_available); int qti_scm_pil_cfg(u32 peripheral, u32 arg) { int ret; ret = qcom_scm_clk_enable(); if (ret) return ret; ret = __qti_scm_pil_cfg(__scm->dev, peripheral, arg); qcom_scm_clk_disable(); return ret; } EXPORT_SYMBOL(qti_scm_pil_cfg); /** * qti_scm_toggle_bt_eco () - Toggle ECO bit * @peripheral: peripheral id * * Return 0 on success. */ int qti_scm_toggle_bt_eco(u32 peripheral, u32 arg) { int ret; ret = qcom_scm_clk_enable(); if (ret) return ret; ret = __qti_scm_toggle_bt_eco(__scm->dev, peripheral, arg); qcom_scm_clk_disable(); return ret; } EXPORT_SYMBOL(qti_scm_toggle_bt_eco); static int qcom_scm_probe(struct platform_device *pdev) { struct device_node *np = (&pdev->dev)->of_node; struct qcom_scm *scm; unsigned long clks; int ret; scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL); if (!scm) return -ENOMEM; ret = qcom_scm_find_dload_address(&pdev->dev, scm); if (ret < 0) return ret; ret = of_property_read_u32(np, "hvc-log-cmd-id", &scm->hvc_log_cmd_id); if (ret) scm->hvc_log_cmd_id = QTI_SCM_HVC_DIAG_CMD; ret = of_property_read_u32(pdev->dev.of_node, "smmu-state-cmd-id", &scm->smmu_state_cmd_id); if (ret) scm->smmu_state_cmd_id = QTI_SCM_SMMUSTATE_CMD; clks = (unsigned long)of_device_get_match_data(&pdev->dev); scm->core_clk = devm_clk_get(&pdev->dev, "core"); if (IS_ERR(scm->core_clk)) { if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER) return PTR_ERR(scm->core_clk); if (clks & SCM_HAS_CORE_CLK) { dev_err(&pdev->dev, "failed to acquire core clk\n"); return PTR_ERR(scm->core_clk); } scm->core_clk = NULL; } scm->iface_clk = devm_clk_get(&pdev->dev, "iface"); if (IS_ERR(scm->iface_clk)) { if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER) return PTR_ERR(scm->iface_clk); if (clks & SCM_HAS_IFACE_CLK) { dev_err(&pdev->dev, "failed to acquire iface clk\n"); return PTR_ERR(scm->iface_clk); } scm->iface_clk = NULL; } scm->bus_clk = devm_clk_get(&pdev->dev, "bus"); if (IS_ERR(scm->bus_clk)) { if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER) return PTR_ERR(scm->bus_clk); if (clks & SCM_HAS_BUS_CLK) { dev_err(&pdev->dev, "failed to acquire bus clk\n"); return PTR_ERR(scm->bus_clk); } scm->bus_clk = NULL; } scm->reset.ops = &qcom_scm_pas_reset_ops; scm->reset.nr_resets = 1; scm->reset.of_node = pdev->dev.of_node; ret = devm_reset_controller_register(&pdev->dev, &scm->reset); if (ret) return ret; /* vote for max clk rate for highest performance */ ret = clk_set_rate(scm->core_clk, INT_MAX); if (ret) return ret; __scm = scm; __scm->dev = &pdev->dev; __qcom_scm_init(); /* * If requested enable "download mode", from this point on warmboot * will cause the the boot stages to enter download mode, unless * disabled below by a clean shutdown/reboot. */ if (download_mode) qcom_scm_set_download_mode(true); return 0; } static void qcom_scm_shutdown(struct platform_device *pdev) { /* Clean shutdown, disable download mode to allow normal restart */ if (download_mode) qcom_scm_set_download_mode(false); } static const struct of_device_id qcom_scm_dt_match[] = { { .compatible = "qcom,scm-apq8064", /* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */ }, { .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK | SCM_HAS_IFACE_CLK | SCM_HAS_BUS_CLK) }, { .compatible = "qcom,scm-ipq4019" }, { .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK }, { .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK }, { .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK | SCM_HAS_IFACE_CLK | SCM_HAS_BUS_CLK) }, { .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK | SCM_HAS_IFACE_CLK | SCM_HAS_BUS_CLK) }, { .compatible = "qcom,scm-msm8996" }, { .compatible = "qcom,scm" }, {} }; static struct platform_driver qcom_scm_driver = { .driver = { .name = "qcom_scm", .of_match_table = qcom_scm_dt_match, }, .probe = qcom_scm_probe, .shutdown = qcom_scm_shutdown, }; static int __init qcom_scm_init(void) { return platform_driver_register(&qcom_scm_driver); } subsys_initcall(qcom_scm_init);