/* * Copyright 2018 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include #include #include "hwmgr.h" #include "amd_powerplay.h" #include "vega20_smumgr.h" #include "hardwaremanager.h" #include "ppatomfwctrl.h" #include "atomfirmware.h" #include "cgs_common.h" #include "vega20_powertune.h" #include "vega20_inc.h" #include "pppcielanes.h" #include "vega20_hwmgr.h" #include "vega20_processpptables.h" #include "vega20_pptable.h" #include "vega20_thermal.h" #include "vega20_ppsmc.h" #include "pp_debug.h" #include "amd_pcie_helpers.h" #include "ppinterrupt.h" #include "pp_overdriver.h" #include "pp_thermal.h" #include "soc15_common.h" #include "vega20_baco.h" #include "smuio/smuio_9_0_offset.h" #include "smuio/smuio_9_0_sh_mask.h" #include "nbio/nbio_7_4_sh_mask.h" #define smnPCIE_LC_SPEED_CNTL 0x11140290 #define smnPCIE_LC_LINK_WIDTH_CNTL 0x11140288 static void vega20_set_default_registry_data(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); data->gfxclk_average_alpha = PPVEGA20_VEGA20GFXCLKAVERAGEALPHA_DFLT; data->socclk_average_alpha = PPVEGA20_VEGA20SOCCLKAVERAGEALPHA_DFLT; data->uclk_average_alpha = PPVEGA20_VEGA20UCLKCLKAVERAGEALPHA_DFLT; data->gfx_activity_average_alpha = PPVEGA20_VEGA20GFXACTIVITYAVERAGEALPHA_DFLT; data->lowest_uclk_reserved_for_ulv = PPVEGA20_VEGA20LOWESTUCLKRESERVEDFORULV_DFLT; data->display_voltage_mode = PPVEGA20_VEGA20DISPLAYVOLTAGEMODE_DFLT; data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; data->disp_clk_quad_eqn_a = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; data->disp_clk_quad_eqn_b = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; data->disp_clk_quad_eqn_c = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; data->phy_clk_quad_eqn_a = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; data->phy_clk_quad_eqn_b = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; data->phy_clk_quad_eqn_c = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; /* * Disable the following features for now: * GFXCLK DS * SOCLK DS * LCLK DS * DCEFCLK DS * FCLK DS * MP1CLK DS * MP0CLK DS */ data->registry_data.disallowed_features = 0xE0041C00; /* ECC feature should be disabled on old SMUs */ smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetSmuVersion); hwmgr->smu_version = smum_get_argument(hwmgr); if (hwmgr->smu_version < 0x282100) data->registry_data.disallowed_features |= FEATURE_ECC_MASK; if (!(hwmgr->feature_mask & PP_PCIE_DPM_MASK)) data->registry_data.disallowed_features |= FEATURE_DPM_LINK_MASK; if (!(hwmgr->feature_mask & PP_SCLK_DPM_MASK)) data->registry_data.disallowed_features |= FEATURE_DPM_GFXCLK_MASK; if (!(hwmgr->feature_mask & PP_SOCCLK_DPM_MASK)) data->registry_data.disallowed_features |= FEATURE_DPM_SOCCLK_MASK; if (!(hwmgr->feature_mask & PP_MCLK_DPM_MASK)) data->registry_data.disallowed_features |= FEATURE_DPM_UCLK_MASK; if (!(hwmgr->feature_mask & PP_DCEFCLK_DPM_MASK)) data->registry_data.disallowed_features |= FEATURE_DPM_DCEFCLK_MASK; if (!(hwmgr->feature_mask & PP_ULV_MASK)) data->registry_data.disallowed_features |= FEATURE_ULV_MASK; if (!(hwmgr->feature_mask & PP_SCLK_DEEP_SLEEP_MASK)) data->registry_data.disallowed_features |= FEATURE_DS_GFXCLK_MASK; data->registry_data.od_state_in_dc_support = 0; data->registry_data.thermal_support = 1; data->registry_data.skip_baco_hardware = 0; data->registry_data.log_avfs_param = 0; data->registry_data.sclk_throttle_low_notification = 1; data->registry_data.force_dpm_high = 0; data->registry_data.stable_pstate_sclk_dpm_percentage = 75; data->registry_data.didt_support = 0; if (data->registry_data.didt_support) { data->registry_data.didt_mode = 6; data->registry_data.sq_ramping_support = 1; data->registry_data.db_ramping_support = 0; data->registry_data.td_ramping_support = 0; data->registry_data.tcp_ramping_support = 0; data->registry_data.dbr_ramping_support = 0; data->registry_data.edc_didt_support = 1; data->registry_data.gc_didt_support = 0; data->registry_data.psm_didt_support = 0; } data->registry_data.pcie_lane_override = 0xff; data->registry_data.pcie_speed_override = 0xff; data->registry_data.pcie_clock_override = 0xffffffff; data->registry_data.regulator_hot_gpio_support = 1; data->registry_data.ac_dc_switch_gpio_support = 0; data->registry_data.quick_transition_support = 0; data->registry_data.zrpm_start_temp = 0xffff; data->registry_data.zrpm_stop_temp = 0xffff; data->registry_data.od8_feature_enable = 1; data->registry_data.disable_water_mark = 0; data->registry_data.disable_pp_tuning = 0; data->registry_data.disable_xlpp_tuning = 0; data->registry_data.disable_workload_policy = 0; data->registry_data.perf_ui_tuning_profile_turbo = 0x19190F0F; data->registry_data.perf_ui_tuning_profile_powerSave = 0x19191919; data->registry_data.perf_ui_tuning_profile_xl = 0x00000F0A; data->registry_data.force_workload_policy_mask = 0; data->registry_data.disable_3d_fs_detection = 0; data->registry_data.fps_support = 1; data->registry_data.disable_auto_wattman = 1; data->registry_data.auto_wattman_debug = 0; data->registry_data.auto_wattman_sample_period = 100; data->registry_data.fclk_gfxclk_ratio = 0; data->registry_data.auto_wattman_threshold = 50; data->registry_data.gfxoff_controlled_by_driver = 1; data->gfxoff_allowed = false; data->counter_gfxoff = 0; } static int vega20_set_features_platform_caps(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); struct amdgpu_device *adev = hwmgr->adev; if (data->vddci_control == VEGA20_VOLTAGE_CONTROL_NONE) phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ControlVDDCI); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TablelessHardwareInterface); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EnableSMU7ThermalManagement); if (adev->pg_flags & AMD_PG_SUPPORT_UVD) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating); if (adev->pg_flags & AMD_PG_SUPPORT_VCE) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UnTabledHardwareInterface); if (data->registry_data.od8_feature_enable) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD8inACSupport); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ActivityReporting); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_FanSpeedInTableIsRPM); if (data->registry_data.od_state_in_dc_support) { if (data->registry_data.od8_feature_enable) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD8inDCSupport); } if (data->registry_data.thermal_support && data->registry_data.fuzzy_fan_control_support && hwmgr->thermal_controller.advanceFanControlParameters.usTMax) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ODFuzzyFanControlSupport); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicPowerManagement); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SMC); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ThermalPolicyDelay); if (data->registry_data.force_dpm_high) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ExclusiveModeAlwaysHigh); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicUVDState); if (data->registry_data.sclk_throttle_low_notification) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkThrottleLowNotification); /* power tune caps */ /* assume disabled */ phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerContainment); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM); if (data->registry_data.didt_support) { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport); if (data->registry_data.sq_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping); if (data->registry_data.db_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping); if (data->registry_data.td_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping); if (data->registry_data.tcp_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping); if (data->registry_data.dbr_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping); if (data->registry_data.edc_didt_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable); if (data->registry_data.gc_didt_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC); if (data->registry_data.psm_didt_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM); } phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot); if (data->registry_data.ac_dc_switch_gpio_support) { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme); } if (data->registry_data.quick_transition_support) { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_Falcon_QuickTransition); } if (data->lowest_uclk_reserved_for_ulv != PPVEGA20_VEGA20LOWESTUCLKRESERVEDFORULV_DFLT) { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_LowestUclkReservedForUlv); if (data->lowest_uclk_reserved_for_ulv == 1) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_LowestUclkReservedForUlv); } if (data->registry_data.custom_fan_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_CustomFanControlSupport); return 0; } static void vega20_init_dpm_defaults(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); struct amdgpu_device *adev = hwmgr->adev; uint32_t top32, bottom32; int i; data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id = FEATURE_DPM_PREFETCHER_BIT; data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id = FEATURE_DPM_GFXCLK_BIT; data->smu_features[GNLD_DPM_UCLK].smu_feature_id = FEATURE_DPM_UCLK_BIT; data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id = FEATURE_DPM_SOCCLK_BIT; data->smu_features[GNLD_DPM_UVD].smu_feature_id = FEATURE_DPM_UVD_BIT; data->smu_features[GNLD_DPM_VCE].smu_feature_id = FEATURE_DPM_VCE_BIT; data->smu_features[GNLD_ULV].smu_feature_id = FEATURE_ULV_BIT; data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id = FEATURE_DPM_MP0CLK_BIT; data->smu_features[GNLD_DPM_LINK].smu_feature_id = FEATURE_DPM_LINK_BIT; data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id = FEATURE_DPM_DCEFCLK_BIT; data->smu_features[GNLD_DS_GFXCLK].smu_feature_id = FEATURE_DS_GFXCLK_BIT; data->smu_features[GNLD_DS_SOCCLK].smu_feature_id = FEATURE_DS_SOCCLK_BIT; data->smu_features[GNLD_DS_LCLK].smu_feature_id = FEATURE_DS_LCLK_BIT; data->smu_features[GNLD_PPT].smu_feature_id = FEATURE_PPT_BIT; data->smu_features[GNLD_TDC].smu_feature_id = FEATURE_TDC_BIT; data->smu_features[GNLD_THERMAL].smu_feature_id = FEATURE_THERMAL_BIT; data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id = FEATURE_GFX_PER_CU_CG_BIT; data->smu_features[GNLD_RM].smu_feature_id = FEATURE_RM_BIT; data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id = FEATURE_DS_DCEFCLK_BIT; data->smu_features[GNLD_ACDC].smu_feature_id = FEATURE_ACDC_BIT; data->smu_features[GNLD_VR0HOT].smu_feature_id = FEATURE_VR0HOT_BIT; data->smu_features[GNLD_VR1HOT].smu_feature_id = FEATURE_VR1HOT_BIT; data->smu_features[GNLD_FW_CTF].smu_feature_id = FEATURE_FW_CTF_BIT; data->smu_features[GNLD_LED_DISPLAY].smu_feature_id = FEATURE_LED_DISPLAY_BIT; data->smu_features[GNLD_FAN_CONTROL].smu_feature_id = FEATURE_FAN_CONTROL_BIT; data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT; data->smu_features[GNLD_GFXOFF].smu_feature_id = FEATURE_GFXOFF_BIT; data->smu_features[GNLD_CG].smu_feature_id = FEATURE_CG_BIT; data->smu_features[GNLD_DPM_FCLK].smu_feature_id = FEATURE_DPM_FCLK_BIT; data->smu_features[GNLD_DS_FCLK].smu_feature_id = FEATURE_DS_FCLK_BIT; data->smu_features[GNLD_DS_MP1CLK].smu_feature_id = FEATURE_DS_MP1CLK_BIT; data->smu_features[GNLD_DS_MP0CLK].smu_feature_id = FEATURE_DS_MP0CLK_BIT; data->smu_features[GNLD_XGMI].smu_feature_id = FEATURE_XGMI_BIT; data->smu_features[GNLD_ECC].smu_feature_id = FEATURE_ECC_BIT; for (i = 0; i < GNLD_FEATURES_MAX; i++) { data->smu_features[i].smu_feature_bitmap = (uint64_t)(1ULL << data->smu_features[i].smu_feature_id); data->smu_features[i].allowed = ((data->registry_data.disallowed_features >> i) & 1) ? false : true; } /* Get the SN to turn into a Unique ID */ smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32); top32 = smum_get_argument(hwmgr); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32); bottom32 = smum_get_argument(hwmgr); adev->unique_id = ((uint64_t)bottom32 << 32) | top32; } static int vega20_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr) { return 0; } static int vega20_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) { kfree(hwmgr->backend); hwmgr->backend = NULL; return 0; } static int vega20_hwmgr_backend_init(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data; struct amdgpu_device *adev = hwmgr->adev; data = kzalloc(sizeof(struct vega20_hwmgr), GFP_KERNEL); if (data == NULL) return -ENOMEM; hwmgr->backend = data; hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT]; hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT; hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT; vega20_set_default_registry_data(hwmgr); data->disable_dpm_mask = 0xff; /* need to set voltage control types before EVV patching */ data->vddc_control = VEGA20_VOLTAGE_CONTROL_NONE; data->mvdd_control = VEGA20_VOLTAGE_CONTROL_NONE; data->vddci_control = VEGA20_VOLTAGE_CONTROL_NONE; data->water_marks_bitmap = 0; data->avfs_exist = false; vega20_set_features_platform_caps(hwmgr); vega20_init_dpm_defaults(hwmgr); /* Parse pptable data read from VBIOS */ vega20_set_private_data_based_on_pptable(hwmgr); data->is_tlu_enabled = false; hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = VEGA20_MAX_HARDWARE_POWERLEVELS; hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */ /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */ hwmgr->platform_descriptor.clockStep.engineClock = 500; hwmgr->platform_descriptor.clockStep.memoryClock = 500; data->total_active_cus = adev->gfx.cu_info.number; data->is_custom_profile_set = false; return 0; } static int vega20_init_sclk_threshold(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); data->low_sclk_interrupt_threshold = 0; return 0; } static int vega20_setup_asic_task(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev); int ret = 0; ret = vega20_init_sclk_threshold(hwmgr); PP_ASSERT_WITH_CODE(!ret, "Failed to init sclk threshold!", return ret); if (adev->in_baco_reset) { adev->in_baco_reset = 0; ret = vega20_baco_apply_vdci_flush_workaround(hwmgr); if (ret) pr_err("Failed to apply vega20 baco workaround!\n"); } return ret; } /* * @fn vega20_init_dpm_state * @brief Function to initialize all Soft Min/Max and Hard Min/Max to 0xff. * * @param dpm_state - the address of the DPM Table to initiailize. * @return None. */ static void vega20_init_dpm_state(struct vega20_dpm_state *dpm_state) { dpm_state->soft_min_level = 0x0; dpm_state->soft_max_level = VG20_CLOCK_MAX_DEFAULT; dpm_state->hard_min_level = 0x0; dpm_state->hard_max_level = VG20_CLOCK_MAX_DEFAULT; } static int vega20_get_number_of_dpm_level(struct pp_hwmgr *hwmgr, PPCLK_e clk_id, uint32_t *num_of_levels) { int ret = 0; ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetDpmFreqByIndex, (clk_id << 16 | 0xFF)); PP_ASSERT_WITH_CODE(!ret, "[GetNumOfDpmLevel] failed to get dpm levels!", return ret); *num_of_levels = smum_get_argument(hwmgr); PP_ASSERT_WITH_CODE(*num_of_levels > 0, "[GetNumOfDpmLevel] number of clk levels is invalid!", return -EINVAL); return ret; } static int vega20_get_dpm_frequency_by_index(struct pp_hwmgr *hwmgr, PPCLK_e clk_id, uint32_t index, uint32_t *clk) { int ret = 0; ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetDpmFreqByIndex, (clk_id << 16 | index)); PP_ASSERT_WITH_CODE(!ret, "[GetDpmFreqByIndex] failed to get dpm freq by index!", return ret); *clk = smum_get_argument(hwmgr); PP_ASSERT_WITH_CODE(*clk, "[GetDpmFreqByIndex] clk value is invalid!", return -EINVAL); return ret; } static int vega20_setup_single_dpm_table(struct pp_hwmgr *hwmgr, struct vega20_single_dpm_table *dpm_table, PPCLK_e clk_id) { int ret = 0; uint32_t i, num_of_levels, clk; ret = vega20_get_number_of_dpm_level(hwmgr, clk_id, &num_of_levels); PP_ASSERT_WITH_CODE(!ret, "[SetupSingleDpmTable] failed to get clk levels!", return ret); dpm_table->count = num_of_levels; for (i = 0; i < num_of_levels; i++) { ret = vega20_get_dpm_frequency_by_index(hwmgr, clk_id, i, &clk); PP_ASSERT_WITH_CODE(!ret, "[SetupSingleDpmTable] failed to get clk of specific level!", return ret); dpm_table->dpm_levels[i].value = clk; dpm_table->dpm_levels[i].enabled = true; } return ret; } static int vega20_setup_gfxclk_dpm_table(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); struct vega20_single_dpm_table *dpm_table; int ret = 0; dpm_table = &(data->dpm_table.gfx_table); if (data->smu_features[GNLD_DPM_GFXCLK].enabled) { ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_GFXCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get gfxclk dpm levels!", return ret); } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = data->vbios_boot_state.gfx_clock / 100; } return ret; } static int vega20_setup_memclk_dpm_table(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); struct vega20_single_dpm_table *dpm_table; int ret = 0; dpm_table = &(data->dpm_table.mem_table); if (data->smu_features[GNLD_DPM_UCLK].enabled) { ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_UCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get memclk dpm levels!", return ret); } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = data->vbios_boot_state.mem_clock / 100; } return ret; } /* * This function is to initialize all DPM state tables * for SMU based on the dependency table. * Dynamic state patching function will then trim these * state tables to the allowed range based * on the power policy or external client requests, * such as UVD request, etc. */ static int vega20_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); struct vega20_single_dpm_table *dpm_table; int ret = 0; memset(&data->dpm_table, 0, sizeof(data->dpm_table)); /* socclk */ dpm_table = &(data->dpm_table.soc_table); if (data->smu_features[GNLD_DPM_SOCCLK].enabled) { ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_SOCCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get socclk dpm levels!", return ret); } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = data->vbios_boot_state.soc_clock / 100; } vega20_init_dpm_state(&(dpm_table->dpm_state)); /* gfxclk */ dpm_table = &(data->dpm_table.gfx_table); ret = vega20_setup_gfxclk_dpm_table(hwmgr); if (ret) return ret; vega20_init_dpm_state(&(dpm_table->dpm_state)); /* memclk */ dpm_table = &(data->dpm_table.mem_table); ret = vega20_setup_memclk_dpm_table(hwmgr); if (ret) return ret; vega20_init_dpm_state(&(dpm_table->dpm_state)); /* eclk */ dpm_table = &(data->dpm_table.eclk_table); if (data->smu_features[GNLD_DPM_VCE].enabled) { ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_ECLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get eclk dpm levels!", return ret); } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = data->vbios_boot_state.eclock / 100; } vega20_init_dpm_state(&(dpm_table->dpm_state)); /* vclk */ dpm_table = &(data->dpm_table.vclk_table); if (data->smu_features[GNLD_DPM_UVD].enabled) { ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_VCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get vclk dpm levels!", return ret); } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = data->vbios_boot_state.vclock / 100; } vega20_init_dpm_state(&(dpm_table->dpm_state)); /* dclk */ dpm_table = &(data->dpm_table.dclk_table); if (data->smu_features[GNLD_DPM_UVD].enabled) { ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get dclk dpm levels!", return ret); } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = data->vbios_boot_state.dclock / 100; } vega20_init_dpm_state(&(dpm_table->dpm_state)); /* dcefclk */ dpm_table = &(data->dpm_table.dcef_table); if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DCEFCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get dcefclk dpm levels!", return ret); } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = data->vbios_boot_state.dcef_clock / 100; } vega20_init_dpm_state(&(dpm_table->dpm_state)); /* pixclk */ dpm_table = &(data->dpm_table.pixel_table); if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_PIXCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get pixclk dpm levels!", return ret); } else dpm_table->count = 0; vega20_init_dpm_state(&(dpm_table->dpm_state)); /* dispclk */ dpm_table = &(data->dpm_table.display_table); if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DISPCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get dispclk dpm levels!", return ret); } else dpm_table->count = 0; vega20_init_dpm_state(&(dpm_table->dpm_state)); /* phyclk */ dpm_table = &(data->dpm_table.phy_table); if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_PHYCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get phyclk dpm levels!", return ret); } else dpm_table->count = 0; vega20_init_dpm_state(&(dpm_table->dpm_state)); /* fclk */ dpm_table = &(data->dpm_table.fclk_table); if (data->smu_features[GNLD_DPM_FCLK].enabled) { ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_FCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get fclk dpm levels!", return ret); } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = data->vbios_boot_state.fclock / 100; } vega20_init_dpm_state(&(dpm_table->dpm_state)); /* save a copy of the default DPM table */ memcpy(&(data->golden_dpm_table), &(data->dpm_table), sizeof(struct vega20_dpm_table)); return 0; } /** * Initializes the SMC table and uploads it * * @param hwmgr the address of the powerplay hardware manager. * @param pInput the pointer to input data (PowerState) * @return always 0 */ static int vega20_init_smc_table(struct pp_hwmgr *hwmgr) { int result; struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct pp_atomfwctrl_bios_boot_up_values boot_up_values; struct phm_ppt_v3_information *pptable_information = (struct phm_ppt_v3_information *)hwmgr->pptable; result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values); PP_ASSERT_WITH_CODE(!result, "[InitSMCTable] Failed to get vbios bootup values!", return result); data->vbios_boot_state.vddc = boot_up_values.usVddc; data->vbios_boot_state.vddci = boot_up_values.usVddci; data->vbios_boot_state.mvddc = boot_up_values.usMvddc; data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk; data->vbios_boot_state.mem_clock = boot_up_values.ulUClk; data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk; data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk; data->vbios_boot_state.eclock = boot_up_values.ulEClk; data->vbios_boot_state.vclock = boot_up_values.ulVClk; data->vbios_boot_state.dclock = boot_up_values.ulDClk; data->vbios_boot_state.fclock = boot_up_values.ulFClk; data->vbios_boot_state.uc_cooling_id = boot_up_values.ucCoolingID; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk, (uint32_t)(data->vbios_boot_state.dcef_clock / 100)); memcpy(pp_table, pptable_information->smc_pptable, sizeof(PPTable_t)); result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, TABLE_PPTABLE, false); PP_ASSERT_WITH_CODE(!result, "[InitSMCTable] Failed to upload PPtable!", return result); return 0; } /* * Override PCIe link speed and link width for DPM Level 1. PPTable entries * reflect the ASIC capabilities and not the system capabilities. For e.g. * Vega20 board in a PCI Gen3 system. In this case, when SMU's tries to switch * to DPM1, it fails as system doesn't support Gen4. */ static int vega20_override_pcie_parameters(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev); struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); uint32_t pcie_gen = 0, pcie_width = 0, smu_pcie_arg; int ret; if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4) pcie_gen = 3; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) pcie_gen = 2; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2) pcie_gen = 1; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1) pcie_gen = 0; if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16) pcie_width = 6; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12) pcie_width = 5; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8) pcie_width = 4; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4) pcie_width = 3; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2) pcie_width = 2; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1) pcie_width = 1; /* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1 * Bit 15:8: PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4 * Bit 7:0: PCIE lane width, 1 to 7 corresponds is x1 to x32 */ smu_pcie_arg = (1 << 16) | (pcie_gen << 8) | pcie_width; ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_OverridePcieParameters, smu_pcie_arg); PP_ASSERT_WITH_CODE(!ret, "[OverridePcieParameters] Attempt to override pcie params failed!", return ret); data->pcie_parameters_override = 1; data->pcie_gen_level1 = pcie_gen; data->pcie_width_level1 = pcie_width; return 0; } static int vega20_set_allowed_featuresmask(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); uint32_t allowed_features_low = 0, allowed_features_high = 0; int i; int ret = 0; for (i = 0; i < GNLD_FEATURES_MAX; i++) if (data->smu_features[i].allowed) data->smu_features[i].smu_feature_id > 31 ? (allowed_features_high |= ((data->smu_features[i].smu_feature_bitmap >> SMU_FEATURES_HIGH_SHIFT) & 0xFFFFFFFF)) : (allowed_features_low |= ((data->smu_features[i].smu_feature_bitmap >> SMU_FEATURES_LOW_SHIFT) & 0xFFFFFFFF)); ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetAllowedFeaturesMaskHigh, allowed_features_high); PP_ASSERT_WITH_CODE(!ret, "[SetAllowedFeaturesMask] Attempt to set allowed features mask(high) failed!", return ret); ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetAllowedFeaturesMaskLow, allowed_features_low); PP_ASSERT_WITH_CODE(!ret, "[SetAllowedFeaturesMask] Attempt to set allowed features mask (low) failed!", return ret); return 0; } static int vega20_run_btc(struct pp_hwmgr *hwmgr) { return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunBtc); } static int vega20_run_btc_afll(struct pp_hwmgr *hwmgr) { return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAfllBtc); } static int vega20_enable_all_smu_features(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); uint64_t features_enabled; int i; bool enabled; int ret = 0; PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAllSmuFeatures)) == 0, "[EnableAllSMUFeatures] Failed to enable all smu features!", return ret); ret = vega20_get_enabled_smc_features(hwmgr, &features_enabled); PP_ASSERT_WITH_CODE(!ret, "[EnableAllSmuFeatures] Failed to get enabled smc features!", return ret); for (i = 0; i < GNLD_FEATURES_MAX; i++) { enabled = (features_enabled & data->smu_features[i].smu_feature_bitmap) ? true : false; data->smu_features[i].enabled = enabled; data->smu_features[i].supported = enabled; #if 0 if (data->smu_features[i].allowed && !enabled) pr_info("[EnableAllSMUFeatures] feature %d is expected enabled!", i); else if (!data->smu_features[i].allowed && enabled) pr_info("[EnableAllSMUFeatures] feature %d is expected disabled!", i); #endif } return 0; } static int vega20_notify_smc_display_change(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_DPM_UCLK].enabled) return smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetUclkFastSwitch, 1); return 0; } static int vega20_send_clock_ratio(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); return smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetFclkGfxClkRatio, data->registry_data.fclk_gfxclk_ratio); } static int vega20_disable_all_smu_features(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); int i, ret = 0; PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableAllSmuFeatures)) == 0, "[DisableAllSMUFeatures] Failed to disable all smu features!", return ret); for (i = 0; i < GNLD_FEATURES_MAX; i++) data->smu_features[i].enabled = 0; return 0; } static int vega20_od8_set_feature_capabilities( struct pp_hwmgr *hwmgr) { struct phm_ppt_v3_information *pptable_information = (struct phm_ppt_v3_information *)hwmgr->pptable; struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct vega20_od8_settings *od_settings = &(data->od8_settings); od_settings->overdrive8_capabilities = 0; if (data->smu_features[GNLD_DPM_GFXCLK].enabled) { if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_GFXCLK_LIMITS] && pptable_information->od_settings_max[OD8_SETTING_GFXCLK_FMAX] > 0 && pptable_information->od_settings_min[OD8_SETTING_GFXCLK_FMIN] > 0 && (pptable_information->od_settings_max[OD8_SETTING_GFXCLK_FMAX] >= pptable_information->od_settings_min[OD8_SETTING_GFXCLK_FMIN])) od_settings->overdrive8_capabilities |= OD8_GFXCLK_LIMITS; if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_GFXCLK_CURVE] && (pptable_information->od_settings_min[OD8_SETTING_GFXCLK_VOLTAGE1] >= pp_table->MinVoltageGfx / VOLTAGE_SCALE) && (pptable_information->od_settings_max[OD8_SETTING_GFXCLK_VOLTAGE3] <= pp_table->MaxVoltageGfx / VOLTAGE_SCALE) && (pptable_information->od_settings_max[OD8_SETTING_GFXCLK_VOLTAGE3] >= pptable_information->od_settings_min[OD8_SETTING_GFXCLK_VOLTAGE1])) od_settings->overdrive8_capabilities |= OD8_GFXCLK_CURVE; } if (data->smu_features[GNLD_DPM_UCLK].enabled) { pptable_information->od_settings_min[OD8_SETTING_UCLK_FMAX] = data->dpm_table.mem_table.dpm_levels[data->dpm_table.mem_table.count - 2].value; if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_UCLK_MAX] && pptable_information->od_settings_min[OD8_SETTING_UCLK_FMAX] > 0 && pptable_information->od_settings_max[OD8_SETTING_UCLK_FMAX] > 0 && (pptable_information->od_settings_max[OD8_SETTING_UCLK_FMAX] >= pptable_information->od_settings_min[OD8_SETTING_UCLK_FMAX])) od_settings->overdrive8_capabilities |= OD8_UCLK_MAX; } if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_POWER_LIMIT] && pptable_information->od_settings_max[OD8_SETTING_POWER_PERCENTAGE] > 0 && pptable_information->od_settings_max[OD8_SETTING_POWER_PERCENTAGE] <= 100 && pptable_information->od_settings_min[OD8_SETTING_POWER_PERCENTAGE] > 0 && pptable_information->od_settings_min[OD8_SETTING_POWER_PERCENTAGE] <= 100) od_settings->overdrive8_capabilities |= OD8_POWER_LIMIT; if (data->smu_features[GNLD_FAN_CONTROL].enabled) { if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_ACOUSTIC_LIMIT] && pptable_information->od_settings_min[OD8_SETTING_FAN_ACOUSTIC_LIMIT] > 0 && pptable_information->od_settings_max[OD8_SETTING_FAN_ACOUSTIC_LIMIT] > 0 && (pptable_information->od_settings_max[OD8_SETTING_FAN_ACOUSTIC_LIMIT] >= pptable_information->od_settings_min[OD8_SETTING_FAN_ACOUSTIC_LIMIT])) od_settings->overdrive8_capabilities |= OD8_ACOUSTIC_LIMIT_SCLK; if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_SPEED_MIN] && (pptable_information->od_settings_min[OD8_SETTING_FAN_MIN_SPEED] >= (pp_table->FanPwmMin * pp_table->FanMaximumRpm / 100)) && pptable_information->od_settings_max[OD8_SETTING_FAN_MIN_SPEED] > 0 && (pptable_information->od_settings_max[OD8_SETTING_FAN_MIN_SPEED] >= pptable_information->od_settings_min[OD8_SETTING_FAN_MIN_SPEED])) od_settings->overdrive8_capabilities |= OD8_FAN_SPEED_MIN; } if (data->smu_features[GNLD_THERMAL].enabled) { if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_TEMPERATURE_FAN] && pptable_information->od_settings_max[OD8_SETTING_FAN_TARGET_TEMP] > 0 && pptable_information->od_settings_min[OD8_SETTING_FAN_TARGET_TEMP] > 0 && (pptable_information->od_settings_max[OD8_SETTING_FAN_TARGET_TEMP] >= pptable_information->od_settings_min[OD8_SETTING_FAN_TARGET_TEMP])) od_settings->overdrive8_capabilities |= OD8_TEMPERATURE_FAN; if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_TEMPERATURE_SYSTEM] && pptable_information->od_settings_max[OD8_SETTING_OPERATING_TEMP_MAX] > 0 && pptable_information->od_settings_min[OD8_SETTING_OPERATING_TEMP_MAX] > 0 && (pptable_information->od_settings_max[OD8_SETTING_OPERATING_TEMP_MAX] >= pptable_information->od_settings_min[OD8_SETTING_OPERATING_TEMP_MAX])) od_settings->overdrive8_capabilities |= OD8_TEMPERATURE_SYSTEM; } if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_MEMORY_TIMING_TUNE]) od_settings->overdrive8_capabilities |= OD8_MEMORY_TIMING_TUNE; if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_ZERO_RPM_CONTROL] && pp_table->FanZeroRpmEnable) od_settings->overdrive8_capabilities |= OD8_FAN_ZERO_RPM_CONTROL; if (!od_settings->overdrive8_capabilities) hwmgr->od_enabled = false; return 0; } static int vega20_od8_set_feature_id( struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); struct vega20_od8_settings *od_settings = &(data->od8_settings); if (od_settings->overdrive8_capabilities & OD8_GFXCLK_LIMITS) { od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id = OD8_GFXCLK_LIMITS; od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id = OD8_GFXCLK_LIMITS; } else { od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id = 0; od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id = 0; } if (od_settings->overdrive8_capabilities & OD8_GFXCLK_CURVE) { od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id = OD8_GFXCLK_CURVE; od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id = OD8_GFXCLK_CURVE; od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id = OD8_GFXCLK_CURVE; od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id = OD8_GFXCLK_CURVE; od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id = OD8_GFXCLK_CURVE; od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id = OD8_GFXCLK_CURVE; } else { od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id = 0; od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id = 0; od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id = 0; od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id = 0; od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id = 0; od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id = 0; } if (od_settings->overdrive8_capabilities & OD8_UCLK_MAX) od_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id = OD8_UCLK_MAX; else od_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id = 0; if (od_settings->overdrive8_capabilities & OD8_POWER_LIMIT) od_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].feature_id = OD8_POWER_LIMIT; else od_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].feature_id = 0; if (od_settings->overdrive8_capabilities & OD8_ACOUSTIC_LIMIT_SCLK) od_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].feature_id = OD8_ACOUSTIC_LIMIT_SCLK; else od_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].feature_id = 0; if (od_settings->overdrive8_capabilities & OD8_FAN_SPEED_MIN) od_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].feature_id = OD8_FAN_SPEED_MIN; else od_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].feature_id = 0; if (od_settings->overdrive8_capabilities & OD8_TEMPERATURE_FAN) od_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].feature_id = OD8_TEMPERATURE_FAN; else od_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].feature_id = 0; if (od_settings->overdrive8_capabilities & OD8_TEMPERATURE_SYSTEM) od_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].feature_id = OD8_TEMPERATURE_SYSTEM; else od_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].feature_id = 0; return 0; } static int vega20_od8_get_gfx_clock_base_voltage( struct pp_hwmgr *hwmgr, uint32_t *voltage, uint32_t freq) { int ret = 0; ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetAVFSVoltageByDpm, ((AVFS_CURVE << 24) | (OD8_HOTCURVE_TEMPERATURE << 16) | freq)); PP_ASSERT_WITH_CODE(!ret, "[GetBaseVoltage] failed to get GFXCLK AVFS voltage from SMU!", return ret); *voltage = smum_get_argument(hwmgr); *voltage = *voltage / VOLTAGE_SCALE; return 0; } static int vega20_od8_initialize_default_settings( struct pp_hwmgr *hwmgr) { struct phm_ppt_v3_information *pptable_information = (struct phm_ppt_v3_information *)hwmgr->pptable; struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); struct vega20_od8_settings *od8_settings = &(data->od8_settings); OverDriveTable_t *od_table = &(data->smc_state_table.overdrive_table); int i, ret = 0; /* Set Feature Capabilities */ vega20_od8_set_feature_capabilities(hwmgr); /* Map FeatureID to individual settings */ vega20_od8_set_feature_id(hwmgr); /* Set default values */ ret = smum_smc_table_manager(hwmgr, (uint8_t *)od_table, TABLE_OVERDRIVE, true); PP_ASSERT_WITH_CODE(!ret, "Failed to export over drive table!", return ret); if (od8_settings->overdrive8_capabilities & OD8_GFXCLK_LIMITS) { od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].default_value = od_table->GfxclkFmin; od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].default_value = od_table->GfxclkFmax; } else { od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].default_value = 0; od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].default_value = 0; } if (od8_settings->overdrive8_capabilities & OD8_GFXCLK_CURVE) { od_table->GfxclkFreq1 = od_table->GfxclkFmin; od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].default_value = od_table->GfxclkFreq1; od_table->GfxclkFreq3 = od_table->GfxclkFmax; od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].default_value = od_table->GfxclkFreq3; od_table->GfxclkFreq2 = (od_table->GfxclkFreq1 + od_table->GfxclkFreq3) / 2; od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].default_value = od_table->GfxclkFreq2; PP_ASSERT_WITH_CODE(!vega20_od8_get_gfx_clock_base_voltage(hwmgr, &(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value), od_table->GfxclkFreq1), "[PhwVega20_OD8_InitializeDefaultSettings] Failed to get Base clock voltage from SMU!", od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value = 0); od_table->GfxclkVolt1 = od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value * VOLTAGE_SCALE; PP_ASSERT_WITH_CODE(!vega20_od8_get_gfx_clock_base_voltage(hwmgr, &(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value), od_table->GfxclkFreq2), "[PhwVega20_OD8_InitializeDefaultSettings] Failed to get Base clock voltage from SMU!", od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value = 0); od_table->GfxclkVolt2 = od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value * VOLTAGE_SCALE; PP_ASSERT_WITH_CODE(!vega20_od8_get_gfx_clock_base_voltage(hwmgr, &(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value), od_table->GfxclkFreq3), "[PhwVega20_OD8_InitializeDefaultSettings] Failed to get Base clock voltage from SMU!", od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value = 0); od_table->GfxclkVolt3 = od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value * VOLTAGE_SCALE; } else { od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].default_value = 0; od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value = 0; od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].default_value = 0; od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value = 0; od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].default_value = 0; od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value = 0; } if (od8_settings->overdrive8_capabilities & OD8_UCLK_MAX) od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].default_value = od_table->UclkFmax; else od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].default_value = 0; if (od8_settings->overdrive8_capabilities & OD8_POWER_LIMIT) od8_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].default_value = od_table->OverDrivePct; else od8_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].default_value = 0; if (od8_settings->overdrive8_capabilities & OD8_ACOUSTIC_LIMIT_SCLK) od8_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].default_value = od_table->FanMaximumRpm; else od8_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].default_value = 0; if (od8_settings->overdrive8_capabilities & OD8_FAN_SPEED_MIN) od8_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].default_value = od_table->FanMinimumPwm * data->smc_state_table.pp_table.FanMaximumRpm / 100; else od8_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].default_value = 0; if (od8_settings->overdrive8_capabilities & OD8_TEMPERATURE_FAN) od8_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].default_value = od_table->FanTargetTemperature; else od8_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].default_value = 0; if (od8_settings->overdrive8_capabilities & OD8_TEMPERATURE_SYSTEM) od8_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].default_value = od_table->MaxOpTemp; else od8_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].default_value = 0; for (i = 0; i < OD8_SETTING_COUNT; i++) { if (od8_settings->od8_settings_array[i].feature_id) { od8_settings->od8_settings_array[i].min_value = pptable_information->od_settings_min[i]; od8_settings->od8_settings_array[i].max_value = pptable_information->od_settings_max[i]; od8_settings->od8_settings_array[i].current_value = od8_settings->od8_settings_array[i].default_value; } else { od8_settings->od8_settings_array[i].min_value = 0; od8_settings->od8_settings_array[i].max_value = 0; od8_settings->od8_settings_array[i].current_value = 0; } } ret = smum_smc_table_manager(hwmgr, (uint8_t *)od_table, TABLE_OVERDRIVE, false); PP_ASSERT_WITH_CODE(!ret, "Failed to import over drive table!", return ret); return 0; } static int vega20_od8_set_settings( struct pp_hwmgr *hwmgr, uint32_t index, uint32_t value) { OverDriveTable_t od_table; int ret = 0; struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); struct vega20_od8_single_setting *od8_settings = data->od8_settings.od8_settings_array; ret = smum_smc_table_manager(hwmgr, (uint8_t *)(&od_table), TABLE_OVERDRIVE, true); PP_ASSERT_WITH_CODE(!ret, "Failed to export over drive table!", return ret); switch(index) { case OD8_SETTING_GFXCLK_FMIN: od_table.GfxclkFmin = (uint16_t)value; break; case OD8_SETTING_GFXCLK_FMAX: if (value < od8_settings[OD8_SETTING_GFXCLK_FMAX].min_value || value > od8_settings[OD8_SETTING_GFXCLK_FMAX].max_value) return -EINVAL; od_table.GfxclkFmax = (uint16_t)value; break; case OD8_SETTING_GFXCLK_FREQ1: od_table.GfxclkFreq1 = (uint16_t)value; break; case OD8_SETTING_GFXCLK_VOLTAGE1: od_table.GfxclkVolt1 = (uint16_t)value; break; case OD8_SETTING_GFXCLK_FREQ2: od_table.GfxclkFreq2 = (uint16_t)value; break; case OD8_SETTING_GFXCLK_VOLTAGE2: od_table.GfxclkVolt2 = (uint16_t)value; break; case OD8_SETTING_GFXCLK_FREQ3: od_table.GfxclkFreq3 = (uint16_t)value; break; case OD8_SETTING_GFXCLK_VOLTAGE3: od_table.GfxclkVolt3 = (uint16_t)value; break; case OD8_SETTING_UCLK_FMAX: if (value < od8_settings[OD8_SETTING_UCLK_FMAX].min_value || value > od8_settings[OD8_SETTING_UCLK_FMAX].max_value) return -EINVAL; od_table.UclkFmax = (uint16_t)value; break; case OD8_SETTING_POWER_PERCENTAGE: od_table.OverDrivePct = (int16_t)value; break; case OD8_SETTING_FAN_ACOUSTIC_LIMIT: od_table.FanMaximumRpm = (uint16_t)value; break; case OD8_SETTING_FAN_MIN_SPEED: od_table.FanMinimumPwm = (uint16_t)value; break; case OD8_SETTING_FAN_TARGET_TEMP: od_table.FanTargetTemperature = (uint16_t)value; break; case OD8_SETTING_OPERATING_TEMP_MAX: od_table.MaxOpTemp = (uint16_t)value; break; } ret = smum_smc_table_manager(hwmgr, (uint8_t *)(&od_table), TABLE_OVERDRIVE, false); PP_ASSERT_WITH_CODE(!ret, "Failed to import over drive table!", return ret); return 0; } static int vega20_get_sclk_od( struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = hwmgr->backend; struct vega20_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); struct vega20_single_dpm_table *golden_sclk_table = &(data->golden_dpm_table.gfx_table); int value = sclk_table->dpm_levels[sclk_table->count - 1].value; int golden_value = golden_sclk_table->dpm_levels [golden_sclk_table->count - 1].value; /* od percentage */ value -= golden_value; value = DIV_ROUND_UP(value * 100, golden_value); return value; } static int vega20_set_sclk_od( struct pp_hwmgr *hwmgr, uint32_t value) { struct vega20_hwmgr *data = hwmgr->backend; struct vega20_single_dpm_table *golden_sclk_table = &(data->golden_dpm_table.gfx_table); uint32_t od_sclk; int ret = 0; od_sclk = golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value * value; od_sclk /= 100; od_sclk += golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value; ret = vega20_od8_set_settings(hwmgr, OD8_SETTING_GFXCLK_FMAX, od_sclk); PP_ASSERT_WITH_CODE(!ret, "[SetSclkOD] failed to set od gfxclk!", return ret); /* retrieve updated gfxclk table */ ret = vega20_setup_gfxclk_dpm_table(hwmgr); PP_ASSERT_WITH_CODE(!ret, "[SetSclkOD] failed to refresh gfxclk table!", return ret); return 0; } static int vega20_get_mclk_od( struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = hwmgr->backend; struct vega20_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); struct vega20_single_dpm_table *golden_mclk_table = &(data->golden_dpm_table.mem_table); int value = mclk_table->dpm_levels[mclk_table->count - 1].value; int golden_value = golden_mclk_table->dpm_levels [golden_mclk_table->count - 1].value; /* od percentage */ value -= golden_value; value = DIV_ROUND_UP(value * 100, golden_value); return value; } static int vega20_set_mclk_od( struct pp_hwmgr *hwmgr, uint32_t value) { struct vega20_hwmgr *data = hwmgr->backend; struct vega20_single_dpm_table *golden_mclk_table = &(data->golden_dpm_table.mem_table); uint32_t od_mclk; int ret = 0; od_mclk = golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value * value; od_mclk /= 100; od_mclk += golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value; ret = vega20_od8_set_settings(hwmgr, OD8_SETTING_UCLK_FMAX, od_mclk); PP_ASSERT_WITH_CODE(!ret, "[SetMclkOD] failed to set od memclk!", return ret); /* retrieve updated memclk table */ ret = vega20_setup_memclk_dpm_table(hwmgr); PP_ASSERT_WITH_CODE(!ret, "[SetMclkOD] failed to refresh memclk table!", return ret); return 0; } static int vega20_populate_umdpstate_clocks( struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); struct vega20_single_dpm_table *gfx_table = &(data->dpm_table.gfx_table); struct vega20_single_dpm_table *mem_table = &(data->dpm_table.mem_table); hwmgr->pstate_sclk = gfx_table->dpm_levels[0].value; hwmgr->pstate_mclk = mem_table->dpm_levels[0].value; if (gfx_table->count > VEGA20_UMD_PSTATE_GFXCLK_LEVEL && mem_table->count > VEGA20_UMD_PSTATE_MCLK_LEVEL) { hwmgr->pstate_sclk = gfx_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value; hwmgr->pstate_mclk = mem_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value; } hwmgr->pstate_sclk = hwmgr->pstate_sclk * 100; hwmgr->pstate_mclk = hwmgr->pstate_mclk * 100; return 0; } static int vega20_get_max_sustainable_clock(struct pp_hwmgr *hwmgr, PP_Clock *clock, PPCLK_e clock_select) { int ret = 0; PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetDcModeMaxDpmFreq, (clock_select << 16))) == 0, "[GetMaxSustainableClock] Failed to get max DC clock from SMC!", return ret); *clock = smum_get_argument(hwmgr); /* if DC limit is zero, return AC limit */ if (*clock == 0) { PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetMaxDpmFreq, (clock_select << 16))) == 0, "[GetMaxSustainableClock] failed to get max AC clock from SMC!", return ret); *clock = smum_get_argument(hwmgr); } return 0; } static int vega20_init_max_sustainable_clocks(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); struct vega20_max_sustainable_clocks *max_sustainable_clocks = &(data->max_sustainable_clocks); int ret = 0; max_sustainable_clocks->uclock = data->vbios_boot_state.mem_clock / 100; max_sustainable_clocks->soc_clock = data->vbios_boot_state.soc_clock / 100; max_sustainable_clocks->dcef_clock = data->vbios_boot_state.dcef_clock / 100; max_sustainable_clocks->display_clock = 0xFFFFFFFF; max_sustainable_clocks->phy_clock = 0xFFFFFFFF; max_sustainable_clocks->pixel_clock = 0xFFFFFFFF; if (data->smu_features[GNLD_DPM_UCLK].enabled) PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr, &(max_sustainable_clocks->uclock), PPCLK_UCLK)) == 0, "[InitMaxSustainableClocks] failed to get max UCLK from SMC!", return ret); if (data->smu_features[GNLD_DPM_SOCCLK].enabled) PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr, &(max_sustainable_clocks->soc_clock), PPCLK_SOCCLK)) == 0, "[InitMaxSustainableClocks] failed to get max SOCCLK from SMC!", return ret); if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr, &(max_sustainable_clocks->dcef_clock), PPCLK_DCEFCLK)) == 0, "[InitMaxSustainableClocks] failed to get max DCEFCLK from SMC!", return ret); PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr, &(max_sustainable_clocks->display_clock), PPCLK_DISPCLK)) == 0, "[InitMaxSustainableClocks] failed to get max DISPCLK from SMC!", return ret); PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr, &(max_sustainable_clocks->phy_clock), PPCLK_PHYCLK)) == 0, "[InitMaxSustainableClocks] failed to get max PHYCLK from SMC!", return ret); PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr, &(max_sustainable_clocks->pixel_clock), PPCLK_PIXCLK)) == 0, "[InitMaxSustainableClocks] failed to get max PIXCLK from SMC!", return ret); } if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock) max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock; return 0; } static int vega20_enable_mgpu_fan_boost(struct pp_hwmgr *hwmgr) { int result; result = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SetMGpuFanBoostLimitRpm); PP_ASSERT_WITH_CODE(!result, "[EnableMgpuFan] Failed to enable mgpu fan boost!", return result); return 0; } static void vega20_init_powergate_state(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); data->uvd_power_gated = true; data->vce_power_gated = true; } static int vega20_enable_dpm_tasks(struct pp_hwmgr *hwmgr) { int result = 0; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_NumOfDisplays, 0); result = vega20_set_allowed_featuresmask(hwmgr); PP_ASSERT_WITH_CODE(!result, "[EnableDPMTasks] Failed to set allowed featuresmask!\n", return result); result = vega20_init_smc_table(hwmgr); PP_ASSERT_WITH_CODE(!result, "[EnableDPMTasks] Failed to initialize SMC table!", return result); result = vega20_run_btc(hwmgr); PP_ASSERT_WITH_CODE(!result, "[EnableDPMTasks] Failed to run btc!", return result); result = vega20_run_btc_afll(hwmgr); PP_ASSERT_WITH_CODE(!result, "[EnableDPMTasks] Failed to run btc afll!", return result); result = vega20_enable_all_smu_features(hwmgr); PP_ASSERT_WITH_CODE(!result, "[EnableDPMTasks] Failed to enable all smu features!", return result); result = vega20_override_pcie_parameters(hwmgr); PP_ASSERT_WITH_CODE(!result, "[EnableDPMTasks] Failed to override pcie parameters!", return result); result = vega20_notify_smc_display_change(hwmgr); PP_ASSERT_WITH_CODE(!result, "[EnableDPMTasks] Failed to notify smc display change!", return result); result = vega20_send_clock_ratio(hwmgr); PP_ASSERT_WITH_CODE(!result, "[EnableDPMTasks] Failed to send clock ratio!", return result); /* Initialize UVD/VCE powergating state */ vega20_init_powergate_state(hwmgr); result = vega20_setup_default_dpm_tables(hwmgr); PP_ASSERT_WITH_CODE(!result, "[EnableDPMTasks] Failed to setup default DPM tables!", return result); result = vega20_init_max_sustainable_clocks(hwmgr); PP_ASSERT_WITH_CODE(!result, "[EnableDPMTasks] Failed to get maximum sustainable clocks!", return result); result = vega20_power_control_set_level(hwmgr); PP_ASSERT_WITH_CODE(!result, "[EnableDPMTasks] Failed to power control set level!", return result); result = vega20_od8_initialize_default_settings(hwmgr); PP_ASSERT_WITH_CODE(!result, "[EnableDPMTasks] Failed to initialize odn settings!", return result); result = vega20_populate_umdpstate_clocks(hwmgr); PP_ASSERT_WITH_CODE(!result, "[EnableDPMTasks] Failed to populate umdpstate clocks!", return result); result = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetPptLimit, POWER_SOURCE_AC << 16); PP_ASSERT_WITH_CODE(!result, "[GetPptLimit] get default PPT limit failed!", return result); hwmgr->power_limit = hwmgr->default_power_limit = smum_get_argument(hwmgr); return 0; } static uint32_t vega20_find_lowest_dpm_level( struct vega20_single_dpm_table *table) { uint32_t i; for (i = 0; i < table->count; i++) { if (table->dpm_levels[i].enabled) break; } if (i >= table->count) { i = 0; table->dpm_levels[i].enabled = true; } return i; } static uint32_t vega20_find_highest_dpm_level( struct vega20_single_dpm_table *table) { int i = 0; PP_ASSERT_WITH_CODE(table != NULL, "[FindHighestDPMLevel] DPM Table does not exist!", return 0); PP_ASSERT_WITH_CODE(table->count > 0, "[FindHighestDPMLevel] DPM Table has no entry!", return 0); PP_ASSERT_WITH_CODE(table->count <= MAX_REGULAR_DPM_NUMBER, "[FindHighestDPMLevel] DPM Table has too many entries!", return MAX_REGULAR_DPM_NUMBER - 1); for (i = table->count - 1; i >= 0; i--) { if (table->dpm_levels[i].enabled) break; } if (i < 0) { i = 0; table->dpm_levels[i].enabled = true; } return i; } static int vega20_upload_dpm_min_level(struct pp_hwmgr *hwmgr, uint32_t feature_mask) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); uint32_t min_freq; int ret = 0; if (data->smu_features[GNLD_DPM_GFXCLK].enabled && (feature_mask & FEATURE_DPM_GFXCLK_MASK)) { min_freq = data->dpm_table.gfx_table.dpm_state.soft_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinByFreq, (PPCLK_GFXCLK << 16) | (min_freq & 0xffff))), "Failed to set soft min gfxclk !", return ret); } if (data->smu_features[GNLD_DPM_UCLK].enabled && (feature_mask & FEATURE_DPM_UCLK_MASK)) { min_freq = data->dpm_table.mem_table.dpm_state.soft_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinByFreq, (PPCLK_UCLK << 16) | (min_freq & 0xffff))), "Failed to set soft min memclk !", return ret); } if (data->smu_features[GNLD_DPM_UVD].enabled && (feature_mask & FEATURE_DPM_UVD_MASK)) { min_freq = data->dpm_table.vclk_table.dpm_state.soft_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinByFreq, (PPCLK_VCLK << 16) | (min_freq & 0xffff))), "Failed to set soft min vclk!", return ret); min_freq = data->dpm_table.dclk_table.dpm_state.soft_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinByFreq, (PPCLK_DCLK << 16) | (min_freq & 0xffff))), "Failed to set soft min dclk!", return ret); } if (data->smu_features[GNLD_DPM_VCE].enabled && (feature_mask & FEATURE_DPM_VCE_MASK)) { min_freq = data->dpm_table.eclk_table.dpm_state.soft_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinByFreq, (PPCLK_ECLK << 16) | (min_freq & 0xffff))), "Failed to set soft min eclk!", return ret); } if (data->smu_features[GNLD_DPM_SOCCLK].enabled && (feature_mask & FEATURE_DPM_SOCCLK_MASK)) { min_freq = data->dpm_table.soc_table.dpm_state.soft_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinByFreq, (PPCLK_SOCCLK << 16) | (min_freq & 0xffff))), "Failed to set soft min socclk!", return ret); } if (data->smu_features[GNLD_DPM_FCLK].enabled && (feature_mask & FEATURE_DPM_FCLK_MASK)) { min_freq = data->dpm_table.fclk_table.dpm_state.soft_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinByFreq, (PPCLK_FCLK << 16) | (min_freq & 0xffff))), "Failed to set soft min fclk!", return ret); } if (data->smu_features[GNLD_DPM_DCEFCLK].enabled && (feature_mask & FEATURE_DPM_DCEFCLK_MASK)) { min_freq = data->dpm_table.dcef_table.dpm_state.hard_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetHardMinByFreq, (PPCLK_DCEFCLK << 16) | (min_freq & 0xffff))), "Failed to set hard min dcefclk!", return ret); } return ret; } static int vega20_upload_dpm_max_level(struct pp_hwmgr *hwmgr, uint32_t feature_mask) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); uint32_t max_freq; int ret = 0; if (data->smu_features[GNLD_DPM_GFXCLK].enabled && (feature_mask & FEATURE_DPM_GFXCLK_MASK)) { max_freq = data->dpm_table.gfx_table.dpm_state.soft_max_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMaxByFreq, (PPCLK_GFXCLK << 16) | (max_freq & 0xffff))), "Failed to set soft max gfxclk!", return ret); } if (data->smu_features[GNLD_DPM_UCLK].enabled && (feature_mask & FEATURE_DPM_UCLK_MASK)) { max_freq = data->dpm_table.mem_table.dpm_state.soft_max_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMaxByFreq, (PPCLK_UCLK << 16) | (max_freq & 0xffff))), "Failed to set soft max memclk!", return ret); } if (data->smu_features[GNLD_DPM_UVD].enabled && (feature_mask & FEATURE_DPM_UVD_MASK)) { max_freq = data->dpm_table.vclk_table.dpm_state.soft_max_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMaxByFreq, (PPCLK_VCLK << 16) | (max_freq & 0xffff))), "Failed to set soft max vclk!", return ret); max_freq = data->dpm_table.dclk_table.dpm_state.soft_max_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMaxByFreq, (PPCLK_DCLK << 16) | (max_freq & 0xffff))), "Failed to set soft max dclk!", return ret); } if (data->smu_features[GNLD_DPM_VCE].enabled && (feature_mask & FEATURE_DPM_VCE_MASK)) { max_freq = data->dpm_table.eclk_table.dpm_state.soft_max_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMaxByFreq, (PPCLK_ECLK << 16) | (max_freq & 0xffff))), "Failed to set soft max eclk!", return ret); } if (data->smu_features[GNLD_DPM_SOCCLK].enabled && (feature_mask & FEATURE_DPM_SOCCLK_MASK)) { max_freq = data->dpm_table.soc_table.dpm_state.soft_max_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMaxByFreq, (PPCLK_SOCCLK << 16) | (max_freq & 0xffff))), "Failed to set soft max socclk!", return ret); } if (data->smu_features[GNLD_DPM_FCLK].enabled && (feature_mask & FEATURE_DPM_FCLK_MASK)) { max_freq = data->dpm_table.fclk_table.dpm_state.soft_max_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMaxByFreq, (PPCLK_FCLK << 16) | (max_freq & 0xffff))), "Failed to set soft max fclk!", return ret); } return ret; } int vega20_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); int ret = 0; if (data->smu_features[GNLD_DPM_VCE].supported) { if (data->smu_features[GNLD_DPM_VCE].enabled == enable) { if (enable) PP_DBG_LOG("[EnableDisableVCEDPM] feature VCE DPM already enabled!\n"); else PP_DBG_LOG("[EnableDisableVCEDPM] feature VCE DPM already disabled!\n"); } ret = vega20_enable_smc_features(hwmgr, enable, data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap); PP_ASSERT_WITH_CODE(!ret, "Attempt to Enable/Disable DPM VCE Failed!", return ret); data->smu_features[GNLD_DPM_VCE].enabled = enable; } return 0; } static int vega20_get_clock_ranges(struct pp_hwmgr *hwmgr, uint32_t *clock, PPCLK_e clock_select, bool max) { int ret; *clock = 0; if (max) { PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetMaxDpmFreq, (clock_select << 16))) == 0, "[GetClockRanges] Failed to get max clock from SMC!", return ret); *clock = smum_get_argument(hwmgr); } else { PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetMinDpmFreq, (clock_select << 16))) == 0, "[GetClockRanges] Failed to get min clock from SMC!", return ret); *clock = smum_get_argument(hwmgr); } return 0; } static uint32_t vega20_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); uint32_t gfx_clk; int ret = 0; PP_ASSERT_WITH_CODE(data->smu_features[GNLD_DPM_GFXCLK].enabled, "[GetSclks]: gfxclk dpm not enabled!\n", return -EPERM); if (low) { ret = vega20_get_clock_ranges(hwmgr, &gfx_clk, PPCLK_GFXCLK, false); PP_ASSERT_WITH_CODE(!ret, "[GetSclks]: fail to get min PPCLK_GFXCLK\n", return ret); } else { ret = vega20_get_clock_ranges(hwmgr, &gfx_clk, PPCLK_GFXCLK, true); PP_ASSERT_WITH_CODE(!ret, "[GetSclks]: fail to get max PPCLK_GFXCLK\n", return ret); } return (gfx_clk * 100); } static uint32_t vega20_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); uint32_t mem_clk; int ret = 0; PP_ASSERT_WITH_CODE(data->smu_features[GNLD_DPM_UCLK].enabled, "[MemMclks]: memclk dpm not enabled!\n", return -EPERM); if (low) { ret = vega20_get_clock_ranges(hwmgr, &mem_clk, PPCLK_UCLK, false); PP_ASSERT_WITH_CODE(!ret, "[GetMclks]: fail to get min PPCLK_UCLK\n", return ret); } else { ret = vega20_get_clock_ranges(hwmgr, &mem_clk, PPCLK_UCLK, true); PP_ASSERT_WITH_CODE(!ret, "[GetMclks]: fail to get max PPCLK_UCLK\n", return ret); } return (mem_clk * 100); } static int vega20_get_metrics_table(struct pp_hwmgr *hwmgr, SmuMetrics_t *metrics_table) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); int ret = 0; if (!data->metrics_time || time_after(jiffies, data->metrics_time + HZ / 2)) { ret = smum_smc_table_manager(hwmgr, (uint8_t *)metrics_table, TABLE_SMU_METRICS, true); if (ret) { pr_info("Failed to export SMU metrics table!\n"); return ret; } memcpy(&data->metrics_table, metrics_table, sizeof(SmuMetrics_t)); data->metrics_time = jiffies; } else memcpy(metrics_table, &data->metrics_table, sizeof(SmuMetrics_t)); return ret; } static int vega20_get_gpu_power(struct pp_hwmgr *hwmgr, uint32_t *query) { int ret = 0; SmuMetrics_t metrics_table; ret = vega20_get_metrics_table(hwmgr, &metrics_table); if (ret) return ret; /* For the 40.46 release, they changed the value name */ if (hwmgr->smu_version == 0x282e00) *query = metrics_table.AverageSocketPower << 8; else *query = metrics_table.CurrSocketPower << 8; return ret; } static int vega20_get_current_clk_freq(struct pp_hwmgr *hwmgr, PPCLK_e clk_id, uint32_t *clk_freq) { int ret = 0; *clk_freq = 0; PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetDpmClockFreq, (clk_id << 16))) == 0, "[GetCurrentClkFreq] Attempt to get Current Frequency Failed!", return ret); *clk_freq = smum_get_argument(hwmgr); *clk_freq = *clk_freq * 100; return 0; } static int vega20_get_current_activity_percent(struct pp_hwmgr *hwmgr, int idx, uint32_t *activity_percent) { int ret = 0; SmuMetrics_t metrics_table; ret = vega20_get_metrics_table(hwmgr, &metrics_table); if (ret) return ret; switch (idx) { case AMDGPU_PP_SENSOR_GPU_LOAD: *activity_percent = metrics_table.AverageGfxActivity; break; case AMDGPU_PP_SENSOR_MEM_LOAD: *activity_percent = metrics_table.AverageUclkActivity; break; default: pr_err("Invalid index for retrieving clock activity\n"); return -EINVAL; } return ret; } static int vega20_read_sensor(struct pp_hwmgr *hwmgr, int idx, void *value, int *size) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); struct amdgpu_device *adev = hwmgr->adev; SmuMetrics_t metrics_table; uint32_t val_vid; int ret = 0; switch (idx) { case AMDGPU_PP_SENSOR_GFX_SCLK: ret = vega20_get_metrics_table(hwmgr, &metrics_table); if (ret) return ret; *((uint32_t *)value) = metrics_table.AverageGfxclkFrequency * 100; *size = 4; break; case AMDGPU_PP_SENSOR_GFX_MCLK: ret = vega20_get_current_clk_freq(hwmgr, PPCLK_UCLK, (uint32_t *)value); if (!ret) *size = 4; break; case AMDGPU_PP_SENSOR_GPU_LOAD: case AMDGPU_PP_SENSOR_MEM_LOAD: ret = vega20_get_current_activity_percent(hwmgr, idx, (uint32_t *)value); if (!ret) *size = 4; break; case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: *((uint32_t *)value) = vega20_thermal_get_temperature(hwmgr); *size = 4; break; case AMDGPU_PP_SENSOR_EDGE_TEMP: ret = vega20_get_metrics_table(hwmgr, &metrics_table); if (ret) return ret; *((uint32_t *)value) = metrics_table.TemperatureEdge * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; *size = 4; break; case AMDGPU_PP_SENSOR_MEM_TEMP: ret = vega20_get_metrics_table(hwmgr, &metrics_table); if (ret) return ret; *((uint32_t *)value) = metrics_table.TemperatureHBM * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; *size = 4; break; case AMDGPU_PP_SENSOR_UVD_POWER: *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1; *size = 4; break; case AMDGPU_PP_SENSOR_VCE_POWER: *((uint32_t *)value) = data->vce_power_gated ? 0 : 1; *size = 4; break; case AMDGPU_PP_SENSOR_GPU_POWER: *size = 16; ret = vega20_get_gpu_power(hwmgr, (uint32_t *)value); break; case AMDGPU_PP_SENSOR_VDDGFX: val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) & SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >> SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT; *((uint32_t *)value) = (uint32_t)convert_to_vddc((uint8_t)val_vid); break; case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK: ret = vega20_get_enabled_smc_features(hwmgr, (uint64_t *)value); if (!ret) *size = 8; break; default: ret = -EINVAL; break; } return ret; } int vega20_display_clock_voltage_request(struct pp_hwmgr *hwmgr, struct pp_display_clock_request *clock_req) { int result = 0; struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); enum amd_pp_clock_type clk_type = clock_req->clock_type; uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000; PPCLK_e clk_select = 0; uint32_t clk_request = 0; if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { switch (clk_type) { case amd_pp_dcef_clock: clk_select = PPCLK_DCEFCLK; break; case amd_pp_disp_clock: clk_select = PPCLK_DISPCLK; break; case amd_pp_pixel_clock: clk_select = PPCLK_PIXCLK; break; case amd_pp_phy_clock: clk_select = PPCLK_PHYCLK; break; default: pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!"); result = -EINVAL; break; } if (!result) { clk_request = (clk_select << 16) | clk_freq; result = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinByFreq, clk_request); } } return result; } static int vega20_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, PHM_PerformanceLevelDesignation designation, uint32_t index, PHM_PerformanceLevel *level) { return 0; } static int vega20_notify_smc_display_config_after_ps_adjustment( struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); struct vega20_single_dpm_table *dpm_table = &data->dpm_table.mem_table; struct PP_Clocks min_clocks = {0}; struct pp_display_clock_request clock_req; int ret = 0; min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk; min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk; min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock; if (data->smu_features[GNLD_DPM_DCEFCLK].supported) { clock_req.clock_type = amd_pp_dcef_clock; clock_req.clock_freq_in_khz = min_clocks.dcefClock * 10; if (!vega20_display_clock_voltage_request(hwmgr, &clock_req)) { if (data->smu_features[GNLD_DS_DCEFCLK].supported) PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk, min_clocks.dcefClockInSR / 100)) == 0, "Attempt to set divider for DCEFCLK Failed!", return ret); } else { pr_info("Attempt to set Hard Min for DCEFCLK Failed!"); } } if (data->smu_features[GNLD_DPM_UCLK].enabled) { dpm_table->dpm_state.hard_min_level = min_clocks.memoryClock / 100; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinByFreq, (PPCLK_UCLK << 16 ) | dpm_table->dpm_state.hard_min_level)), "[SetHardMinFreq] Set hard min uclk failed!", return ret); } return 0; } static int vega20_force_dpm_highest(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); uint32_t soft_level; int ret = 0; soft_level = vega20_find_highest_dpm_level(&(data->dpm_table.gfx_table)); data->dpm_table.gfx_table.dpm_state.soft_min_level = data->dpm_table.gfx_table.dpm_state.soft_max_level = data->dpm_table.gfx_table.dpm_levels[soft_level].value; soft_level = vega20_find_highest_dpm_level(&(data->dpm_table.mem_table)); data->dpm_table.mem_table.dpm_state.soft_min_level = data->dpm_table.mem_table.dpm_state.soft_max_level = data->dpm_table.mem_table.dpm_levels[soft_level].value; soft_level = vega20_find_highest_dpm_level(&(data->dpm_table.soc_table)); data->dpm_table.soc_table.dpm_state.soft_min_level = data->dpm_table.soc_table.dpm_state.soft_max_level = data->dpm_table.soc_table.dpm_levels[soft_level].value; ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_GFXCLK_MASK | FEATURE_DPM_UCLK_MASK | FEATURE_DPM_SOCCLK_MASK); PP_ASSERT_WITH_CODE(!ret, "Failed to upload boot level to highest!", return ret); ret = vega20_upload_dpm_max_level(hwmgr, FEATURE_DPM_GFXCLK_MASK | FEATURE_DPM_UCLK_MASK | FEATURE_DPM_SOCCLK_MASK); PP_ASSERT_WITH_CODE(!ret, "Failed to upload dpm max level to highest!", return ret); return 0; } static int vega20_force_dpm_lowest(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); uint32_t soft_level; int ret = 0; soft_level = vega20_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); data->dpm_table.gfx_table.dpm_state.soft_min_level = data->dpm_table.gfx_table.dpm_state.soft_max_level = data->dpm_table.gfx_table.dpm_levels[soft_level].value; soft_level = vega20_find_lowest_dpm_level(&(data->dpm_table.mem_table)); data->dpm_table.mem_table.dpm_state.soft_min_level = data->dpm_table.mem_table.dpm_state.soft_max_level = data->dpm_table.mem_table.dpm_levels[soft_level].value; soft_level = vega20_find_lowest_dpm_level(&(data->dpm_table.soc_table)); data->dpm_table.soc_table.dpm_state.soft_min_level = data->dpm_table.soc_table.dpm_state.soft_max_level = data->dpm_table.soc_table.dpm_levels[soft_level].value; ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_GFXCLK_MASK | FEATURE_DPM_UCLK_MASK | FEATURE_DPM_SOCCLK_MASK); PP_ASSERT_WITH_CODE(!ret, "Failed to upload boot level to highest!", return ret); ret = vega20_upload_dpm_max_level(hwmgr, FEATURE_DPM_GFXCLK_MASK | FEATURE_DPM_UCLK_MASK | FEATURE_DPM_SOCCLK_MASK); PP_ASSERT_WITH_CODE(!ret, "Failed to upload dpm max level to highest!", return ret); return 0; } static int vega20_unforce_dpm_levels(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); uint32_t soft_min_level, soft_max_level; int ret = 0; /* gfxclk soft min/max settings */ soft_min_level = vega20_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); soft_max_level = vega20_find_highest_dpm_level(&(data->dpm_table.gfx_table)); data->dpm_table.gfx_table.dpm_state.soft_min_level = data->dpm_table.gfx_table.dpm_levels[soft_min_level].value; data->dpm_table.gfx_table.dpm_state.soft_max_level = data->dpm_table.gfx_table.dpm_levels[soft_max_level].value; /* uclk soft min/max settings */ soft_min_level = vega20_find_lowest_dpm_level(&(data->dpm_table.mem_table)); soft_max_level = vega20_find_highest_dpm_level(&(data->dpm_table.mem_table)); data->dpm_table.mem_table.dpm_state.soft_min_level = data->dpm_table.mem_table.dpm_levels[soft_min_level].value; data->dpm_table.mem_table.dpm_state.soft_max_level = data->dpm_table.mem_table.dpm_levels[soft_max_level].value; /* socclk soft min/max settings */ soft_min_level = vega20_find_lowest_dpm_level(&(data->dpm_table.soc_table)); soft_max_level = vega20_find_highest_dpm_level(&(data->dpm_table.soc_table)); data->dpm_table.soc_table.dpm_state.soft_min_level = data->dpm_table.soc_table.dpm_levels[soft_min_level].value; data->dpm_table.soc_table.dpm_state.soft_max_level = data->dpm_table.soc_table.dpm_levels[soft_max_level].value; ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_GFXCLK_MASK | FEATURE_DPM_UCLK_MASK | FEATURE_DPM_SOCCLK_MASK); PP_ASSERT_WITH_CODE(!ret, "Failed to upload DPM Bootup Levels!", return ret); ret = vega20_upload_dpm_max_level(hwmgr, FEATURE_DPM_GFXCLK_MASK | FEATURE_DPM_UCLK_MASK | FEATURE_DPM_SOCCLK_MASK); PP_ASSERT_WITH_CODE(!ret, "Failed to upload DPM Max Levels!", return ret); return 0; } static int vega20_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level, uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); struct vega20_single_dpm_table *gfx_dpm_table = &(data->dpm_table.gfx_table); struct vega20_single_dpm_table *mem_dpm_table = &(data->dpm_table.mem_table); struct vega20_single_dpm_table *soc_dpm_table = &(data->dpm_table.soc_table); *sclk_mask = 0; *mclk_mask = 0; *soc_mask = 0; if (gfx_dpm_table->count > VEGA20_UMD_PSTATE_GFXCLK_LEVEL && mem_dpm_table->count > VEGA20_UMD_PSTATE_MCLK_LEVEL && soc_dpm_table->count > VEGA20_UMD_PSTATE_SOCCLK_LEVEL) { *sclk_mask = VEGA20_UMD_PSTATE_GFXCLK_LEVEL; *mclk_mask = VEGA20_UMD_PSTATE_MCLK_LEVEL; *soc_mask = VEGA20_UMD_PSTATE_SOCCLK_LEVEL; } if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { *sclk_mask = 0; } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { *mclk_mask = 0; } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { *sclk_mask = gfx_dpm_table->count - 1; *mclk_mask = mem_dpm_table->count - 1; *soc_mask = soc_dpm_table->count - 1; } return 0; } static int vega20_force_clock_level(struct pp_hwmgr *hwmgr, enum pp_clock_type type, uint32_t mask) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); uint32_t soft_min_level, soft_max_level, hard_min_level; int ret = 0; switch (type) { case PP_SCLK: soft_min_level = mask ? (ffs(mask) - 1) : 0; soft_max_level = mask ? (fls(mask) - 1) : 0; if (soft_max_level >= data->dpm_table.gfx_table.count) { pr_err("Clock level specified %d is over max allowed %d\n", soft_max_level, data->dpm_table.gfx_table.count - 1); return -EINVAL; } data->dpm_table.gfx_table.dpm_state.soft_min_level = data->dpm_table.gfx_table.dpm_levels[soft_min_level].value; data->dpm_table.gfx_table.dpm_state.soft_max_level = data->dpm_table.gfx_table.dpm_levels[soft_max_level].value; ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_GFXCLK_MASK); PP_ASSERT_WITH_CODE(!ret, "Failed to upload boot level to lowest!", return ret); ret = vega20_upload_dpm_max_level(hwmgr, FEATURE_DPM_GFXCLK_MASK); PP_ASSERT_WITH_CODE(!ret, "Failed to upload dpm max level to highest!", return ret); break; case PP_MCLK: soft_min_level = mask ? (ffs(mask) - 1) : 0; soft_max_level = mask ? (fls(mask) - 1) : 0; if (soft_max_level >= data->dpm_table.mem_table.count) { pr_err("Clock level specified %d is over max allowed %d\n", soft_max_level, data->dpm_table.mem_table.count - 1); return -EINVAL; } data->dpm_table.mem_table.dpm_state.soft_min_level = data->dpm_table.mem_table.dpm_levels[soft_min_level].value; data->dpm_table.mem_table.dpm_state.soft_max_level = data->dpm_table.mem_table.dpm_levels[soft_max_level].value; ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_UCLK_MASK); PP_ASSERT_WITH_CODE(!ret, "Failed to upload boot level to lowest!", return ret); ret = vega20_upload_dpm_max_level(hwmgr, FEATURE_DPM_UCLK_MASK); PP_ASSERT_WITH_CODE(!ret, "Failed to upload dpm max level to highest!", return ret); break; case PP_SOCCLK: soft_min_level = mask ? (ffs(mask) - 1) : 0; soft_max_level = mask ? (fls(mask) - 1) : 0; if (soft_max_level >= data->dpm_table.soc_table.count) { pr_err("Clock level specified %d is over max allowed %d\n", soft_max_level, data->dpm_table.soc_table.count - 1); return -EINVAL; } data->dpm_table.soc_table.dpm_state.soft_min_level = data->dpm_table.soc_table.dpm_levels[soft_min_level].value; data->dpm_table.soc_table.dpm_state.soft_max_level = data->dpm_table.soc_table.dpm_levels[soft_max_level].value; ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_SOCCLK_MASK); PP_ASSERT_WITH_CODE(!ret, "Failed to upload boot level to lowest!", return ret); ret = vega20_upload_dpm_max_level(hwmgr, FEATURE_DPM_SOCCLK_MASK); PP_ASSERT_WITH_CODE(!ret, "Failed to upload dpm max level to highest!", return ret); break; case PP_FCLK: soft_min_level = mask ? (ffs(mask) - 1) : 0; soft_max_level = mask ? (fls(mask) - 1) : 0; if (soft_max_level >= data->dpm_table.fclk_table.count) { pr_err("Clock level specified %d is over max allowed %d\n", soft_max_level, data->dpm_table.fclk_table.count - 1); return -EINVAL; } data->dpm_table.fclk_table.dpm_state.soft_min_level = data->dpm_table.fclk_table.dpm_levels[soft_min_level].value; data->dpm_table.fclk_table.dpm_state.soft_max_level = data->dpm_table.fclk_table.dpm_levels[soft_max_level].value; ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_FCLK_MASK); PP_ASSERT_WITH_CODE(!ret, "Failed to upload boot level to lowest!", return ret); ret = vega20_upload_dpm_max_level(hwmgr, FEATURE_DPM_FCLK_MASK); PP_ASSERT_WITH_CODE(!ret, "Failed to upload dpm max level to highest!", return ret); break; case PP_DCEFCLK: hard_min_level = mask ? (ffs(mask) - 1) : 0; if (hard_min_level >= data->dpm_table.dcef_table.count) { pr_err("Clock level specified %d is over max allowed %d\n", hard_min_level, data->dpm_table.dcef_table.count - 1); return -EINVAL; } data->dpm_table.dcef_table.dpm_state.hard_min_level = data->dpm_table.dcef_table.dpm_levels[hard_min_level].value; ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_DCEFCLK_MASK); PP_ASSERT_WITH_CODE(!ret, "Failed to upload boot level to lowest!", return ret); //TODO: Setting DCEFCLK max dpm level is not supported break; case PP_PCIE: soft_min_level = mask ? (ffs(mask) - 1) : 0; soft_max_level = mask ? (fls(mask) - 1) : 0; if (soft_min_level >= NUM_LINK_LEVELS || soft_max_level >= NUM_LINK_LEVELS) return -EINVAL; ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetMinLinkDpmByIndex, soft_min_level); PP_ASSERT_WITH_CODE(!ret, "Failed to set min link dpm level!", return ret); break; default: break; } return 0; } static int vega20_dpm_force_dpm_level(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level) { int ret = 0; uint32_t sclk_mask, mclk_mask, soc_mask; switch (level) { case AMD_DPM_FORCED_LEVEL_HIGH: ret = vega20_force_dpm_highest(hwmgr); break; case AMD_DPM_FORCED_LEVEL_LOW: ret = vega20_force_dpm_lowest(hwmgr); break; case AMD_DPM_FORCED_LEVEL_AUTO: ret = vega20_unforce_dpm_levels(hwmgr); break; case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: ret = vega20_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask); if (ret) return ret; vega20_force_clock_level(hwmgr, PP_SCLK, 1 << sclk_mask); vega20_force_clock_level(hwmgr, PP_MCLK, 1 << mclk_mask); vega20_force_clock_level(hwmgr, PP_SOCCLK, 1 << soc_mask); break; case AMD_DPM_FORCED_LEVEL_MANUAL: case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: default: break; } return ret; } static uint32_t vega20_get_fan_control_mode(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_FAN_CONTROL].enabled == false) return AMD_FAN_CTRL_MANUAL; else return AMD_FAN_CTRL_AUTO; } static void vega20_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode) { switch (mode) { case AMD_FAN_CTRL_NONE: vega20_fan_ctrl_set_fan_speed_percent(hwmgr, 100); break; case AMD_FAN_CTRL_MANUAL: if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)) vega20_fan_ctrl_stop_smc_fan_control(hwmgr); break; case AMD_FAN_CTRL_AUTO: if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)) vega20_fan_ctrl_start_smc_fan_control(hwmgr); break; default: break; } } static int vega20_get_dal_power_level(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *info) { #if 0 struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)hwmgr->pptable; struct phm_clock_and_voltage_limits *max_limits = &table_info->max_clock_voltage_on_ac; info->engine_max_clock = max_limits->sclk; info->memory_max_clock = max_limits->mclk; #endif return 0; } static int vega20_get_sclks(struct pp_hwmgr *hwmgr, struct pp_clock_levels_with_latency *clocks) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); struct vega20_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table); int i, count; if (!data->smu_features[GNLD_DPM_GFXCLK].enabled) return -1; count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; clocks->num_levels = count; for (i = 0; i < count; i++) { clocks->data[i].clocks_in_khz = dpm_table->dpm_levels[i].value * 1000; clocks->data[i].latency_in_us = 0; } return 0; } static uint32_t vega20_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clock) { return 25; } static int vega20_get_memclocks(struct pp_hwmgr *hwmgr, struct pp_clock_levels_with_latency *clocks) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); struct vega20_single_dpm_table *dpm_table = &(data->dpm_table.mem_table); int i, count; if (!data->smu_features[GNLD_DPM_UCLK].enabled) return -1; count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; clocks->num_levels = data->mclk_latency_table.count = count; for (i = 0; i < count; i++) { clocks->data[i].clocks_in_khz = data->mclk_latency_table.entries[i].frequency = dpm_table->dpm_levels[i].value * 1000; clocks->data[i].latency_in_us = data->mclk_latency_table.entries[i].latency = vega20_get_mem_latency(hwmgr, dpm_table->dpm_levels[i].value); } return 0; } static int vega20_get_dcefclocks(struct pp_hwmgr *hwmgr, struct pp_clock_levels_with_latency *clocks) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); struct vega20_single_dpm_table *dpm_table = &(data->dpm_table.dcef_table); int i, count; if (!data->smu_features[GNLD_DPM_DCEFCLK].enabled) return -1; count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; clocks->num_levels = count; for (i = 0; i < count; i++) { clocks->data[i].clocks_in_khz = dpm_table->dpm_levels[i].value * 1000; clocks->data[i].latency_in_us = 0; } return 0; } static int vega20_get_socclocks(struct pp_hwmgr *hwmgr, struct pp_clock_levels_with_latency *clocks) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); struct vega20_single_dpm_table *dpm_table = &(data->dpm_table.soc_table); int i, count; if (!data->smu_features[GNLD_DPM_SOCCLK].enabled) return -1; count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; clocks->num_levels = count; for (i = 0; i < count; i++) { clocks->data[i].clocks_in_khz = dpm_table->dpm_levels[i].value * 1000; clocks->data[i].latency_in_us = 0; } return 0; } static int vega20_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, struct pp_clock_levels_with_latency *clocks) { int ret; switch (type) { case amd_pp_sys_clock: ret = vega20_get_sclks(hwmgr, clocks); break; case amd_pp_mem_clock: ret = vega20_get_memclocks(hwmgr, clocks); break; case amd_pp_dcef_clock: ret = vega20_get_dcefclocks(hwmgr, clocks); break; case amd_pp_soc_clock: ret = vega20_get_socclocks(hwmgr, clocks); break; default: return -EINVAL; } return ret; } static int vega20_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, struct pp_clock_levels_with_voltage *clocks) { clocks->num_levels = 0; return 0; } static int vega20_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr, void *clock_ranges) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); Watermarks_t *table = &(data->smc_state_table.water_marks_table); struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_ranges; if (!data->registry_data.disable_water_mark && data->smu_features[GNLD_DPM_DCEFCLK].supported && data->smu_features[GNLD_DPM_SOCCLK].supported) { smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges); data->water_marks_bitmap |= WaterMarksExist; data->water_marks_bitmap &= ~WaterMarksLoaded; } return 0; } static int vega20_odn_edit_dpm_table(struct pp_hwmgr *hwmgr, enum PP_OD_DPM_TABLE_COMMAND type, long *input, uint32_t size) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); struct vega20_od8_single_setting *od8_settings = data->od8_settings.od8_settings_array; OverDriveTable_t *od_table = &(data->smc_state_table.overdrive_table); int32_t input_index, input_clk, input_vol, i; int od8_id; int ret; PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage", return -EINVAL); switch (type) { case PP_OD_EDIT_SCLK_VDDC_TABLE: if (!(od8_settings[OD8_SETTING_GFXCLK_FMIN].feature_id && od8_settings[OD8_SETTING_GFXCLK_FMAX].feature_id)) { pr_info("Sclk min/max frequency overdrive not supported\n"); return -EOPNOTSUPP; } for (i = 0; i < size; i += 2) { if (i + 2 > size) { pr_info("invalid number of input parameters %d\n", size); return -EINVAL; } input_index = input[i]; input_clk = input[i + 1]; if (input_index != 0 && input_index != 1) { pr_info("Invalid index %d\n", input_index); pr_info("Support min/max sclk frequency setting only which index by 0/1\n"); return -EINVAL; } if (input_clk < od8_settings[OD8_SETTING_GFXCLK_FMIN].min_value || input_clk > od8_settings[OD8_SETTING_GFXCLK_FMAX].max_value) { pr_info("clock freq %d is not within allowed range [%d - %d]\n", input_clk, od8_settings[OD8_SETTING_GFXCLK_FMIN].min_value, od8_settings[OD8_SETTING_GFXCLK_FMAX].max_value); return -EINVAL; } if ((input_index == 0 && od_table->GfxclkFmin != input_clk) || (input_index == 1 && od_table->GfxclkFmax != input_clk)) data->gfxclk_overdrive = true; if (input_index == 0) od_table->GfxclkFmin = input_clk; else od_table->GfxclkFmax = input_clk; } break; case PP_OD_EDIT_MCLK_VDDC_TABLE: if (!od8_settings[OD8_SETTING_UCLK_FMAX].feature_id) { pr_info("Mclk max frequency overdrive not supported\n"); return -EOPNOTSUPP; } for (i = 0; i < size; i += 2) { if (i + 2 > size) { pr_info("invalid number of input parameters %d\n", size); return -EINVAL; } input_index = input[i]; input_clk = input[i + 1]; if (input_index != 1) { pr_info("Invalid index %d\n", input_index); pr_info("Support max Mclk frequency setting only which index by 1\n"); return -EINVAL; } if (input_clk < od8_settings[OD8_SETTING_UCLK_FMAX].min_value || input_clk > od8_settings[OD8_SETTING_UCLK_FMAX].max_value) { pr_info("clock freq %d is not within allowed range [%d - %d]\n", input_clk, od8_settings[OD8_SETTING_UCLK_FMAX].min_value, od8_settings[OD8_SETTING_UCLK_FMAX].max_value); return -EINVAL; } if (input_index == 1 && od_table->UclkFmax != input_clk) data->memclk_overdrive = true; od_table->UclkFmax = input_clk; } break; case PP_OD_EDIT_VDDC_CURVE: if (!(od8_settings[OD8_SETTING_GFXCLK_FREQ1].feature_id && od8_settings[OD8_SETTING_GFXCLK_FREQ2].feature_id && od8_settings[OD8_SETTING_GFXCLK_FREQ3].feature_id && od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id && od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id && od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id)) { pr_info("Voltage curve calibrate not supported\n"); return -EOPNOTSUPP; } for (i = 0; i < size; i += 3) { if (i + 3 > size) { pr_info("invalid number of input parameters %d\n", size); return -EINVAL; } input_index = input[i]; input_clk = input[i + 1]; input_vol = input[i + 2]; if (input_index > 2) { pr_info("Setting for point %d is not supported\n", input_index + 1); pr_info("Three supported points index by 0, 1, 2\n"); return -EINVAL; } od8_id = OD8_SETTING_GFXCLK_FREQ1 + 2 * input_index; if (input_clk < od8_settings[od8_id].min_value || input_clk > od8_settings[od8_id].max_value) { pr_info("clock freq %d is not within allowed range [%d - %d]\n", input_clk, od8_settings[od8_id].min_value, od8_settings[od8_id].max_value); return -EINVAL; } od8_id = OD8_SETTING_GFXCLK_VOLTAGE1 + 2 * input_index; if (input_vol < od8_settings[od8_id].min_value || input_vol > od8_settings[od8_id].max_value) { pr_info("clock voltage %d is not within allowed range [%d - %d]\n", input_vol, od8_settings[od8_id].min_value, od8_settings[od8_id].max_value); return -EINVAL; } switch (input_index) { case 0: od_table->GfxclkFreq1 = input_clk; od_table->GfxclkVolt1 = input_vol * VOLTAGE_SCALE; break; case 1: od_table->GfxclkFreq2 = input_clk; od_table->GfxclkVolt2 = input_vol * VOLTAGE_SCALE; break; case 2: od_table->GfxclkFreq3 = input_clk; od_table->GfxclkVolt3 = input_vol * VOLTAGE_SCALE; break; } } break; case PP_OD_RESTORE_DEFAULT_TABLE: data->gfxclk_overdrive = false; data->memclk_overdrive = false; ret = smum_smc_table_manager(hwmgr, (uint8_t *)od_table, TABLE_OVERDRIVE, true); PP_ASSERT_WITH_CODE(!ret, "Failed to export overdrive table!", return ret); break; case PP_OD_COMMIT_DPM_TABLE: ret = smum_smc_table_manager(hwmgr, (uint8_t *)od_table, TABLE_OVERDRIVE, false); PP_ASSERT_WITH_CODE(!ret, "Failed to import overdrive table!", return ret); /* retrieve updated gfxclk table */ if (data->gfxclk_overdrive) { data->gfxclk_overdrive = false; ret = vega20_setup_gfxclk_dpm_table(hwmgr); if (ret) return ret; } /* retrieve updated memclk table */ if (data->memclk_overdrive) { data->memclk_overdrive = false; ret = vega20_setup_memclk_dpm_table(hwmgr); if (ret) return ret; } break; default: return -EINVAL; } return 0; } static int vega20_set_mp1_state(struct pp_hwmgr *hwmgr, enum pp_mp1_state mp1_state) { uint16_t msg; int ret; switch (mp1_state) { case PP_MP1_STATE_SHUTDOWN: msg = PPSMC_MSG_PrepareMp1ForShutdown; break; case PP_MP1_STATE_UNLOAD: msg = PPSMC_MSG_PrepareMp1ForUnload; break; case PP_MP1_STATE_RESET: msg = PPSMC_MSG_PrepareMp1ForReset; break; case PP_MP1_STATE_NONE: default: return 0; } PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, msg)) == 0, "[PrepareMp1] Failed!", return ret); return 0; } static int vega20_get_ppfeature_status(struct pp_hwmgr *hwmgr, char *buf) { static const char *ppfeature_name[] = { "DPM_PREFETCHER", "GFXCLK_DPM", "UCLK_DPM", "SOCCLK_DPM", "UVD_DPM", "VCE_DPM", "ULV", "MP0CLK_DPM", "LINK_DPM", "DCEFCLK_DPM", "GFXCLK_DS", "SOCCLK_DS", "LCLK_DS", "PPT", "TDC", "THERMAL", "GFX_PER_CU_CG", "RM", "DCEFCLK_DS", "ACDC", "VR0HOT", "VR1HOT", "FW_CTF", "LED_DISPLAY", "FAN_CONTROL", "GFX_EDC", "GFXOFF", "CG", "FCLK_DPM", "FCLK_DS", "MP1CLK_DS", "MP0CLK_DS", "XGMI", "ECC"}; static const char *output_title[] = { "FEATURES", "BITMASK", "ENABLEMENT"}; uint64_t features_enabled; int i; int ret = 0; int size = 0; ret = vega20_get_enabled_smc_features(hwmgr, &features_enabled); PP_ASSERT_WITH_CODE(!ret, "[EnableAllSmuFeatures] Failed to get enabled smc features!", return ret); size += sprintf(buf + size, "Current ppfeatures: 0x%016llx\n", features_enabled); size += sprintf(buf + size, "%-19s %-22s %s\n", output_title[0], output_title[1], output_title[2]); for (i = 0; i < GNLD_FEATURES_MAX; i++) { size += sprintf(buf + size, "%-19s 0x%016llx %6s\n", ppfeature_name[i], 1ULL << i, (features_enabled & (1ULL << i)) ? "Y" : "N"); } return size; } static int vega20_set_ppfeature_status(struct pp_hwmgr *hwmgr, uint64_t new_ppfeature_masks) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); uint64_t features_enabled, features_to_enable, features_to_disable; int i, ret = 0; bool enabled; if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX)) return -EINVAL; ret = vega20_get_enabled_smc_features(hwmgr, &features_enabled); if (ret) return ret; features_to_disable = features_enabled & ~new_ppfeature_masks; features_to_enable = ~features_enabled & new_ppfeature_masks; pr_debug("features_to_disable 0x%llx\n", features_to_disable); pr_debug("features_to_enable 0x%llx\n", features_to_enable); if (features_to_disable) { ret = vega20_enable_smc_features(hwmgr, false, features_to_disable); if (ret) return ret; } if (features_to_enable) { ret = vega20_enable_smc_features(hwmgr, true, features_to_enable); if (ret) return ret; } /* Update the cached feature enablement state */ ret = vega20_get_enabled_smc_features(hwmgr, &features_enabled); if (ret) return ret; for (i = 0; i < GNLD_FEATURES_MAX; i++) { enabled = (features_enabled & data->smu_features[i].smu_feature_bitmap) ? true : false; data->smu_features[i].enabled = enabled; } return 0; } static int vega20_print_clock_levels(struct pp_hwmgr *hwmgr, enum pp_clock_type type, char *buf) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); struct vega20_od8_single_setting *od8_settings = data->od8_settings.od8_settings_array; OverDriveTable_t *od_table = &(data->smc_state_table.overdrive_table); struct phm_ppt_v3_information *pptable_information = (struct phm_ppt_v3_information *)hwmgr->pptable; PPTable_t *pptable = (PPTable_t *)pptable_information->smc_pptable; struct amdgpu_device *adev = hwmgr->adev; struct pp_clock_levels_with_latency clocks; struct vega20_single_dpm_table *fclk_dpm_table = &(data->dpm_table.fclk_table); int i, now, size = 0; int ret = 0; uint32_t gen_speed, lane_width, current_gen_speed, current_lane_width; switch (type) { case PP_SCLK: ret = vega20_get_current_clk_freq(hwmgr, PPCLK_GFXCLK, &now); PP_ASSERT_WITH_CODE(!ret, "Attempt to get current gfx clk Failed!", return ret); if (vega20_get_sclks(hwmgr, &clocks)) { size += sprintf(buf + size, "0: %uMhz * (DPM disabled)\n", now / 100); break; } for (i = 0; i < clocks.num_levels; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, clocks.data[i].clocks_in_khz / 1000, (clocks.data[i].clocks_in_khz == now * 10) ? "*" : ""); break; case PP_MCLK: ret = vega20_get_current_clk_freq(hwmgr, PPCLK_UCLK, &now); PP_ASSERT_WITH_CODE(!ret, "Attempt to get current mclk freq Failed!", return ret); if (vega20_get_memclocks(hwmgr, &clocks)) { size += sprintf(buf + size, "0: %uMhz * (DPM disabled)\n", now / 100); break; } for (i = 0; i < clocks.num_levels; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, clocks.data[i].clocks_in_khz / 1000, (clocks.data[i].clocks_in_khz == now * 10) ? "*" : ""); break; case PP_SOCCLK: ret = vega20_get_current_clk_freq(hwmgr, PPCLK_SOCCLK, &now); PP_ASSERT_WITH_CODE(!ret, "Attempt to get current socclk freq Failed!", return ret); if (vega20_get_socclocks(hwmgr, &clocks)) { size += sprintf(buf + size, "0: %uMhz * (DPM disabled)\n", now / 100); break; } for (i = 0; i < clocks.num_levels; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, clocks.data[i].clocks_in_khz / 1000, (clocks.data[i].clocks_in_khz == now * 10) ? "*" : ""); break; case PP_FCLK: ret = vega20_get_current_clk_freq(hwmgr, PPCLK_FCLK, &now); PP_ASSERT_WITH_CODE(!ret, "Attempt to get current fclk freq Failed!", return ret); for (i = 0; i < fclk_dpm_table->count; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, fclk_dpm_table->dpm_levels[i].value, fclk_dpm_table->dpm_levels[i].value == (now / 100) ? "*" : ""); break; case PP_DCEFCLK: ret = vega20_get_current_clk_freq(hwmgr, PPCLK_DCEFCLK, &now); PP_ASSERT_WITH_CODE(!ret, "Attempt to get current dcefclk freq Failed!", return ret); if (vega20_get_dcefclocks(hwmgr, &clocks)) { size += sprintf(buf + size, "0: %uMhz * (DPM disabled)\n", now / 100); break; } for (i = 0; i < clocks.num_levels; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, clocks.data[i].clocks_in_khz / 1000, (clocks.data[i].clocks_in_khz == now * 10) ? "*" : ""); break; case PP_PCIE: current_gen_speed = (RREG32_PCIE(smnPCIE_LC_SPEED_CNTL) & PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK) >> PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT; current_lane_width = (RREG32_PCIE(smnPCIE_LC_LINK_WIDTH_CNTL) & PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK) >> PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT; for (i = 0; i < NUM_LINK_LEVELS; i++) { if (i == 1 && data->pcie_parameters_override) { gen_speed = data->pcie_gen_level1; lane_width = data->pcie_width_level1; } else { gen_speed = pptable->PcieGenSpeed[i]; lane_width = pptable->PcieLaneCount[i]; } size += sprintf(buf + size, "%d: %s %s %dMhz %s\n", i, (gen_speed == 0) ? "2.5GT/s," : (gen_speed == 1) ? "5.0GT/s," : (gen_speed == 2) ? "8.0GT/s," : (gen_speed == 3) ? "16.0GT/s," : "", (lane_width == 1) ? "x1" : (lane_width == 2) ? "x2" : (lane_width == 3) ? "x4" : (lane_width == 4) ? "x8" : (lane_width == 5) ? "x12" : (lane_width == 6) ? "x16" : "", pptable->LclkFreq[i], (current_gen_speed == gen_speed) && (current_lane_width == lane_width) ? "*" : ""); } break; case OD_SCLK: if (od8_settings[OD8_SETTING_GFXCLK_FMIN].feature_id && od8_settings[OD8_SETTING_GFXCLK_FMAX].feature_id) { size = sprintf(buf, "%s:\n", "OD_SCLK"); size += sprintf(buf + size, "0: %10uMhz\n", od_table->GfxclkFmin); size += sprintf(buf + size, "1: %10uMhz\n", od_table->GfxclkFmax); } break; case OD_MCLK: if (od8_settings[OD8_SETTING_UCLK_FMAX].feature_id) { size = sprintf(buf, "%s:\n", "OD_MCLK"); size += sprintf(buf + size, "1: %10uMhz\n", od_table->UclkFmax); } break; case OD_VDDC_CURVE: if (od8_settings[OD8_SETTING_GFXCLK_FREQ1].feature_id && od8_settings[OD8_SETTING_GFXCLK_FREQ2].feature_id && od8_settings[OD8_SETTING_GFXCLK_FREQ3].feature_id && od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id && od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id && od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id) { size = sprintf(buf, "%s:\n", "OD_VDDC_CURVE"); size += sprintf(buf + size, "0: %10uMhz %10dmV\n", od_table->GfxclkFreq1, od_table->GfxclkVolt1 / VOLTAGE_SCALE); size += sprintf(buf + size, "1: %10uMhz %10dmV\n", od_table->GfxclkFreq2, od_table->GfxclkVolt2 / VOLTAGE_SCALE); size += sprintf(buf + size, "2: %10uMhz %10dmV\n", od_table->GfxclkFreq3, od_table->GfxclkVolt3 / VOLTAGE_SCALE); } break; case OD_RANGE: size = sprintf(buf, "%s:\n", "OD_RANGE"); if (od8_settings[OD8_SETTING_GFXCLK_FMIN].feature_id && od8_settings[OD8_SETTING_GFXCLK_FMAX].feature_id) { size += sprintf(buf + size, "SCLK: %7uMhz %10uMhz\n", od8_settings[OD8_SETTING_GFXCLK_FMIN].min_value, od8_settings[OD8_SETTING_GFXCLK_FMAX].max_value); } if (od8_settings[OD8_SETTING_UCLK_FMAX].feature_id) { size += sprintf(buf + size, "MCLK: %7uMhz %10uMhz\n", od8_settings[OD8_SETTING_UCLK_FMAX].min_value, od8_settings[OD8_SETTING_UCLK_FMAX].max_value); } if (od8_settings[OD8_SETTING_GFXCLK_FREQ1].feature_id && od8_settings[OD8_SETTING_GFXCLK_FREQ2].feature_id && od8_settings[OD8_SETTING_GFXCLK_FREQ3].feature_id && od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id && od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id && od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id) { size += sprintf(buf + size, "VDDC_CURVE_SCLK[0]: %7uMhz %10uMhz\n", od8_settings[OD8_SETTING_GFXCLK_FREQ1].min_value, od8_settings[OD8_SETTING_GFXCLK_FREQ1].max_value); size += sprintf(buf + size, "VDDC_CURVE_VOLT[0]: %7dmV %11dmV\n", od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].min_value, od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].max_value); size += sprintf(buf + size, "VDDC_CURVE_SCLK[1]: %7uMhz %10uMhz\n", od8_settings[OD8_SETTING_GFXCLK_FREQ2].min_value, od8_settings[OD8_SETTING_GFXCLK_FREQ2].max_value); size += sprintf(buf + size, "VDDC_CURVE_VOLT[1]: %7dmV %11dmV\n", od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].min_value, od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].max_value); size += sprintf(buf + size, "VDDC_CURVE_SCLK[2]: %7uMhz %10uMhz\n", od8_settings[OD8_SETTING_GFXCLK_FREQ3].min_value, od8_settings[OD8_SETTING_GFXCLK_FREQ3].max_value); size += sprintf(buf + size, "VDDC_CURVE_VOLT[2]: %7dmV %11dmV\n", od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].min_value, od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].max_value); } break; default: break; } return size; } static int vega20_set_uclk_to_highest_dpm_level(struct pp_hwmgr *hwmgr, struct vega20_single_dpm_table *dpm_table) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); int ret = 0; if (data->smu_features[GNLD_DPM_UCLK].enabled) { PP_ASSERT_WITH_CODE(dpm_table->count > 0, "[SetUclkToHightestDpmLevel] Dpm table has no entry!", return -EINVAL); PP_ASSERT_WITH_CODE(dpm_table->count <= NUM_UCLK_DPM_LEVELS, "[SetUclkToHightestDpmLevel] Dpm table has too many entries!", return -EINVAL); dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinByFreq, (PPCLK_UCLK << 16 ) | dpm_table->dpm_state.hard_min_level)), "[SetUclkToHightestDpmLevel] Set hard min uclk failed!", return ret); } return ret; } static int vega20_set_fclk_to_highest_dpm_level(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); struct vega20_single_dpm_table *dpm_table = &(data->dpm_table.fclk_table); int ret = 0; if (data->smu_features[GNLD_DPM_FCLK].enabled) { PP_ASSERT_WITH_CODE(dpm_table->count > 0, "[SetFclkToHightestDpmLevel] Dpm table has no entry!", return -EINVAL); PP_ASSERT_WITH_CODE(dpm_table->count <= NUM_FCLK_DPM_LEVELS, "[SetFclkToHightestDpmLevel] Dpm table has too many entries!", return -EINVAL); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinByFreq, (PPCLK_FCLK << 16 ) | dpm_table->dpm_state.soft_min_level)), "[SetFclkToHightestDpmLevel] Set soft min fclk failed!", return ret); } return ret; } static int vega20_pre_display_configuration_changed_task(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); int ret = 0; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_NumOfDisplays, 0); ret = vega20_set_uclk_to_highest_dpm_level(hwmgr, &data->dpm_table.mem_table); if (ret) return ret; return vega20_set_fclk_to_highest_dpm_level(hwmgr); } static int vega20_display_configuration_changed_task(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); int result = 0; Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table); if ((data->water_marks_bitmap & WaterMarksExist) && !(data->water_marks_bitmap & WaterMarksLoaded)) { result = smum_smc_table_manager(hwmgr, (uint8_t *)wm_table, TABLE_WATERMARKS, false); PP_ASSERT_WITH_CODE(!result, "Failed to update WMTABLE!", return result); data->water_marks_bitmap |= WaterMarksLoaded; } if ((data->water_marks_bitmap & WaterMarksExist) && data->smu_features[GNLD_DPM_DCEFCLK].supported && data->smu_features[GNLD_DPM_SOCCLK].supported) { result = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_NumOfDisplays, hwmgr->display_config->num_display); } return result; } int vega20_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); int ret = 0; if (data->smu_features[GNLD_DPM_UVD].supported) { if (data->smu_features[GNLD_DPM_UVD].enabled == enable) { if (enable) PP_DBG_LOG("[EnableDisableUVDDPM] feature DPM UVD already enabled!\n"); else PP_DBG_LOG("[EnableDisableUVDDPM] feature DPM UVD already disabled!\n"); } ret = vega20_enable_smc_features(hwmgr, enable, data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap); PP_ASSERT_WITH_CODE(!ret, "[EnableDisableUVDDPM] Attempt to Enable/Disable DPM UVD Failed!", return ret); data->smu_features[GNLD_DPM_UVD].enabled = enable; } return 0; } static void vega20_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); if (data->vce_power_gated == bgate) return ; data->vce_power_gated = bgate; if (bgate) { vega20_enable_disable_vce_dpm(hwmgr, !bgate); amdgpu_device_ip_set_powergating_state(hwmgr->adev, AMD_IP_BLOCK_TYPE_VCE, AMD_PG_STATE_GATE); } else { amdgpu_device_ip_set_powergating_state(hwmgr->adev, AMD_IP_BLOCK_TYPE_VCE, AMD_PG_STATE_UNGATE); vega20_enable_disable_vce_dpm(hwmgr, !bgate); } } static void vega20_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); if (data->uvd_power_gated == bgate) return ; data->uvd_power_gated = bgate; vega20_enable_disable_uvd_dpm(hwmgr, !bgate); } static int vega20_apply_clocks_adjust_rules(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); struct vega20_single_dpm_table *dpm_table; bool vblank_too_short = false; bool disable_mclk_switching; bool disable_fclk_switching; uint32_t i, latency; disable_mclk_switching = ((1 < hwmgr->display_config->num_display) && !hwmgr->display_config->multi_monitor_in_sync) || vblank_too_short; latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency; /* gfxclk */ dpm_table = &(data->dpm_table.gfx_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = VG20_CLOCK_MAX_DEFAULT; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = VG20_CLOCK_MAX_DEFAULT; if (PP_CAP(PHM_PlatformCaps_UMDPState)) { if (VEGA20_UMD_PSTATE_GFXCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } } /* memclk */ dpm_table = &(data->dpm_table.mem_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = VG20_CLOCK_MAX_DEFAULT; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = VG20_CLOCK_MAX_DEFAULT; if (PP_CAP(PHM_PlatformCaps_UMDPState)) { if (VEGA20_UMD_PSTATE_MCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } } /* honour DAL's UCLK Hardmin */ if (dpm_table->dpm_state.hard_min_level < (hwmgr->display_config->min_mem_set_clock / 100)) dpm_table->dpm_state.hard_min_level = hwmgr->display_config->min_mem_set_clock / 100; /* Hardmin is dependent on displayconfig */ if (disable_mclk_switching) { dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; for (i = 0; i < data->mclk_latency_table.count - 1; i++) { if (data->mclk_latency_table.entries[i].latency <= latency) { if (dpm_table->dpm_levels[i].value >= (hwmgr->display_config->min_mem_set_clock / 100)) { dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[i].value; break; } } } } if (hwmgr->display_config->nb_pstate_switch_disable) dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; if ((disable_mclk_switching && (dpm_table->dpm_state.hard_min_level == dpm_table->dpm_levels[dpm_table->count - 1].value)) || hwmgr->display_config->min_mem_set_clock / 100 >= dpm_table->dpm_levels[dpm_table->count - 1].value) disable_fclk_switching = true; else disable_fclk_switching = false; /* fclk */ dpm_table = &(data->dpm_table.fclk_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = VG20_CLOCK_MAX_DEFAULT; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = VG20_CLOCK_MAX_DEFAULT; if (hwmgr->display_config->nb_pstate_switch_disable || disable_fclk_switching) dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; /* vclk */ dpm_table = &(data->dpm_table.vclk_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = VG20_CLOCK_MAX_DEFAULT; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = VG20_CLOCK_MAX_DEFAULT; if (PP_CAP(PHM_PlatformCaps_UMDPState)) { if (VEGA20_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } } /* dclk */ dpm_table = &(data->dpm_table.dclk_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = VG20_CLOCK_MAX_DEFAULT; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = VG20_CLOCK_MAX_DEFAULT; if (PP_CAP(PHM_PlatformCaps_UMDPState)) { if (VEGA20_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } } /* socclk */ dpm_table = &(data->dpm_table.soc_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = VG20_CLOCK_MAX_DEFAULT; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = VG20_CLOCK_MAX_DEFAULT; if (PP_CAP(PHM_PlatformCaps_UMDPState)) { if (VEGA20_UMD_PSTATE_SOCCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_SOCCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_SOCCLK_LEVEL].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } } /* eclk */ dpm_table = &(data->dpm_table.eclk_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = VG20_CLOCK_MAX_DEFAULT; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = VG20_CLOCK_MAX_DEFAULT; if (PP_CAP(PHM_PlatformCaps_UMDPState)) { if (VEGA20_UMD_PSTATE_VCEMCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_VCEMCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_VCEMCLK_LEVEL].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } } return 0; } static bool vega20_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); bool is_update_required = false; if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) is_update_required = true; if (data->registry_data.gfx_clk_deep_sleep_support && (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr)) is_update_required = true; return is_update_required; } static int vega20_disable_dpm_tasks(struct pp_hwmgr *hwmgr) { int ret = 0; ret = vega20_disable_all_smu_features(hwmgr); PP_ASSERT_WITH_CODE(!ret, "[DisableDpmTasks] Failed to disable all smu features!", return ret); return 0; } static int vega20_power_off_asic(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); int result; result = vega20_disable_dpm_tasks(hwmgr); PP_ASSERT_WITH_CODE((0 == result), "[PowerOffAsic] Failed to disable DPM!", ); data->water_marks_bitmap &= ~(WaterMarksLoaded); return result; } static int conv_power_profile_to_pplib_workload(int power_profile) { int pplib_workload = 0; switch (power_profile) { case PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT: pplib_workload = WORKLOAD_DEFAULT_BIT; break; case PP_SMC_POWER_PROFILE_FULLSCREEN3D: pplib_workload = WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT; break; case PP_SMC_POWER_PROFILE_POWERSAVING: pplib_workload = WORKLOAD_PPLIB_POWER_SAVING_BIT; break; case PP_SMC_POWER_PROFILE_VIDEO: pplib_workload = WORKLOAD_PPLIB_VIDEO_BIT; break; case PP_SMC_POWER_PROFILE_VR: pplib_workload = WORKLOAD_PPLIB_VR_BIT; break; case PP_SMC_POWER_PROFILE_COMPUTE: pplib_workload = WORKLOAD_PPLIB_COMPUTE_BIT; break; case PP_SMC_POWER_PROFILE_CUSTOM: pplib_workload = WORKLOAD_PPLIB_CUSTOM_BIT; break; } return pplib_workload; } static int vega20_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf) { DpmActivityMonitorCoeffInt_t activity_monitor; uint32_t i, size = 0; uint16_t workload_type = 0; static const char *profile_name[] = { "BOOTUP_DEFAULT", "3D_FULL_SCREEN", "POWER_SAVING", "VIDEO", "VR", "COMPUTE", "CUSTOM"}; static const char *title[] = { "PROFILE_INDEX(NAME)", "CLOCK_TYPE(NAME)", "FPS", "UseRlcBusy", "MinActiveFreqType", "MinActiveFreq", "BoosterFreqType", "BoosterFreq", "PD_Data_limit_c", "PD_Data_error_coeff", "PD_Data_error_rate_coeff"}; int result = 0; if (!buf) return -EINVAL; size += sprintf(buf + size, "%16s %s %s %s %s %s %s %s %s %s %s\n", title[0], title[1], title[2], title[3], title[4], title[5], title[6], title[7], title[8], title[9], title[10]); for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) { /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ workload_type = conv_power_profile_to_pplib_workload(i); result = vega20_get_activity_monitor_coeff(hwmgr, (uint8_t *)(&activity_monitor), workload_type); PP_ASSERT_WITH_CODE(!result, "[GetPowerProfile] Failed to get activity monitor!", return result); size += sprintf(buf + size, "%2d %14s%s:\n", i, profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " "); size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 0, "GFXCLK", activity_monitor.Gfx_FPS, activity_monitor.Gfx_UseRlcBusy, activity_monitor.Gfx_MinActiveFreqType, activity_monitor.Gfx_MinActiveFreq, activity_monitor.Gfx_BoosterFreqType, activity_monitor.Gfx_BoosterFreq, activity_monitor.Gfx_PD_Data_limit_c, activity_monitor.Gfx_PD_Data_error_coeff, activity_monitor.Gfx_PD_Data_error_rate_coeff); size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 1, "SOCCLK", activity_monitor.Soc_FPS, activity_monitor.Soc_UseRlcBusy, activity_monitor.Soc_MinActiveFreqType, activity_monitor.Soc_MinActiveFreq, activity_monitor.Soc_BoosterFreqType, activity_monitor.Soc_BoosterFreq, activity_monitor.Soc_PD_Data_limit_c, activity_monitor.Soc_PD_Data_error_coeff, activity_monitor.Soc_PD_Data_error_rate_coeff); size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 2, "UCLK", activity_monitor.Mem_FPS, activity_monitor.Mem_UseRlcBusy, activity_monitor.Mem_MinActiveFreqType, activity_monitor.Mem_MinActiveFreq, activity_monitor.Mem_BoosterFreqType, activity_monitor.Mem_BoosterFreq, activity_monitor.Mem_PD_Data_limit_c, activity_monitor.Mem_PD_Data_error_coeff, activity_monitor.Mem_PD_Data_error_rate_coeff); size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 3, "FCLK", activity_monitor.Fclk_FPS, activity_monitor.Fclk_UseRlcBusy, activity_monitor.Fclk_MinActiveFreqType, activity_monitor.Fclk_MinActiveFreq, activity_monitor.Fclk_BoosterFreqType, activity_monitor.Fclk_BoosterFreq, activity_monitor.Fclk_PD_Data_limit_c, activity_monitor.Fclk_PD_Data_error_coeff, activity_monitor.Fclk_PD_Data_error_rate_coeff); } return size; } static int vega20_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size) { DpmActivityMonitorCoeffInt_t activity_monitor; int workload_type, result = 0; uint32_t power_profile_mode = input[size]; if (power_profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) { pr_err("Invalid power profile mode %d\n", power_profile_mode); return -EINVAL; } if (power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); if (size == 0 && !data->is_custom_profile_set) return -EINVAL; if (size < 10 && size != 0) return -EINVAL; result = vega20_get_activity_monitor_coeff(hwmgr, (uint8_t *)(&activity_monitor), WORKLOAD_PPLIB_CUSTOM_BIT); PP_ASSERT_WITH_CODE(!result, "[SetPowerProfile] Failed to get activity monitor!", return result); /* If size==0, then we want to apply the already-configured * CUSTOM profile again. Just apply it, since we checked its * validity above */ if (size == 0) goto out; switch (input[0]) { case 0: /* Gfxclk */ activity_monitor.Gfx_FPS = input[1]; activity_monitor.Gfx_UseRlcBusy = input[2]; activity_monitor.Gfx_MinActiveFreqType = input[3]; activity_monitor.Gfx_MinActiveFreq = input[4]; activity_monitor.Gfx_BoosterFreqType = input[5]; activity_monitor.Gfx_BoosterFreq = input[6]; activity_monitor.Gfx_PD_Data_limit_c = input[7]; activity_monitor.Gfx_PD_Data_error_coeff = input[8]; activity_monitor.Gfx_PD_Data_error_rate_coeff = input[9]; break; case 1: /* Socclk */ activity_monitor.Soc_FPS = input[1]; activity_monitor.Soc_UseRlcBusy = input[2]; activity_monitor.Soc_MinActiveFreqType = input[3]; activity_monitor.Soc_MinActiveFreq = input[4]; activity_monitor.Soc_BoosterFreqType = input[5]; activity_monitor.Soc_BoosterFreq = input[6]; activity_monitor.Soc_PD_Data_limit_c = input[7]; activity_monitor.Soc_PD_Data_error_coeff = input[8]; activity_monitor.Soc_PD_Data_error_rate_coeff = input[9]; break; case 2: /* Uclk */ activity_monitor.Mem_FPS = input[1]; activity_monitor.Mem_UseRlcBusy = input[2]; activity_monitor.Mem_MinActiveFreqType = input[3]; activity_monitor.Mem_MinActiveFreq = input[4]; activity_monitor.Mem_BoosterFreqType = input[5]; activity_monitor.Mem_BoosterFreq = input[6]; activity_monitor.Mem_PD_Data_limit_c = input[7]; activity_monitor.Mem_PD_Data_error_coeff = input[8]; activity_monitor.Mem_PD_Data_error_rate_coeff = input[9]; break; case 3: /* Fclk */ activity_monitor.Fclk_FPS = input[1]; activity_monitor.Fclk_UseRlcBusy = input[2]; activity_monitor.Fclk_MinActiveFreqType = input[3]; activity_monitor.Fclk_MinActiveFreq = input[4]; activity_monitor.Fclk_BoosterFreqType = input[5]; activity_monitor.Fclk_BoosterFreq = input[6]; activity_monitor.Fclk_PD_Data_limit_c = input[7]; activity_monitor.Fclk_PD_Data_error_coeff = input[8]; activity_monitor.Fclk_PD_Data_error_rate_coeff = input[9]; break; } result = vega20_set_activity_monitor_coeff(hwmgr, (uint8_t *)(&activity_monitor), WORKLOAD_PPLIB_CUSTOM_BIT); data->is_custom_profile_set = true; PP_ASSERT_WITH_CODE(!result, "[SetPowerProfile] Failed to set activity monitor!", return result); } out: /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ workload_type = conv_power_profile_to_pplib_workload(power_profile_mode); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask, 1 << workload_type); hwmgr->power_profile_mode = power_profile_mode; return 0; } static int vega20_notify_cac_buffer_info(struct pp_hwmgr *hwmgr, uint32_t virtual_addr_low, uint32_t virtual_addr_hi, uint32_t mc_addr_low, uint32_t mc_addr_hi, uint32_t size) { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSystemVirtualDramAddrHigh, virtual_addr_hi); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSystemVirtualDramAddrLow, virtual_addr_low); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DramLogSetDramAddrHigh, mc_addr_hi); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DramLogSetDramAddrLow, mc_addr_low); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DramLogSetDramSize, size); return 0; } static int vega20_get_thermal_temperature_range(struct pp_hwmgr *hwmgr, struct PP_TemperatureRange *thermal_data) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); PPTable_t *pp_table = &(data->smc_state_table.pp_table); memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange)); thermal_data->max = pp_table->TedgeLimit * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; thermal_data->edge_emergency_max = (pp_table->TedgeLimit + CTF_OFFSET_EDGE) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; thermal_data->hotspot_crit_max = pp_table->ThotspotLimit * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; thermal_data->hotspot_emergency_max = (pp_table->ThotspotLimit + CTF_OFFSET_HOTSPOT) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; thermal_data->mem_crit_max = pp_table->ThbmLimit * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; thermal_data->mem_emergency_max = (pp_table->ThbmLimit + CTF_OFFSET_HBM)* PP_TEMPERATURE_UNITS_PER_CENTIGRADES; return 0; } static int vega20_smu_i2c_bus_access(struct pp_hwmgr *hwmgr, bool acquire) { int res; /* I2C bus access can happen very early, when SMU not loaded yet */ if (!vega20_is_smc_ram_running(hwmgr)) return 0; res = smum_send_msg_to_smc_with_parameter(hwmgr, (acquire ? PPSMC_MSG_RequestI2CBus : PPSMC_MSG_ReleaseI2CBus), 0); PP_ASSERT_WITH_CODE(!res, "[SmuI2CAccessBus] Failed to access bus!", return res); return res; } static const struct pp_hwmgr_func vega20_hwmgr_funcs = { /* init/fini related */ .backend_init = vega20_hwmgr_backend_init, .backend_fini = vega20_hwmgr_backend_fini, .asic_setup = vega20_setup_asic_task, .power_off_asic = vega20_power_off_asic, .dynamic_state_management_enable = vega20_enable_dpm_tasks, .dynamic_state_management_disable = vega20_disable_dpm_tasks, /* power state related */ .apply_clocks_adjust_rules = vega20_apply_clocks_adjust_rules, .pre_display_config_changed = vega20_pre_display_configuration_changed_task, .display_config_changed = vega20_display_configuration_changed_task, .check_smc_update_required_for_display_configuration = vega20_check_smc_update_required_for_display_configuration, .notify_smc_display_config_after_ps_adjustment = vega20_notify_smc_display_config_after_ps_adjustment, /* export to DAL */ .get_sclk = vega20_dpm_get_sclk, .get_mclk = vega20_dpm_get_mclk, .get_dal_power_level = vega20_get_dal_power_level, .get_clock_by_type_with_latency = vega20_get_clock_by_type_with_latency, .get_clock_by_type_with_voltage = vega20_get_clock_by_type_with_voltage, .set_watermarks_for_clocks_ranges = vega20_set_watermarks_for_clocks_ranges, .display_clock_voltage_request = vega20_display_clock_voltage_request, .get_performance_level = vega20_get_performance_level, /* UMD pstate, profile related */ .force_dpm_level = vega20_dpm_force_dpm_level, .get_power_profile_mode = vega20_get_power_profile_mode, .set_power_profile_mode = vega20_set_power_profile_mode, /* od related */ .set_power_limit = vega20_set_power_limit, .get_sclk_od = vega20_get_sclk_od, .set_sclk_od = vega20_set_sclk_od, .get_mclk_od = vega20_get_mclk_od, .set_mclk_od = vega20_set_mclk_od, .odn_edit_dpm_table = vega20_odn_edit_dpm_table, /* for sysfs to retrive/set gfxclk/memclk */ .force_clock_level = vega20_force_clock_level, .print_clock_levels = vega20_print_clock_levels, .read_sensor = vega20_read_sensor, .get_ppfeature_status = vega20_get_ppfeature_status, .set_ppfeature_status = vega20_set_ppfeature_status, /* powergate related */ .powergate_uvd = vega20_power_gate_uvd, .powergate_vce = vega20_power_gate_vce, /* thermal related */ .start_thermal_controller = vega20_start_thermal_controller, .stop_thermal_controller = vega20_thermal_stop_thermal_controller, .get_thermal_temperature_range = vega20_get_thermal_temperature_range, .register_irq_handlers = smu9_register_irq_handlers, .disable_smc_firmware_ctf = vega20_thermal_disable_alert, /* fan control related */ .get_fan_speed_percent = vega20_fan_ctrl_get_fan_speed_percent, .set_fan_speed_percent = vega20_fan_ctrl_set_fan_speed_percent, .get_fan_speed_info = vega20_fan_ctrl_get_fan_speed_info, .get_fan_speed_rpm = vega20_fan_ctrl_get_fan_speed_rpm, .set_fan_speed_rpm = vega20_fan_ctrl_set_fan_speed_rpm, .get_fan_control_mode = vega20_get_fan_control_mode, .set_fan_control_mode = vega20_set_fan_control_mode, /* smu memory related */ .notify_cac_buffer_info = vega20_notify_cac_buffer_info, .enable_mgpu_fan_boost = vega20_enable_mgpu_fan_boost, /* BACO related */ .get_asic_baco_capability = vega20_baco_get_capability, .get_asic_baco_state = vega20_baco_get_state, .set_asic_baco_state = vega20_baco_set_state, .set_mp1_state = vega20_set_mp1_state, .smu_i2c_bus_access = vega20_smu_i2c_bus_access, }; int vega20_hwmgr_init(struct pp_hwmgr *hwmgr) { hwmgr->hwmgr_func = &vega20_hwmgr_funcs; hwmgr->pptable_func = &vega20_pptable_funcs; return 0; }