/* * Copyright 2017 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "pp_debug.h" #include "smumgr.h" #include "smu_ucode_xfer_vi.h" #include "vegam_smumgr.h" #include "smu/smu_7_1_3_d.h" #include "smu/smu_7_1_3_sh_mask.h" #include "gmc/gmc_8_1_d.h" #include "gmc/gmc_8_1_sh_mask.h" #include "oss/oss_3_0_d.h" #include "gca/gfx_8_0_d.h" #include "bif/bif_5_0_d.h" #include "bif/bif_5_0_sh_mask.h" #include "ppatomctrl.h" #include "cgs_common.h" #include "smu7_ppsmc.h" #include "smu7_dyn_defaults.h" #include "smu7_hwmgr.h" #include "hardwaremanager.h" #include "atombios.h" #include "pppcielanes.h" #include "dce/dce_11_2_d.h" #include "dce/dce_11_2_sh_mask.h" #define PPVEGAM_TARGETACTIVITY_DFLT 50 #define VOLTAGE_VID_OFFSET_SCALE1 625 #define VOLTAGE_VID_OFFSET_SCALE2 100 #define POWERTUNE_DEFAULT_SET_MAX 1 #define VDDC_VDDCI_DELTA 200 #define MC_CG_ARB_FREQ_F1 0x0b #define STRAP_ASIC_RO_LSB 2168 #define STRAP_ASIC_RO_MSB 2175 #define PPSMC_MSG_ApplyAvfsCksOffVoltage ((uint16_t) 0x415) #define PPSMC_MSG_EnableModeSwitchRLCNotification ((uint16_t) 0x305) static const struct vegam_pt_defaults vegam_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = { /* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT */ { 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000, { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61}, { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } }, }; static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] = { {VCO_2_4, POSTDIV_DIV_BY_16, 75, 160, 112}, {VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160}, {VCO_2_4, POSTDIV_DIV_BY_8, 75, 160, 112}, {VCO_3_6, POSTDIV_DIV_BY_8, 112, 224, 160}, {VCO_2_4, POSTDIV_DIV_BY_4, 75, 160, 112}, {VCO_3_6, POSTDIV_DIV_BY_4, 112, 216, 160}, {VCO_2_4, POSTDIV_DIV_BY_2, 75, 160, 108}, {VCO_3_6, POSTDIV_DIV_BY_2, 112, 216, 160} }; static int vegam_smu_init(struct pp_hwmgr *hwmgr) { struct vegam_smumgr *smu_data; smu_data = kzalloc(sizeof(struct vegam_smumgr), GFP_KERNEL); if (smu_data == NULL) return -ENOMEM; hwmgr->smu_backend = smu_data; if (smu7_init(hwmgr)) { kfree(smu_data); return -EINVAL; } return 0; } static int vegam_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr) { int result = 0; /* Wait for smc boot up */ /* PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0) */ /* Assert reset */ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1); result = smu7_upload_smu_firmware_image(hwmgr); if (result != 0) return result; /* Clear status */ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_STATUS, 0); PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); /* De-assert reset */ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0); PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1); /* Call Test SMU message with 0x20000 offset to trigger SMU start */ smu7_send_msg_to_smc_offset(hwmgr); /* Wait done bit to be set */ /* Check pass/failed indicator */ PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, SMU_STATUS, SMU_DONE, 0); if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMU_STATUS, SMU_PASS)) PP_ASSERT_WITH_CODE(false, "SMU Firmware start failed!", return -1); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0); PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1); PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0); /* Wait for firmware to initialize */ PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); return result; } static int vegam_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr) { int result = 0; /* wait for smc boot up */ PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0); /* Clear firmware interrupt enable flag */ /* PHM_WRITE_VFPF_INDIRECT_FIELD(pSmuMgr, SMC_IND, SMC_SYSCON_MISC_CNTL, pre_fetcher_en, 1); */ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0); PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1); result = smu7_upload_smu_firmware_image(hwmgr); if (result != 0) return result; /* Set smc instruct start point at 0x0 */ smu7_program_jump_on_start(hwmgr); PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0); /* Wait for firmware to initialize */ PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); return result; } static int vegam_start_smu(struct pp_hwmgr *hwmgr) { int result = 0; struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); /* Only start SMC if SMC RAM is not running */ if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) { smu_data->protected_mode = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_MODE)); smu_data->smu7_data.security_hard_key = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD( hwmgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_SEL)); /* Check if SMU is running in protected mode */ if (smu_data->protected_mode == 0) result = vegam_start_smu_in_non_protection_mode(hwmgr); else result = vegam_start_smu_in_protection_mode(hwmgr); if (result != 0) PP_ASSERT_WITH_CODE(0, "Failed to load SMU ucode.", return result); } /* Setup SoftRegsStart here for register lookup in case DummyBackEnd is used and ProcessFirmwareHeader is not executed */ smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, SoftRegisters), &(smu_data->smu7_data.soft_regs_start), 0x40000); result = smu7_request_smu_load_fw(hwmgr); return result; } static int vegam_process_firmware_header(struct pp_hwmgr *hwmgr) { struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t tmp; int result; bool error = false; result = smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, DpmTable), &tmp, SMC_RAM_END); if (0 == result) smu_data->smu7_data.dpm_table_start = tmp; error |= (0 != result); result = smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, SoftRegisters), &tmp, SMC_RAM_END); if (!result) { data->soft_regs_start = tmp; smu_data->smu7_data.soft_regs_start = tmp; } error |= (0 != result); result = smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, mcRegisterTable), &tmp, SMC_RAM_END); if (!result) smu_data->smu7_data.mc_reg_table_start = tmp; result = smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, FanTable), &tmp, SMC_RAM_END); if (!result) smu_data->smu7_data.fan_table_start = tmp; error |= (0 != result); result = smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, mcArbDramTimingTable), &tmp, SMC_RAM_END); if (!result) smu_data->smu7_data.arb_table_start = tmp; error |= (0 != result); result = smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, Version), &tmp, SMC_RAM_END); if (!result) hwmgr->microcode_version_info.SMC = tmp; error |= (0 != result); return error ? -1 : 0; } static bool vegam_is_dpm_running(struct pp_hwmgr *hwmgr) { return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)) ? true : false; } static uint32_t vegam_get_mac_definition(uint32_t value) { switch (value) { case SMU_MAX_LEVELS_GRAPHICS: return SMU75_MAX_LEVELS_GRAPHICS; case SMU_MAX_LEVELS_MEMORY: return SMU75_MAX_LEVELS_MEMORY; case SMU_MAX_LEVELS_LINK: return SMU75_MAX_LEVELS_LINK; case SMU_MAX_ENTRIES_SMIO: return SMU75_MAX_ENTRIES_SMIO; case SMU_MAX_LEVELS_VDDC: return SMU75_MAX_LEVELS_VDDC; case SMU_MAX_LEVELS_VDDGFX: return SMU75_MAX_LEVELS_VDDGFX; case SMU_MAX_LEVELS_VDDCI: return SMU75_MAX_LEVELS_VDDCI; case SMU_MAX_LEVELS_MVDD: return SMU75_MAX_LEVELS_MVDD; case SMU_UVD_MCLK_HANDSHAKE_DISABLE: return SMU7_UVD_MCLK_HANDSHAKE_DISABLE | SMU7_VCE_MCLK_HANDSHAKE_DISABLE; } pr_warn("can't get the mac of %x\n", value); return 0; } static int vegam_update_uvd_smc_table(struct pp_hwmgr *hwmgr) { struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); uint32_t mm_boot_level_offset, mm_boot_level_value; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); smu_data->smc_state_table.UvdBootLevel = 0; if (table_info->mm_dep_table->count > 0) smu_data->smc_state_table.UvdBootLevel = (uint8_t) (table_info->mm_dep_table->count - 1); mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU75_Discrete_DpmTable, UvdBootLevel); mm_boot_level_offset /= 4; mm_boot_level_offset *= 4; mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset); mm_boot_level_value &= 0x00FFFFFF; mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDDPM) || phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_UVDDPM_SetEnabledMask, (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel)); return 0; } static int vegam_update_vce_smc_table(struct pp_hwmgr *hwmgr) { struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); uint32_t mm_boot_level_offset, mm_boot_level_value; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) smu_data->smc_state_table.VceBootLevel = (uint8_t) (table_info->mm_dep_table->count - 1); else smu_data->smc_state_table.VceBootLevel = 0; mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU75_Discrete_DpmTable, VceBootLevel); mm_boot_level_offset /= 4; mm_boot_level_offset *= 4; mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset); mm_boot_level_value &= 0xFF00FFFF; mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_VCEDPM_SetEnabledMask, (uint32_t)1 << smu_data->smc_state_table.VceBootLevel); return 0; } static int vegam_update_bif_smc_table(struct pp_hwmgr *hwmgr) { struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; int max_entry, i; max_entry = (SMU75_MAX_LEVELS_LINK < pcie_table->count) ? SMU75_MAX_LEVELS_LINK : pcie_table->count; /* Setup BIF_SCLK levels */ for (i = 0; i < max_entry; i++) smu_data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk; return 0; } static int vegam_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type) { switch (type) { case SMU_UVD_TABLE: vegam_update_uvd_smc_table(hwmgr); break; case SMU_VCE_TABLE: vegam_update_vce_smc_table(hwmgr); break; case SMU_BIF_TABLE: vegam_update_bif_smc_table(hwmgr); break; default: break; } return 0; } static void vegam_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) { struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); if (table_info && table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX && table_info->cac_dtp_table->usPowerTuneDataSetID) smu_data->power_tune_defaults = &vegam_power_tune_data_set_array [table_info->cac_dtp_table->usPowerTuneDataSetID - 1]; else smu_data->power_tune_defaults = &vegam_power_tune_data_set_array[0]; } static int vegam_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, SMU75_Discrete_DpmTable *table) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t count, level; if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { count = data->mvdd_voltage_table.count; if (count > SMU_MAX_SMIO_LEVELS) count = SMU_MAX_SMIO_LEVELS; for (level = 0; level < count; level++) { table->SmioTable2.Pattern[level].Voltage = PP_HOST_TO_SMC_US( data->mvdd_voltage_table.entries[level].value * VOLTAGE_SCALE); /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/ table->SmioTable2.Pattern[level].Smio = (uint8_t) level; table->Smio[level] |= data->mvdd_voltage_table.entries[level].smio_low; } table->SmioMask2 = data->mvdd_voltage_table.mask_low; table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count); } return 0; } static int vegam_populate_smc_vddci_table(struct pp_hwmgr *hwmgr, struct SMU75_Discrete_DpmTable *table) { uint32_t count, level; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); count = data->vddci_voltage_table.count; if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { if (count > SMU_MAX_SMIO_LEVELS) count = SMU_MAX_SMIO_LEVELS; for (level = 0; level < count; ++level) { table->SmioTable1.Pattern[level].Voltage = PP_HOST_TO_SMC_US( data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE); table->SmioTable1.Pattern[level].Smio = (uint8_t) level; table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low; } } table->SmioMask1 = data->vddci_voltage_table.mask_low; return 0; } static int vegam_populate_cac_table(struct pp_hwmgr *hwmgr, struct SMU75_Discrete_DpmTable *table) { uint32_t count; uint8_t index; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_voltage_lookup_table *lookup_table = table_info->vddc_lookup_table; /* tables is already swapped, so in order to use the value from it, * we need to swap it back. * We are populating vddc CAC data to BapmVddc table * in split and merged mode */ for (count = 0; count < lookup_table->count; count++) { index = phm_get_voltage_index(lookup_table, data->vddc_voltage_table.entries[count].value); table->BapmVddcVidLoSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_low); table->BapmVddcVidHiSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_mid); table->BapmVddcVidHiSidd2[count] = convert_to_vid(lookup_table->entries[index].us_cac_high); } return 0; } static int vegam_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, struct SMU75_Discrete_DpmTable *table) { vegam_populate_smc_vddci_table(hwmgr, table); vegam_populate_smc_mvdd_table(hwmgr, table); vegam_populate_cac_table(hwmgr, table); return 0; } static int vegam_populate_ulv_level(struct pp_hwmgr *hwmgr, struct SMU75_Discrete_Ulv *state) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); state->CcPwrDynRm = 0; state->CcPwrDynRm1 = 0; state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset; state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset * VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); state->VddcPhase = data->vddc_phase_shed_control ^ 0x3; CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); return 0; } static int vegam_populate_ulv_state(struct pp_hwmgr *hwmgr, struct SMU75_Discrete_DpmTable *table) { return vegam_populate_ulv_level(hwmgr, &table->Ulv); } static int vegam_populate_smc_link_level(struct pp_hwmgr *hwmgr, struct SMU75_Discrete_DpmTable *table) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); struct smu7_dpm_table *dpm_table = &data->dpm_table; int i; /* Index (dpm_table->pcie_speed_table.count) * is reserved for PCIE boot level. */ for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { table->LinkLevel[i].PcieGenSpeed = (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width( dpm_table->pcie_speed_table.dpm_levels[i].param1); table->LinkLevel[i].EnabledForActivity = 1; table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff); table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5); table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30); } smu_data->smc_state_table.LinkLevelCount = (uint8_t)dpm_table->pcie_speed_table.count; /* To Do move to hwmgr */ data->dpm_level_enable_mask.pcie_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); return 0; } static int vegam_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, struct phm_ppt_v1_clock_voltage_dependency_table *dep_table, uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd) { uint32_t i; uint16_t vddci; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); *voltage = *mvdd = 0; /* clock - voltage dependency table is empty table */ if (dep_table->count == 0) return -EINVAL; for (i = 0; i < dep_table->count; i++) { /* find first sclk bigger than request */ if (dep_table->entries[i].clk >= clock) { *voltage |= (dep_table->entries[i].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) *voltage |= (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT; else if (dep_table->entries[i].vddci) *voltage |= (dep_table->entries[i].vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; else { vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), (dep_table->entries[i].vddc - (uint16_t)VDDC_VDDCI_DELTA)); *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; } if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE; else if (dep_table->entries[i].mvdd) *mvdd = (uint32_t) dep_table->entries[i].mvdd * VOLTAGE_SCALE; *voltage |= 1 << PHASES_SHIFT; return 0; } } /* sclk is bigger than max sclk in the dependence table */ *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) *voltage |= (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT; else if (dep_table->entries[i - 1].vddci) *voltage |= (dep_table->entries[i - 1].vddci * VOLTAGE_SCALE) << VDDC_SHIFT; else { vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), (dep_table->entries[i - 1].vddc - (uint16_t)VDDC_VDDCI_DELTA)); *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; } if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE; else if (dep_table->entries[i].mvdd) *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE; return 0; } static void vegam_get_sclk_range_table(struct pp_hwmgr *hwmgr, SMU75_Discrete_DpmTable *table) { struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); uint32_t i, ref_clk; struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } }; ref_clk = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) { for (i = 0; i < NUM_SCLK_RANGE; i++) { table->SclkFcwRangeTable[i].vco_setting = range_table_from_vbios.entry[i].ucVco_setting; table->SclkFcwRangeTable[i].postdiv = range_table_from_vbios.entry[i].ucPostdiv; table->SclkFcwRangeTable[i].fcw_pcc = range_table_from_vbios.entry[i].usFcw_pcc; table->SclkFcwRangeTable[i].fcw_trans_upper = range_table_from_vbios.entry[i].usFcw_trans_upper; table->SclkFcwRangeTable[i].fcw_trans_lower = range_table_from_vbios.entry[i].usRcw_trans_lower; CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc); CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper); CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower); } return; } for (i = 0; i < NUM_SCLK_RANGE; i++) { smu_data->range_table[i].trans_lower_frequency = (ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv; smu_data->range_table[i].trans_upper_frequency = (ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv; table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting; table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv; table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc; table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper; table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower; CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc); CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper); CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower); } } static int vegam_calculate_sclk_params(struct pp_hwmgr *hwmgr, uint32_t clock, SMU_SclkSetting *sclk_setting) { struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); const SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table); struct pp_atomctrl_clock_dividers_ai dividers; uint32_t ref_clock; uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq; uint8_t i; int result; uint64_t temp; sclk_setting->SclkFrequency = clock; /* get the engine clock dividers for this clock value */ result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock, ÷rs); if (result == 0) { sclk_setting->Fcw_int = dividers.usSclk_fcw_int; sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac; sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int; sclk_setting->PllRange = dividers.ucSclkPllRange; sclk_setting->Sclk_slew_rate = 0x400; sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac; sclk_setting->Pcc_down_slew_rate = 0xffff; sclk_setting->SSc_En = dividers.ucSscEnable; sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int; sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac; sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac; return result; } ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); for (i = 0; i < NUM_SCLK_RANGE; i++) { if (clock > smu_data->range_table[i].trans_lower_frequency && clock <= smu_data->range_table[i].trans_upper_frequency) { sclk_setting->PllRange = i; break; } } sclk_setting->Fcw_int = (uint16_t) ((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock); temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv; temp <<= 0x10; do_div(temp, ref_clock); sclk_setting->Fcw_frac = temp & 0xffff; pcc_target_percent = 10; /* Hardcode 10% for now. */ pcc_target_freq = clock - (clock * pcc_target_percent / 100); sclk_setting->Pcc_fcw_int = (uint16_t) ((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock); ss_target_percent = 2; /* Hardcode 2% for now. */ sclk_setting->SSc_En = 0; if (ss_target_percent) { sclk_setting->SSc_En = 1; ss_target_freq = clock - (clock * ss_target_percent / 100); sclk_setting->Fcw1_int = (uint16_t) ((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock); temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv; temp <<= 0x10; do_div(temp, ref_clock); sclk_setting->Fcw1_frac = temp & 0xffff; } return 0; } static uint8_t vegam_get_sleep_divider_id_from_clock(uint32_t clock, uint32_t clock_insr) { uint8_t i; uint32_t temp; uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK); PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0); for (i = 31; ; i--) { temp = clock / (i + 1); if (temp >= min || i == 0) break; } return i; } static int vegam_populate_single_graphic_level(struct pp_hwmgr *hwmgr, uint32_t clock, struct SMU75_Discrete_GraphicsLevel *level) { int result; /* PP_Clocks minClocks; */ uint32_t mvdd; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); SMU_SclkSetting curr_sclk_setting = { 0 }; result = vegam_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting); /* populate graphics levels */ result = vegam_get_dependency_volt_by_clk(hwmgr, table_info->vdd_dep_on_sclk, clock, &level->MinVoltage, &mvdd); PP_ASSERT_WITH_CODE((0 == result), "can not find VDDC voltage value for " "VDDC engine clock dependency table", return result); level->ActivityLevel = (uint16_t)(SclkDPMTuning_VEGAM >> DPMTuning_Activity_Shift); level->CcPwrDynRm = 0; level->CcPwrDynRm1 = 0; level->EnabledForActivity = 0; level->EnabledForThrottle = 1; level->VoltageDownHyst = 0; level->PowerThrottle = 0; data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) level->DeepSleepDivId = vegam_get_sleep_divider_id_from_clock(clock, hwmgr->display_config->min_core_set_clock_in_sr); level->SclkSetting = curr_sclk_setting; CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage); CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm); CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1); CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel); CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency); CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int); CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac); CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int); CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate); CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate); CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate); CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int); CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac); CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate); return 0; } static int vegam_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); struct smu7_dpm_table *dpm_table = &hw_data->dpm_table; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; uint8_t pcie_entry_cnt = (uint8_t) hw_data->dpm_table.pcie_speed_table.count; int result = 0; uint32_t array = smu_data->smu7_data.dpm_table_start + offsetof(SMU75_Discrete_DpmTable, GraphicsLevel); uint32_t array_size = sizeof(struct SMU75_Discrete_GraphicsLevel) * SMU75_MAX_LEVELS_GRAPHICS; struct SMU75_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel; uint32_t i, max_entry; uint8_t hightest_pcie_level_enabled = 0, lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0, count = 0; vegam_get_sclk_range_table(hwmgr, &(smu_data->smc_state_table)); for (i = 0; i < dpm_table->sclk_table.count; i++) { result = vegam_populate_single_graphic_level(hwmgr, dpm_table->sclk_table.dpm_levels[i].value, &(smu_data->smc_state_table.GraphicsLevel[i])); if (result) return result; levels[i].UpHyst = (uint8_t) (SclkDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift); levels[i].DownHyst = (uint8_t) (SclkDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift); /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ if (i > 1) levels[i].DeepSleepDivId = 0; } if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SPLLShutdownSupport)) smu_data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0; smu_data->smc_state_table.GraphicsDpmLevelCount = (uint8_t)dpm_table->sclk_table.count; hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); for (i = 0; i < dpm_table->sclk_table.count; i++) levels[i].EnabledForActivity = (hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask >> i) & 0x1; if (pcie_table != NULL) { PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt), "There must be 1 or more PCIE levels defined in PPTable.", return -EINVAL); max_entry = pcie_entry_cnt - 1; for (i = 0; i < dpm_table->sclk_table.count; i++) levels[i].pcieDpmLevel = (uint8_t) ((i < max_entry) ? i : max_entry); } else { while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask && ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask & (1 << (hightest_pcie_level_enabled + 1))) != 0)) hightest_pcie_level_enabled++; while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask && ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask & (1 << lowest_pcie_level_enabled)) == 0)) lowest_pcie_level_enabled++; while ((count < hightest_pcie_level_enabled) && ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask & (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) count++; mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) < hightest_pcie_level_enabled ? (lowest_pcie_level_enabled + 1 + count) : hightest_pcie_level_enabled; /* set pcieDpmLevel to hightest_pcie_level_enabled */ for (i = 2; i < dpm_table->sclk_table.count; i++) levels[i].pcieDpmLevel = hightest_pcie_level_enabled; /* set pcieDpmLevel to lowest_pcie_level_enabled */ levels[0].pcieDpmLevel = lowest_pcie_level_enabled; /* set pcieDpmLevel to mid_pcie_level_enabled */ levels[1].pcieDpmLevel = mid_pcie_level_enabled; } /* level count will send to smc once at init smc table and never change */ result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels, (uint32_t)array_size, SMC_RAM_END); return result; } static int vegam_calculate_mclk_params(struct pp_hwmgr *hwmgr, uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level) { struct pp_atomctrl_memory_clock_param_ai mpll_param; PP_ASSERT_WITH_CODE(!atomctrl_get_memory_pll_dividers_ai(hwmgr, clock, &mpll_param), "Failed to retrieve memory pll parameter.", return -EINVAL); mem_level->MclkFrequency = (uint32_t)mpll_param.ulClock; mem_level->Fcw_int = (uint16_t)mpll_param.ulMclk_fcw_int; mem_level->Fcw_frac = (uint16_t)mpll_param.ulMclk_fcw_frac; mem_level->Postdiv = (uint8_t)mpll_param.ulPostDiv; return 0; } static int vegam_populate_single_memory_level(struct pp_hwmgr *hwmgr, uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); int result = 0; uint32_t mclk_stutter_mode_threshold = 60000; if (table_info->vdd_dep_on_mclk) { result = vegam_get_dependency_volt_by_clk(hwmgr, table_info->vdd_dep_on_mclk, clock, &mem_level->MinVoltage, &mem_level->MinMvdd); PP_ASSERT_WITH_CODE(!result, "can not find MinVddc voltage value from memory " "VDDC voltage dependency table", return result); } result = vegam_calculate_mclk_params(hwmgr, clock, mem_level); PP_ASSERT_WITH_CODE(!result, "Failed to calculate mclk params.", return -EINVAL); mem_level->EnabledForThrottle = 1; mem_level->EnabledForActivity = 0; mem_level->VoltageDownHyst = 0; mem_level->ActivityLevel = (uint16_t) (MemoryDPMTuning_VEGAM >> DPMTuning_Activity_Shift); mem_level->StutterEnable = false; mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; data->display_timing.num_existing_displays = hwmgr->display_config->num_display; data->display_timing.vrefresh = hwmgr->display_config->vrefresh; if (mclk_stutter_mode_threshold && (clock <= mclk_stutter_mode_threshold) && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1)) mem_level->StutterEnable = true; if (!result) { CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd); CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency); CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_int); CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_frac); CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel); CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage); } return result; } static int vegam_populate_all_memory_levels(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); struct smu7_dpm_table *dpm_table = &hw_data->dpm_table; int result; /* populate MCLK dpm table to SMU7 */ uint32_t array = smu_data->smu7_data.dpm_table_start + offsetof(SMU75_Discrete_DpmTable, MemoryLevel); uint32_t array_size = sizeof(SMU75_Discrete_MemoryLevel) * SMU75_MAX_LEVELS_MEMORY; struct SMU75_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel; uint32_t i; for (i = 0; i < dpm_table->mclk_table.count; i++) { PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), "can not populate memory level as memory clock is zero", return -EINVAL); result = vegam_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value, &levels[i]); if (result) return result; levels[i].UpHyst = (uint8_t) (MemoryDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift); levels[i].DownHyst = (uint8_t) (MemoryDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift); } smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count; hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); for (i = 0; i < dpm_table->mclk_table.count; i++) levels[i].EnabledForActivity = (hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask >> i) & 0x1; levels[dpm_table->mclk_table.count - 1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; /* level count will send to smc once at init smc table and never change */ result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels, (uint32_t)array_size, SMC_RAM_END); return result; } static int vegam_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, SMIO_Pattern *smio_pat) { const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); uint32_t i = 0; if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) { /* find mvdd value which clock is more than request */ for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) { if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) { smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value; break; } } PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count, "MVDD Voltage is outside the supported range.", return -EINVAL); } else return -EINVAL; return 0; } static int vegam_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, SMU75_Discrete_DpmTable *table) { int result = 0; uint32_t sclk_frequency; const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); SMIO_Pattern vol_level; uint32_t mvdd; uint16_t us_mvdd; table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; /* Get MinVoltage and Frequency from DPM0, * already converted to SMC_UL */ sclk_frequency = data->vbios_boot_state.sclk_bootup_value; result = vegam_get_dependency_volt_by_clk(hwmgr, table_info->vdd_dep_on_sclk, sclk_frequency, &table->ACPILevel.MinVoltage, &mvdd); PP_ASSERT_WITH_CODE(!result, "Cannot find ACPI VDDC voltage value " "in Clock Dependency Table", ); result = vegam_calculate_sclk_params(hwmgr, sclk_frequency, &(table->ACPILevel.SclkSetting)); PP_ASSERT_WITH_CODE(!result, "Error retrieving Engine Clock dividers from VBIOS.", return result); table->ACPILevel.DeepSleepDivId = 0; table->ACPILevel.CcPwrDynRm = 0; table->ACPILevel.CcPwrDynRm1 = 0; CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency); CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int); CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac); CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int); CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate); CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate); CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate); CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int); CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac); CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate); /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */ table->MemoryACPILevel.MclkFrequency = data->vbios_boot_state.mclk_bootup_value; result = vegam_get_dependency_volt_by_clk(hwmgr, table_info->vdd_dep_on_mclk, table->MemoryACPILevel.MclkFrequency, &table->MemoryACPILevel.MinVoltage, &mvdd); PP_ASSERT_WITH_CODE((0 == result), "Cannot find ACPI VDDCI voltage value " "in Clock Dependency Table", ); us_mvdd = 0; if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) || (data->mclk_dpm_key_disabled)) us_mvdd = data->vbios_boot_state.mvdd_bootup_value; else { if (!vegam_populate_mvdd_value(hwmgr, data->dpm_table.mclk_table.dpm_levels[0].value, &vol_level)) us_mvdd = vol_level.Voltage; } if (!vegam_populate_mvdd_value(hwmgr, 0, &vol_level)) table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage); else table->MemoryACPILevel.MinMvdd = 0; table->MemoryACPILevel.StutterEnable = false; table->MemoryACPILevel.EnabledForThrottle = 0; table->MemoryACPILevel.EnabledForActivity = 0; table->MemoryACPILevel.UpHyst = 0; table->MemoryACPILevel.DownHyst = 100; table->MemoryACPILevel.VoltageDownHyst = 0; table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity); CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency); CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage); return result; } static int vegam_populate_smc_vce_level(struct pp_hwmgr *hwmgr, SMU75_Discrete_DpmTable *table) { int result = -EINVAL; uint8_t count; struct pp_atomctrl_clock_dividers_vi dividers; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = table_info->mm_dep_table; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t vddci; table->VceLevelCount = (uint8_t)(mm_table->count); table->VceBootLevel = 0; for (count = 0; count < table->VceLevelCount; count++) { table->VceLevel[count].Frequency = mm_table->entries[count].eclk; table->VceLevel[count].MinVoltage = 0; table->VceLevel[count].MinVoltage |= (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table), mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA; else vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT; table->VceLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT; /*retrieve divider value for VBIOS */ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->VceLevel[count].Frequency, ÷rs); PP_ASSERT_WITH_CODE((0 == result), "can not find divide id for VCE engine clock", return result); table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage); } return result; } static int vegam_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr, int32_t eng_clock, int32_t mem_clock, SMU75_Discrete_MCArbDramTimingTableEntry *arb_regs) { uint32_t dram_timing; uint32_t dram_timing2; uint32_t burst_time; uint32_t rfsh_rate; uint32_t misc3; int result; result = atomctrl_set_engine_dram_timings_rv770(hwmgr, eng_clock, mem_clock); PP_ASSERT_WITH_CODE(result == 0, "Error calling VBIOS to set DRAM_TIMING.", return result); dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); burst_time = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME); rfsh_rate = cgs_read_register(hwmgr->device, mmMC_ARB_RFSH_RATE); misc3 = cgs_read_register(hwmgr->device, mmMC_ARB_MISC3); arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing); arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2); arb_regs->McArbBurstTime = PP_HOST_TO_SMC_UL(burst_time); arb_regs->McArbRfshRate = PP_HOST_TO_SMC_UL(rfsh_rate); arb_regs->McArbMisc3 = PP_HOST_TO_SMC_UL(misc3); return 0; } static int vegam_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); struct SMU75_Discrete_MCArbDramTimingTable arb_regs; uint32_t i, j; int result = 0; memset(&arb_regs, 0, sizeof(SMU75_Discrete_MCArbDramTimingTable)); for (i = 0; i < hw_data->dpm_table.sclk_table.count; i++) { for (j = 0; j < hw_data->dpm_table.mclk_table.count; j++) { result = vegam_populate_memory_timing_parameters(hwmgr, hw_data->dpm_table.sclk_table.dpm_levels[i].value, hw_data->dpm_table.mclk_table.dpm_levels[j].value, &arb_regs.entries[i][j]); if (result) return result; } } result = smu7_copy_bytes_to_smc( hwmgr, smu_data->smu7_data.arb_table_start, (uint8_t *)&arb_regs, sizeof(SMU75_Discrete_MCArbDramTimingTable), SMC_RAM_END); return result; } static int vegam_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, struct SMU75_Discrete_DpmTable *table) { int result = -EINVAL; uint8_t count; struct pp_atomctrl_clock_dividers_vi dividers; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = table_info->mm_dep_table; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t vddci; table->UvdLevelCount = (uint8_t)(mm_table->count); table->UvdBootLevel = 0; for (count = 0; count < table->UvdLevelCount; count++) { table->UvdLevel[count].MinVoltage = 0; table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table), mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA; else vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT; table->UvdLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT; /* retrieve divider value for VBIOS */ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->UvdLevel[count].VclkFrequency, ÷rs); PP_ASSERT_WITH_CODE((0 == result), "can not find divide id for Vclk clock", return result); table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->UvdLevel[count].DclkFrequency, ÷rs); PP_ASSERT_WITH_CODE((0 == result), "can not find divide id for Dclk clock", return result); table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider; CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency); CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency); CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage); } return result; } static int vegam_populate_smc_boot_level(struct pp_hwmgr *hwmgr, struct SMU75_Discrete_DpmTable *table) { int result = 0; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); table->GraphicsBootLevel = 0; table->MemoryBootLevel = 0; /* find boot level from dpm table */ result = phm_find_boot_level(&(data->dpm_table.sclk_table), data->vbios_boot_state.sclk_bootup_value, (uint32_t *)&(table->GraphicsBootLevel)); result = phm_find_boot_level(&(data->dpm_table.mclk_table), data->vbios_boot_state.mclk_bootup_value, (uint32_t *)&(table->MemoryBootLevel)); table->BootVddc = data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE; table->BootVddci = data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE; table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE; CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc); CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci); CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd); return 0; } static int vegam_populate_smc_initial_state(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); uint8_t count, level; count = (uint8_t)(table_info->vdd_dep_on_sclk->count); for (level = 0; level < count; level++) { if (table_info->vdd_dep_on_sclk->entries[level].clk >= hw_data->vbios_boot_state.sclk_bootup_value) { smu_data->smc_state_table.GraphicsBootLevel = level; break; } } count = (uint8_t)(table_info->vdd_dep_on_mclk->count); for (level = 0; level < count; level++) { if (table_info->vdd_dep_on_mclk->entries[level].clk >= hw_data->vbios_boot_state.mclk_bootup_value) { smu_data->smc_state_table.MemoryBootLevel = level; break; } } return 0; } static uint16_t scale_fan_gain_settings(uint16_t raw_setting) { uint32_t tmp; tmp = raw_setting * 4096 / 100; return (uint16_t)tmp; } static int vegam_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) { struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults; SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table; struct pp_advance_fan_control_parameters *fan_table = &hwmgr->thermal_controller.advanceFanControlParameters; int i, j, k; const uint16_t *pdef1; const uint16_t *pdef2; table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128)); table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128)); PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255, "Target Operating Temp is out of Range!", ); table->TemperatureLimitEdge = PP_HOST_TO_SMC_US( cac_dtp_table->usTargetOperatingTemp * 256); table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US( cac_dtp_table->usTemperatureLimitHotspot * 256); table->FanGainEdge = PP_HOST_TO_SMC_US( scale_fan_gain_settings(fan_table->usFanGainEdge)); table->FanGainHotspot = PP_HOST_TO_SMC_US( scale_fan_gain_settings(fan_table->usFanGainHotspot)); pdef1 = defaults->BAPMTI_R; pdef2 = defaults->BAPMTI_RC; for (i = 0; i < SMU75_DTE_ITERATIONS; i++) { for (j = 0; j < SMU75_DTE_SOURCES; j++) { for (k = 0; k < SMU75_DTE_SINKS; k++) { table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*pdef1); table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*pdef2); pdef1++; pdef2++; } } } return 0; } static int vegam_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) { uint32_t ro, efuse, volt_without_cks, volt_with_cks, value, max, min; struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); uint8_t i, stretch_amount, stretch_amount2, volt_offset = 0; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = table_info->vdd_dep_on_sclk; uint32_t mask = (1 << ((STRAP_ASIC_RO_MSB - STRAP_ASIC_RO_LSB) + 1)) - 1; stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount; atomctrl_read_efuse(hwmgr, STRAP_ASIC_RO_LSB, STRAP_ASIC_RO_MSB, mask, &efuse); min = 1200; max = 2500; ro = efuse * (max - min) / 255 + min; /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */ for (i = 0; i < sclk_table->count; i++) { smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |= sclk_table->entries[i].cks_enable << i; volt_without_cks = (uint32_t)((2753594000U + (sclk_table->entries[i].clk/100) * 136418 - (ro - 70) * 1000000) / (2424180 - (sclk_table->entries[i].clk/100) * 1132925/1000)); volt_with_cks = (uint32_t)((2797202000U + sclk_table->entries[i].clk/100 * 3232 - (ro - 65) * 1000000) / (2522480 - sclk_table->entries[i].clk/100 * 115764/100)); if (volt_without_cks >= volt_with_cks) volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks + sclk_table->entries[i].cks_voffset) * 100 + 624) / 625); smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset; } smu_data->smc_state_table.LdoRefSel = (table_info->cac_dtp_table->ucCKS_LDO_REFSEL != 0) ? table_info->cac_dtp_table->ucCKS_LDO_REFSEL : 5; /* Populate CKS Lookup Table */ if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5) stretch_amount2 = 0; else if (stretch_amount == 3 || stretch_amount == 4) stretch_amount2 = 1; else { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ClockStretcher); PP_ASSERT_WITH_CODE(false, "Stretch Amount in PPTable not supported\n", return -EINVAL); } value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL); value &= 0xFFFFFFFE; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value); return 0; } static bool vegam_is_hw_avfs_present(struct pp_hwmgr *hwmgr) { uint32_t efuse; efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_EFUSE_0 + (49 * 4)); efuse &= 0x00000001; if (efuse) return true; return false; } static int vegam_populate_avfs_parameters(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table); int result = 0; struct pp_atom_ctrl__avfs_parameters avfs_params = {0}; AVFS_meanNsigma_t AVFS_meanNsigma = { {0} }; AVFS_Sclk_Offset_t AVFS_SclkOffset = { {0} }; uint32_t tmp, i; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)hwmgr->pptable; struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = table_info->vdd_dep_on_sclk; if (!hwmgr->avfs_supported) return 0; result = atomctrl_get_avfs_information(hwmgr, &avfs_params); if (0 == result) { table->BTCGB_VDROOP_TABLE[0].a0 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0); table->BTCGB_VDROOP_TABLE[0].a1 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1); table->BTCGB_VDROOP_TABLE[0].a2 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2); table->BTCGB_VDROOP_TABLE[1].a0 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0); table->BTCGB_VDROOP_TABLE[1].a1 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1); table->BTCGB_VDROOP_TABLE[1].a2 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2); table->AVFSGB_FUSE_TABLE[0].m1 = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1); table->AVFSGB_FUSE_TABLE[0].m2 = PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2); table->AVFSGB_FUSE_TABLE[0].b = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b); table->AVFSGB_FUSE_TABLE[0].m1_shift = 24; table->AVFSGB_FUSE_TABLE[0].m2_shift = 12; table->AVFSGB_FUSE_TABLE[1].m1 = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1); table->AVFSGB_FUSE_TABLE[1].m2 = PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2); table->AVFSGB_FUSE_TABLE[1].b = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b); table->AVFSGB_FUSE_TABLE[1].m1_shift = 24; table->AVFSGB_FUSE_TABLE[1].m2_shift = 12; table->MaxVoltage = PP_HOST_TO_SMC_US(avfs_params.usMaxVoltage_0_25mv); AVFS_meanNsigma.Aconstant[0] = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant0); AVFS_meanNsigma.Aconstant[1] = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant1); AVFS_meanNsigma.Aconstant[2] = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant2); AVFS_meanNsigma.DC_tol_sigma = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_DC_tol_sigma); AVFS_meanNsigma.Platform_mean = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_mean); AVFS_meanNsigma.PSM_Age_CompFactor = PP_HOST_TO_SMC_US(avfs_params.usPSM_Age_ComFactor); AVFS_meanNsigma.Platform_sigma = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_sigma); for (i = 0; i < sclk_table->count; i++) { AVFS_meanNsigma.Static_Voltage_Offset[i] = (uint8_t)(sclk_table->entries[i].cks_voffset * 100 / 625); AVFS_SclkOffset.Sclk_Offset[i] = PP_HOST_TO_SMC_US((uint16_t) (sclk_table->entries[i].sclk_offset) / 100); } result = smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, AvfsMeanNSigma), &tmp, SMC_RAM_END); smu7_copy_bytes_to_smc(hwmgr, tmp, (uint8_t *)&AVFS_meanNsigma, sizeof(AVFS_meanNsigma_t), SMC_RAM_END); result = smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, AvfsSclkOffsetTable), &tmp, SMC_RAM_END); smu7_copy_bytes_to_smc(hwmgr, tmp, (uint8_t *)&AVFS_SclkOffset, sizeof(AVFS_Sclk_Offset_t), SMC_RAM_END); data->avfs_vdroop_override_setting = (avfs_params.ucEnableGB_VDROOP_TABLE_CKSON << BTCGB0_Vdroop_Enable_SHIFT) | (avfs_params.ucEnableGB_VDROOP_TABLE_CKSOFF << BTCGB1_Vdroop_Enable_SHIFT) | (avfs_params.ucEnableGB_FUSE_TABLE_CKSON << AVFSGB0_Vdroop_Enable_SHIFT) | (avfs_params.ucEnableGB_FUSE_TABLE_CKSOFF << AVFSGB1_Vdroop_Enable_SHIFT); data->apply_avfs_cks_off_voltage = (avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage == 1) ? true : false; } return result; } static int vegam_populate_vr_config(struct pp_hwmgr *hwmgr, struct SMU75_Discrete_DpmTable *table) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); uint16_t config; config = VR_MERGED_WITH_VDDC; table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT); /* Set Vddc Voltage Controller */ if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { config = VR_SVI2_PLANE_1; table->VRConfig |= config; } else { PP_ASSERT_WITH_CODE(false, "VDDC should be on SVI2 control in merged mode!", ); } /* Set Vddci Voltage Controller */ if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { config = VR_SVI2_PLANE_2; /* only in merged mode */ table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { config = VR_SMIO_PATTERN_1; table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); } else { config = VR_STATIC_VOLTAGE; table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); } /* Set Mvdd Voltage Controller */ if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) { if (config != VR_SVI2_PLANE_2) { config = VR_SVI2_PLANE_2; table->VRConfig |= (config << VRCONF_MVDD_SHIFT); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, smu_data->smu7_data.soft_regs_start + offsetof(SMU75_SoftRegisters, AllowMvddSwitch), 0x1); } else { PP_ASSERT_WITH_CODE(false, "SVI2 Plane 2 is already taken, set MVDD as Static",); config = VR_STATIC_VOLTAGE; table->VRConfig = (config << VRCONF_MVDD_SHIFT); } } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { config = VR_SMIO_PATTERN_2; table->VRConfig = (config << VRCONF_MVDD_SHIFT); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, smu_data->smu7_data.soft_regs_start + offsetof(SMU75_SoftRegisters, AllowMvddSwitch), 0x1); } else { config = VR_STATIC_VOLTAGE; table->VRConfig |= (config << VRCONF_MVDD_SHIFT); } return 0; } static int vegam_populate_svi_load_line(struct pp_hwmgr *hwmgr) { struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults; smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn; smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC; smu_data->power_tune_table.SviLoadLineTrimVddC = 3; smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; return 0; } static int vegam_populate_tdc_limit(struct pp_hwmgr *hwmgr) { uint16_t tdc_limit; struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults; tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128); smu_data->power_tune_table.TDC_VDDC_PkgLimit = CONVERT_FROM_HOST_TO_SMC_US(tdc_limit); smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = defaults->TDC_VDDC_ThrottleReleaseLimitPerc; smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt; return 0; } static int vegam_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) { struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults; uint32_t temp; if (smu7_read_smc_sram_dword(hwmgr, fuse_table_offset + offsetof(SMU75_Discrete_PmFuses, TdcWaterfallCtl), (uint32_t *)&temp, SMC_RAM_END)) PP_ASSERT_WITH_CODE(false, "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!", return -EINVAL); else { smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl; smu_data->power_tune_table.LPMLTemperatureMin = (uint8_t)((temp >> 16) & 0xff); smu_data->power_tune_table.LPMLTemperatureMax = (uint8_t)((temp >> 8) & 0xff); smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff); } return 0; } static int vegam_populate_temperature_scaler(struct pp_hwmgr *hwmgr) { int i; struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); /* Currently not used. Set all to zero. */ for (i = 0; i < 16; i++) smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0; return 0; } static int vegam_populate_fuzzy_fan(struct pp_hwmgr *hwmgr) { struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); /* TO DO move to hwmgr */ if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15)) || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity) hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity; smu_data->power_tune_table.FuzzyFan_PwmSetDelta = PP_HOST_TO_SMC_US( hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity); return 0; } static int vegam_populate_gnb_lpml(struct pp_hwmgr *hwmgr) { int i; struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); /* Currently not used. Set all to zero. */ for (i = 0; i < 16; i++) smu_data->power_tune_table.GnbLPML[i] = 0; return 0; } static int vegam_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) { struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table; hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = CONVERT_FROM_HOST_TO_SMC_US(hi_sidd); smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = CONVERT_FROM_HOST_TO_SMC_US(lo_sidd); return 0; } static int vegam_populate_pm_fuses(struct pp_hwmgr *hwmgr) { struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); uint32_t pm_fuse_table_offset; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerContainment)) { if (smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, PmFuseTable), &pm_fuse_table_offset, SMC_RAM_END)) PP_ASSERT_WITH_CODE(false, "Attempt to get pm_fuse_table_offset Failed!", return -EINVAL); if (vegam_populate_svi_load_line(hwmgr)) PP_ASSERT_WITH_CODE(false, "Attempt to populate SviLoadLine Failed!", return -EINVAL); if (vegam_populate_tdc_limit(hwmgr)) PP_ASSERT_WITH_CODE(false, "Attempt to populate TDCLimit Failed!", return -EINVAL); if (vegam_populate_dw8(hwmgr, pm_fuse_table_offset)) PP_ASSERT_WITH_CODE(false, "Attempt to populate TdcWaterfallCtl, " "LPMLTemperature Min and Max Failed!", return -EINVAL); if (0 != vegam_populate_temperature_scaler(hwmgr)) PP_ASSERT_WITH_CODE(false, "Attempt to populate LPMLTemperatureScaler Failed!", return -EINVAL); if (vegam_populate_fuzzy_fan(hwmgr)) PP_ASSERT_WITH_CODE(false, "Attempt to populate Fuzzy Fan Control parameters Failed!", return -EINVAL); if (vegam_populate_gnb_lpml(hwmgr)) PP_ASSERT_WITH_CODE(false, "Attempt to populate GnbLPML Failed!", return -EINVAL); if (vegam_populate_bapm_vddc_base_leakage_sidd(hwmgr)) PP_ASSERT_WITH_CODE(false, "Attempt to populate BapmVddCBaseLeakage Hi and Lo " "Sidd Failed!", return -EINVAL); if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset, (uint8_t *)&smu_data->power_tune_table, (sizeof(struct SMU75_Discrete_PmFuses) - PMFUSES_AVFSSIZE), SMC_RAM_END)) PP_ASSERT_WITH_CODE(false, "Attempt to download PmFuseTable Failed!", return -EINVAL); } return 0; } static int vegam_enable_reconfig_cus(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_EnableModeSwitchRLCNotification, adev->gfx.cu_info.number); return 0; } static int vegam_init_smc_table(struct pp_hwmgr *hwmgr) { int result; struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table); uint8_t i; struct pp_atomctrl_gpio_pin_assignment gpio_pin; struct phm_ppt_v1_gpio_table *gpio_table = (struct phm_ppt_v1_gpio_table *)table_info->gpio_table; pp_atomctrl_clock_dividers_vi dividers; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition); vegam_initialize_power_tune_defaults(hwmgr); if (SMU7_VOLTAGE_CONTROL_NONE != hw_data->voltage_control) vegam_populate_smc_voltage_tables(hwmgr, table); table->SystemFlags = 0; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition)) table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StepVddc)) table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; if (hw_data->is_memory_gddr5) table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; if (hw_data->ulv_supported && table_info->us_ulv_voltage_offset) { result = vegam_populate_ulv_state(hwmgr, table); PP_ASSERT_WITH_CODE(!result, "Failed to initialize ULV state!", return result); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_ULV_PARAMETER, SMU7_CGULVPARAMETER_DFLT); } result = vegam_populate_smc_link_level(hwmgr, table); PP_ASSERT_WITH_CODE(!result, "Failed to initialize Link Level!", return result); result = vegam_populate_all_graphic_levels(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to initialize Graphics Level!", return result); result = vegam_populate_all_memory_levels(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to initialize Memory Level!", return result); result = vegam_populate_smc_acpi_level(hwmgr, table); PP_ASSERT_WITH_CODE(!result, "Failed to initialize ACPI Level!", return result); result = vegam_populate_smc_vce_level(hwmgr, table); PP_ASSERT_WITH_CODE(!result, "Failed to initialize VCE Level!", return result); /* Since only the initial state is completely set up at this point * (the other states are just copies of the boot state) we only * need to populate the ARB settings for the initial state. */ result = vegam_program_memory_timing_parameters(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to Write ARB settings for the initial state.", return result); result = vegam_populate_smc_uvd_level(hwmgr, table); PP_ASSERT_WITH_CODE(!result, "Failed to initialize UVD Level!", return result); result = vegam_populate_smc_boot_level(hwmgr, table); PP_ASSERT_WITH_CODE(!result, "Failed to initialize Boot Level!", return result); result = vegam_populate_smc_initial_state(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to initialize Boot State!", return result); result = vegam_populate_bapm_parameters_in_dpm_table(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to populate BAPM Parameters!", return result); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ClockStretcher)) { result = vegam_populate_clock_stretcher_data_table(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to populate Clock Stretcher Data Table!", return result); } result = vegam_populate_avfs_parameters(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to populate AVFS Parameters!", return result;); table->CurrSclkPllRange = 0xff; table->GraphicsVoltageChangeEnable = 1; table->GraphicsThermThrottleEnable = 1; table->GraphicsInterval = 1; table->VoltageInterval = 1; table->ThermalInterval = 1; table->TemperatureLimitHigh = table_info->cac_dtp_table->usTargetOperatingTemp * SMU7_Q88_FORMAT_CONVERSION_UNIT; table->TemperatureLimitLow = (table_info->cac_dtp_table->usTargetOperatingTemp - 1) * SMU7_Q88_FORMAT_CONVERSION_UNIT; table->MemoryVoltageChangeEnable = 1; table->MemoryInterval = 1; table->VoltageResponseTime = 0; table->PhaseResponseTime = 0; table->MemoryThermThrottleEnable = 1; PP_ASSERT_WITH_CODE(hw_data->dpm_table.pcie_speed_table.count >= 1, "There must be 1 or more PCIE levels defined in PPTable.", return -EINVAL); table->PCIeBootLinkLevel = hw_data->dpm_table.pcie_speed_table.count; table->PCIeGenInterval = 1; table->VRConfig = 0; result = vegam_populate_vr_config(hwmgr, table); PP_ASSERT_WITH_CODE(!result, "Failed to populate VRConfig setting!", return result); table->ThermGpio = 17; table->SclkStepSize = 0x4000; if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) { table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift; if (gpio_table) table->VRHotLevel = table_info->gpio_table->vrhot_triggered_sclk_dpm_index; } else { table->VRHotGpio = SMU7_UNUSED_GPIO_PIN; phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot); } if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID, &gpio_pin)) { table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition) && !smum_send_msg_to_smc(hwmgr, PPSMC_MSG_UseNewGPIOScheme)) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme); } else { table->AcDcGpio = SMU7_UNUSED_GPIO_PIN; phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition); } /* Thermal Output GPIO */ if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin)) { table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift; /* For porlarity read GPIOPAD_A with assigned Gpio pin * since VBIOS will program this register to set 'inactive state', * driver can then determine 'active state' from this and * program SMU with correct polarity */ table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) & (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0; table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY; /* if required, combine VRHot/PCC with thermal out GPIO */ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot) && phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_CombinePCCWithThermalSignal)) table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT; } else { table->ThermOutGpio = 17; table->ThermOutPolarity = 1; table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE; } /* Populate BIF_SCLK levels into SMC DPM table */ for (i = 0; i <= hw_data->dpm_table.pcie_speed_table.count; i++) { result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, smu_data->bif_sclk_table[i], ÷rs); PP_ASSERT_WITH_CODE(!result, "Can not find DFS divide id for Sclk", return result); if (i == 0) table->Ulv.BifSclkDfs = PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider)); else table->LinkLevel[i - 1].BifSclkDfs = PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider)); } for (i = 0; i < SMU75_MAX_ENTRIES_SMIO; i++) table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]); CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig); CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1); CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2); CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange); CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ result = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.dpm_table_start + offsetof(SMU75_Discrete_DpmTable, SystemFlags), (uint8_t *)&(table->SystemFlags), sizeof(SMU75_Discrete_DpmTable) - 3 * sizeof(SMU75_PIDController), SMC_RAM_END); PP_ASSERT_WITH_CODE(!result, "Failed to upload dpm data to SMC memory!", return result); result = vegam_populate_pm_fuses(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to populate PM fuses to SMC memory!", return result); result = vegam_enable_reconfig_cus(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to enable reconfigurable CUs!", return result); return 0; } static uint32_t vegam_get_offsetof(uint32_t type, uint32_t member) { switch (type) { case SMU_SoftRegisters: switch (member) { case HandshakeDisables: return offsetof(SMU75_SoftRegisters, HandshakeDisables); case VoltageChangeTimeout: return offsetof(SMU75_SoftRegisters, VoltageChangeTimeout); case AverageGraphicsActivity: return offsetof(SMU75_SoftRegisters, AverageGraphicsActivity); case AverageMemoryActivity: return offsetof(SMU75_SoftRegisters, AverageMemoryActivity); case PreVBlankGap: return offsetof(SMU75_SoftRegisters, PreVBlankGap); case VBlankTimeout: return offsetof(SMU75_SoftRegisters, VBlankTimeout); case UcodeLoadStatus: return offsetof(SMU75_SoftRegisters, UcodeLoadStatus); case DRAM_LOG_ADDR_H: return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_H); case DRAM_LOG_ADDR_L: return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_L); case DRAM_LOG_PHY_ADDR_H: return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_H); case DRAM_LOG_PHY_ADDR_L: return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_L); case DRAM_LOG_BUFF_SIZE: return offsetof(SMU75_SoftRegisters, DRAM_LOG_BUFF_SIZE); } break; case SMU_Discrete_DpmTable: switch (member) { case UvdBootLevel: return offsetof(SMU75_Discrete_DpmTable, UvdBootLevel); case VceBootLevel: return offsetof(SMU75_Discrete_DpmTable, VceBootLevel); case LowSclkInterruptThreshold: return offsetof(SMU75_Discrete_DpmTable, LowSclkInterruptThreshold); } break; } pr_warn("can't get the offset of type %x member %x\n", type, member); return 0; } static int vegam_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK + DPMTABLE_UPDATE_MCLK)) return vegam_program_memory_timing_parameters(hwmgr); return 0; } static int vegam_update_sclk_threshold(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); int result = 0; uint32_t low_sclk_interrupt_threshold = 0; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkThrottleLowNotification) && (data->low_sclk_interrupt_threshold != 0)) { low_sclk_interrupt_threshold = data->low_sclk_interrupt_threshold; CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); result = smu7_copy_bytes_to_smc( hwmgr, smu_data->smu7_data.dpm_table_start + offsetof(SMU75_Discrete_DpmTable, LowSclkInterruptThreshold), (uint8_t *)&low_sclk_interrupt_threshold, sizeof(uint32_t), SMC_RAM_END); } PP_ASSERT_WITH_CODE((result == 0), "Failed to update SCLK threshold!", return result); result = vegam_program_mem_timing_parameters(hwmgr); PP_ASSERT_WITH_CODE((result == 0), "Failed to program memory timing parameters!", ); return result; } int vegam_thermal_avfs_enable(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); int ret; if (!hwmgr->avfs_supported) return 0; ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs); if (!ret) { if (data->apply_avfs_cks_off_voltage) ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ApplyAvfsCksOffVoltage); } return ret; } static int vegam_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) { PP_ASSERT_WITH_CODE(hwmgr->thermal_controller.fanInfo.bNoFan, "VBIOS fan info is not correct!", ); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); return 0; } const struct pp_smumgr_func vegam_smu_funcs = { .name = "vegam_smu", .smu_init = vegam_smu_init, .smu_fini = smu7_smu_fini, .start_smu = vegam_start_smu, .check_fw_load_finish = smu7_check_fw_load_finish, .request_smu_load_fw = smu7_reload_firmware, .request_smu_load_specific_fw = NULL, .send_msg_to_smc = smu7_send_msg_to_smc, .send_msg_to_smc_with_parameter = smu7_send_msg_to_smc_with_parameter, .process_firmware_header = vegam_process_firmware_header, .is_dpm_running = vegam_is_dpm_running, .get_mac_definition = vegam_get_mac_definition, .update_smc_table = vegam_update_smc_table, .init_smc_table = vegam_init_smc_table, .get_offsetof = vegam_get_offsetof, .populate_all_graphic_levels = vegam_populate_all_graphic_levels, .populate_all_memory_levels = vegam_populate_all_memory_levels, .update_sclk_threshold = vegam_update_sclk_threshold, .is_hw_avfs_present = vegam_is_hw_avfs_present, .thermal_avfs_enable = vegam_thermal_avfs_enable, .thermal_setup_fan_table = vegam_thermal_setup_fan_table, };