// SPDX-License-Identifier: GPL-2.0-only /* * tools/testing/selftests/kvm/lib/x86_64/processor.c * * Copyright (C) 2018, Google LLC. */ #define _GNU_SOURCE /* for program_invocation_name */ #include "test_util.h" #include "kvm_util.h" #include "../kvm_util_internal.h" #include "processor.h" /* Minimum physical address used for virtual translation tables. */ #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000 /* Virtual translation table structure declarations */ struct pageMapL4Entry { uint64_t present:1; uint64_t writable:1; uint64_t user:1; uint64_t write_through:1; uint64_t cache_disable:1; uint64_t accessed:1; uint64_t ignored_06:1; uint64_t page_size:1; uint64_t ignored_11_08:4; uint64_t address:40; uint64_t ignored_62_52:11; uint64_t execute_disable:1; }; struct pageDirectoryPointerEntry { uint64_t present:1; uint64_t writable:1; uint64_t user:1; uint64_t write_through:1; uint64_t cache_disable:1; uint64_t accessed:1; uint64_t ignored_06:1; uint64_t page_size:1; uint64_t ignored_11_08:4; uint64_t address:40; uint64_t ignored_62_52:11; uint64_t execute_disable:1; }; struct pageDirectoryEntry { uint64_t present:1; uint64_t writable:1; uint64_t user:1; uint64_t write_through:1; uint64_t cache_disable:1; uint64_t accessed:1; uint64_t ignored_06:1; uint64_t page_size:1; uint64_t ignored_11_08:4; uint64_t address:40; uint64_t ignored_62_52:11; uint64_t execute_disable:1; }; struct pageTableEntry { uint64_t present:1; uint64_t writable:1; uint64_t user:1; uint64_t write_through:1; uint64_t cache_disable:1; uint64_t accessed:1; uint64_t dirty:1; uint64_t reserved_07:1; uint64_t global:1; uint64_t ignored_11_09:3; uint64_t address:40; uint64_t ignored_62_52:11; uint64_t execute_disable:1; }; /* Register Dump * * Input Args: * indent - Left margin indent amount * regs - register * * Output Args: * stream - Output FILE stream * * Return: None * * Dumps the state of the registers given by regs, to the FILE stream * given by steam. */ void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent) { fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx " "rcx: 0x%.16llx rdx: 0x%.16llx\n", indent, "", regs->rax, regs->rbx, regs->rcx, regs->rdx); fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx " "rsp: 0x%.16llx rbp: 0x%.16llx\n", indent, "", regs->rsi, regs->rdi, regs->rsp, regs->rbp); fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx " "r10: 0x%.16llx r11: 0x%.16llx\n", indent, "", regs->r8, regs->r9, regs->r10, regs->r11); fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx " "r14: 0x%.16llx r15: 0x%.16llx\n", indent, "", regs->r12, regs->r13, regs->r14, regs->r15); fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n", indent, "", regs->rip, regs->rflags); } /* Segment Dump * * Input Args: * indent - Left margin indent amount * segment - KVM segment * * Output Args: * stream - Output FILE stream * * Return: None * * Dumps the state of the KVM segment given by segment, to the FILE stream * given by steam. */ static void segment_dump(FILE *stream, struct kvm_segment *segment, uint8_t indent) { fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x " "selector: 0x%.4x type: 0x%.2x\n", indent, "", segment->base, segment->limit, segment->selector, segment->type); fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x " "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n", indent, "", segment->present, segment->dpl, segment->db, segment->s, segment->l); fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x " "unusable: 0x%.2x padding: 0x%.2x\n", indent, "", segment->g, segment->avl, segment->unusable, segment->padding); } /* dtable Dump * * Input Args: * indent - Left margin indent amount * dtable - KVM dtable * * Output Args: * stream - Output FILE stream * * Return: None * * Dumps the state of the KVM dtable given by dtable, to the FILE stream * given by steam. */ static void dtable_dump(FILE *stream, struct kvm_dtable *dtable, uint8_t indent) { fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x " "padding: 0x%.4x 0x%.4x 0x%.4x\n", indent, "", dtable->base, dtable->limit, dtable->padding[0], dtable->padding[1], dtable->padding[2]); } /* System Register Dump * * Input Args: * indent - Left margin indent amount * sregs - System registers * * Output Args: * stream - Output FILE stream * * Return: None * * Dumps the state of the system registers given by sregs, to the FILE stream * given by steam. */ void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent) { unsigned int i; fprintf(stream, "%*scs:\n", indent, ""); segment_dump(stream, &sregs->cs, indent + 2); fprintf(stream, "%*sds:\n", indent, ""); segment_dump(stream, &sregs->ds, indent + 2); fprintf(stream, "%*ses:\n", indent, ""); segment_dump(stream, &sregs->es, indent + 2); fprintf(stream, "%*sfs:\n", indent, ""); segment_dump(stream, &sregs->fs, indent + 2); fprintf(stream, "%*sgs:\n", indent, ""); segment_dump(stream, &sregs->gs, indent + 2); fprintf(stream, "%*sss:\n", indent, ""); segment_dump(stream, &sregs->ss, indent + 2); fprintf(stream, "%*str:\n", indent, ""); segment_dump(stream, &sregs->tr, indent + 2); fprintf(stream, "%*sldt:\n", indent, ""); segment_dump(stream, &sregs->ldt, indent + 2); fprintf(stream, "%*sgdt:\n", indent, ""); dtable_dump(stream, &sregs->gdt, indent + 2); fprintf(stream, "%*sidt:\n", indent, ""); dtable_dump(stream, &sregs->idt, indent + 2); fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx " "cr3: 0x%.16llx cr4: 0x%.16llx\n", indent, "", sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4); fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx " "apic_base: 0x%.16llx\n", indent, "", sregs->cr8, sregs->efer, sregs->apic_base); fprintf(stream, "%*sinterrupt_bitmap:\n", indent, ""); for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) { fprintf(stream, "%*s%.16llx\n", indent + 2, "", sregs->interrupt_bitmap[i]); } } void virt_pgd_alloc(struct kvm_vm *vm, uint32_t pgd_memslot) { TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " "unknown or unsupported guest mode, mode: 0x%x", vm->mode); /* If needed, create page map l4 table. */ if (!vm->pgd_created) { vm_paddr_t paddr = vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot); vm->pgd = paddr; vm->pgd_created = true; } } /* VM Virtual Page Map * * Input Args: * vm - Virtual Machine * vaddr - VM Virtual Address * paddr - VM Physical Address * pgd_memslot - Memory region slot for new virtual translation tables * * Output Args: None * * Return: None * * Within the VM given by vm, creates a virtual translation for the page * starting at vaddr to the page starting at paddr. */ void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, uint32_t pgd_memslot) { uint16_t index[4]; struct pageMapL4Entry *pml4e; TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " "unknown or unsupported guest mode, mode: 0x%x", vm->mode); TEST_ASSERT((vaddr % vm->page_size) == 0, "Virtual address not on page boundary,\n" " vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size); TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)), "Invalid virtual address, vaddr: 0x%lx", vaddr); TEST_ASSERT((paddr % vm->page_size) == 0, "Physical address not on page boundary,\n" " paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size); TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, "Physical address beyond beyond maximum supported,\n" " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", paddr, vm->max_gfn, vm->page_size); index[0] = (vaddr >> 12) & 0x1ffu; index[1] = (vaddr >> 21) & 0x1ffu; index[2] = (vaddr >> 30) & 0x1ffu; index[3] = (vaddr >> 39) & 0x1ffu; /* Allocate page directory pointer table if not present. */ pml4e = addr_gpa2hva(vm, vm->pgd); if (!pml4e[index[3]].present) { pml4e[index[3]].address = vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot) >> vm->page_shift; pml4e[index[3]].writable = true; pml4e[index[3]].present = true; } /* Allocate page directory table if not present. */ struct pageDirectoryPointerEntry *pdpe; pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size); if (!pdpe[index[2]].present) { pdpe[index[2]].address = vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot) >> vm->page_shift; pdpe[index[2]].writable = true; pdpe[index[2]].present = true; } /* Allocate page table if not present. */ struct pageDirectoryEntry *pde; pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size); if (!pde[index[1]].present) { pde[index[1]].address = vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot) >> vm->page_shift; pde[index[1]].writable = true; pde[index[1]].present = true; } /* Fill in page table entry. */ struct pageTableEntry *pte; pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size); pte[index[0]].address = paddr >> vm->page_shift; pte[index[0]].writable = true; pte[index[0]].present = 1; } /* Virtual Translation Tables Dump * * Input Args: * vm - Virtual Machine * indent - Left margin indent amount * * Output Args: * stream - Output FILE stream * * Return: None * * Dumps to the FILE stream given by stream, the contents of all the * virtual translation tables for the VM given by vm. */ void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) { struct pageMapL4Entry *pml4e, *pml4e_start; struct pageDirectoryPointerEntry *pdpe, *pdpe_start; struct pageDirectoryEntry *pde, *pde_start; struct pageTableEntry *pte, *pte_start; if (!vm->pgd_created) return; fprintf(stream, "%*s " " no\n", indent, ""); fprintf(stream, "%*s index hvaddr gpaddr " "addr w exec dirty\n", indent, ""); pml4e_start = (struct pageMapL4Entry *) addr_gpa2hva(vm, vm->pgd); for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) { pml4e = &pml4e_start[n1]; if (!pml4e->present) continue; fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10lx %u " " %u\n", indent, "", pml4e - pml4e_start, pml4e, addr_hva2gpa(vm, pml4e), (uint64_t) pml4e->address, pml4e->writable, pml4e->execute_disable); pdpe_start = addr_gpa2hva(vm, pml4e->address * vm->page_size); for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) { pdpe = &pdpe_start[n2]; if (!pdpe->present) continue; fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10lx " "%u %u\n", indent, "", pdpe - pdpe_start, pdpe, addr_hva2gpa(vm, pdpe), (uint64_t) pdpe->address, pdpe->writable, pdpe->execute_disable); pde_start = addr_gpa2hva(vm, pdpe->address * vm->page_size); for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) { pde = &pde_start[n3]; if (!pde->present) continue; fprintf(stream, "%*spde 0x%-3zx %p " "0x%-12lx 0x%-10lx %u %u\n", indent, "", pde - pde_start, pde, addr_hva2gpa(vm, pde), (uint64_t) pde->address, pde->writable, pde->execute_disable); pte_start = addr_gpa2hva(vm, pde->address * vm->page_size); for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) { pte = &pte_start[n4]; if (!pte->present) continue; fprintf(stream, "%*spte 0x%-3zx %p " "0x%-12lx 0x%-10lx %u %u " " %u 0x%-10lx\n", indent, "", pte - pte_start, pte, addr_hva2gpa(vm, pte), (uint64_t) pte->address, pte->writable, pte->execute_disable, pte->dirty, ((uint64_t) n1 << 27) | ((uint64_t) n2 << 18) | ((uint64_t) n3 << 9) | ((uint64_t) n4)); } } } } } /* Set Unusable Segment * * Input Args: None * * Output Args: * segp - Pointer to segment register * * Return: None * * Sets the segment register pointed to by segp to an unusable state. */ static void kvm_seg_set_unusable(struct kvm_segment *segp) { memset(segp, 0, sizeof(*segp)); segp->unusable = true; } static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp) { void *gdt = addr_gva2hva(vm, vm->gdt); struct desc64 *desc = gdt + (segp->selector >> 3) * 8; desc->limit0 = segp->limit & 0xFFFF; desc->base0 = segp->base & 0xFFFF; desc->base1 = segp->base >> 16; desc->type = segp->type; desc->s = segp->s; desc->dpl = segp->dpl; desc->p = segp->present; desc->limit1 = segp->limit >> 16; desc->avl = segp->avl; desc->l = segp->l; desc->db = segp->db; desc->g = segp->g; desc->base2 = segp->base >> 24; if (!segp->s) desc->base3 = segp->base >> 32; } /* Set Long Mode Flat Kernel Code Segment * * Input Args: * vm - VM whose GDT is being filled, or NULL to only write segp * selector - selector value * * Output Args: * segp - Pointer to KVM segment * * Return: None * * Sets up the KVM segment pointed to by segp, to be a code segment * with the selector value given by selector. */ static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector, struct kvm_segment *segp) { memset(segp, 0, sizeof(*segp)); segp->selector = selector; segp->limit = 0xFFFFFFFFu; segp->s = 0x1; /* kTypeCodeData */ segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed * | kFlagCodeReadable */ segp->g = true; segp->l = true; segp->present = 1; if (vm) kvm_seg_fill_gdt_64bit(vm, segp); } /* Set Long Mode Flat Kernel Data Segment * * Input Args: * vm - VM whose GDT is being filled, or NULL to only write segp * selector - selector value * * Output Args: * segp - Pointer to KVM segment * * Return: None * * Sets up the KVM segment pointed to by segp, to be a data segment * with the selector value given by selector. */ static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector, struct kvm_segment *segp) { memset(segp, 0, sizeof(*segp)); segp->selector = selector; segp->limit = 0xFFFFFFFFu; segp->s = 0x1; /* kTypeCodeData */ segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed * | kFlagDataWritable */ segp->g = true; segp->present = true; if (vm) kvm_seg_fill_gdt_64bit(vm, segp); } /* Address Guest Virtual to Guest Physical * * Input Args: * vm - Virtual Machine * gpa - VM virtual address * * Output Args: None * * Return: * Equivalent VM physical address * * Translates the VM virtual address given by gva to a VM physical * address and then locates the memory region containing the VM * physical address, within the VM given by vm. When found, the host * virtual address providing the memory to the vm physical address is returned. * A TEST_ASSERT failure occurs if no region containing translated * VM virtual address exists. */ vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) { uint16_t index[4]; struct pageMapL4Entry *pml4e; struct pageDirectoryPointerEntry *pdpe; struct pageDirectoryEntry *pde; struct pageTableEntry *pte; TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " "unknown or unsupported guest mode, mode: 0x%x", vm->mode); index[0] = (gva >> 12) & 0x1ffu; index[1] = (gva >> 21) & 0x1ffu; index[2] = (gva >> 30) & 0x1ffu; index[3] = (gva >> 39) & 0x1ffu; if (!vm->pgd_created) goto unmapped_gva; pml4e = addr_gpa2hva(vm, vm->pgd); if (!pml4e[index[3]].present) goto unmapped_gva; pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size); if (!pdpe[index[2]].present) goto unmapped_gva; pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size); if (!pde[index[1]].present) goto unmapped_gva; pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size); if (!pte[index[0]].present) goto unmapped_gva; return (pte[index[0]].address * vm->page_size) + (gva & 0xfffu); unmapped_gva: TEST_ASSERT(false, "No mapping for vm virtual address, " "gva: 0x%lx", gva); exit(EXIT_FAILURE); } static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt, int gdt_memslot, int pgd_memslot) { if (!vm->gdt) vm->gdt = vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, gdt_memslot, pgd_memslot); dt->base = vm->gdt; dt->limit = getpagesize(); } static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp, int selector, int gdt_memslot, int pgd_memslot) { if (!vm->tss) vm->tss = vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, gdt_memslot, pgd_memslot); memset(segp, 0, sizeof(*segp)); segp->base = vm->tss; segp->limit = 0x67; segp->selector = selector; segp->type = 0xb; segp->present = 1; kvm_seg_fill_gdt_64bit(vm, segp); } static void vcpu_setup(struct kvm_vm *vm, int vcpuid, int pgd_memslot, int gdt_memslot) { struct kvm_sregs sregs; /* Set mode specific system register values. */ vcpu_sregs_get(vm, vcpuid, &sregs); sregs.idt.limit = 0; kvm_setup_gdt(vm, &sregs.gdt, gdt_memslot, pgd_memslot); switch (vm->mode) { case VM_MODE_PXXV48_4K: sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG; sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR; sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX); kvm_seg_set_unusable(&sregs.ldt); kvm_seg_set_kernel_code_64bit(vm, 0x8, &sregs.cs); kvm_seg_set_kernel_data_64bit(vm, 0x10, &sregs.ds); kvm_seg_set_kernel_data_64bit(vm, 0x10, &sregs.es); kvm_setup_tss_64bit(vm, &sregs.tr, 0x18, gdt_memslot, pgd_memslot); break; default: TEST_ASSERT(false, "Unknown guest mode, mode: 0x%x", vm->mode); } sregs.cr3 = vm->pgd; vcpu_sregs_set(vm, vcpuid, &sregs); } /* Adds a vCPU with reasonable defaults (i.e., a stack) * * Input Args: * vcpuid - The id of the VCPU to add to the VM. * guest_code - The vCPU's entry point */ void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code) { struct kvm_mp_state mp_state; struct kvm_regs regs; vm_vaddr_t stack_vaddr; stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(), DEFAULT_GUEST_STACK_VADDR_MIN, 0, 0); /* Create VCPU */ vm_vcpu_add(vm, vcpuid); vcpu_setup(vm, vcpuid, 0, 0); /* Setup guest general purpose registers */ vcpu_regs_get(vm, vcpuid, ®s); regs.rflags = regs.rflags | 0x2; regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize()); regs.rip = (unsigned long) guest_code; vcpu_regs_set(vm, vcpuid, ®s); /* Setup the MP state */ mp_state.mp_state = 0; vcpu_set_mp_state(vm, vcpuid, &mp_state); } /* Allocate an instance of struct kvm_cpuid2 * * Input Args: None * * Output Args: None * * Return: A pointer to the allocated struct. The caller is responsible * for freeing this struct. * * Since kvm_cpuid2 uses a 0-length array to allow a the size of the * array to be decided at allocation time, allocation is slightly * complicated. This function uses a reasonable default length for * the array and performs the appropriate allocation. */ static struct kvm_cpuid2 *allocate_kvm_cpuid2(void) { struct kvm_cpuid2 *cpuid; int nent = 100; size_t size; size = sizeof(*cpuid); size += nent * sizeof(struct kvm_cpuid_entry2); cpuid = malloc(size); if (!cpuid) { perror("malloc"); abort(); } cpuid->nent = nent; return cpuid; } /* KVM Supported CPUID Get * * Input Args: None * * Output Args: * * Return: The supported KVM CPUID * * Get the guest CPUID supported by KVM. */ struct kvm_cpuid2 *kvm_get_supported_cpuid(void) { static struct kvm_cpuid2 *cpuid; int ret; int kvm_fd; if (cpuid) return cpuid; cpuid = allocate_kvm_cpuid2(); kvm_fd = open(KVM_DEV_PATH, O_RDONLY); if (kvm_fd < 0) exit(KSFT_SKIP); ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid); TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n", ret, errno); close(kvm_fd); return cpuid; } /* Locate a cpuid entry. * * Input Args: * cpuid: The cpuid. * function: The function of the cpuid entry to find. * * Output Args: None * * Return: A pointer to the cpuid entry. Never returns NULL. */ struct kvm_cpuid_entry2 * kvm_get_supported_cpuid_index(uint32_t function, uint32_t index) { struct kvm_cpuid2 *cpuid; struct kvm_cpuid_entry2 *entry = NULL; int i; cpuid = kvm_get_supported_cpuid(); for (i = 0; i < cpuid->nent; i++) { if (cpuid->entries[i].function == function && cpuid->entries[i].index == index) { entry = &cpuid->entries[i]; break; } } TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).", function, index); return entry; } /* VM VCPU CPUID Set * * Input Args: * vm - Virtual Machine * vcpuid - VCPU id * cpuid - The CPUID values to set. * * Output Args: None * * Return: void * * Set the VCPU's CPUID. */ void vcpu_set_cpuid(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_cpuid2 *cpuid) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); int rc; TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); rc = ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid); TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i", rc, errno); } /* Create a VM with reasonable defaults * * Input Args: * vcpuid - The id of the single VCPU to add to the VM. * extra_mem_pages - The size of extra memories to add (this will * decide how much extra space we will need to * setup the page tables using mem slot 0) * guest_code - The vCPU's entry point * * Output Args: None * * Return: * Pointer to opaque structure that describes the created VM. */ struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages, void *guest_code) { struct kvm_vm *vm; /* * For x86 the maximum page table size for a memory region * will be when only 4K pages are used. In that case the * total extra size for page tables (for extra N pages) will * be: N/512+N/512^2+N/512^3+... which is definitely smaller * than N/512*2. */ uint64_t extra_pg_pages = extra_mem_pages / 512 * 2; /* Create VM */ vm = vm_create(VM_MODE_DEFAULT, DEFAULT_GUEST_PHY_PAGES + extra_pg_pages, O_RDWR); /* Setup guest code */ kvm_vm_elf_load(vm, program_invocation_name, 0, 0); /* Setup IRQ Chip */ vm_create_irqchip(vm); /* Add the first vCPU. */ vm_vcpu_add_default(vm, vcpuid, guest_code); return vm; } /* VCPU Get MSR * * Input Args: * vm - Virtual Machine * vcpuid - VCPU ID * msr_index - Index of MSR * * Output Args: None * * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced. * * Get value of MSR for VCPU. */ uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); struct { struct kvm_msrs header; struct kvm_msr_entry entry; } buffer = {}; int r; TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); buffer.header.nmsrs = 1; buffer.entry.index = msr_index; r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header); TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n" " rc: %i errno: %i", r, errno); return buffer.entry.data; } /* VCPU Set MSR * * Input Args: * vm - Virtual Machine * vcpuid - VCPU ID * msr_index - Index of MSR * msr_value - New value of MSR * * Output Args: None * * Return: On success, nothing. On failure a TEST_ASSERT is produced. * * Set value of MSR for VCPU. */ void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index, uint64_t msr_value) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); struct { struct kvm_msrs header; struct kvm_msr_entry entry; } buffer = {}; int r; TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); memset(&buffer, 0, sizeof(buffer)); buffer.header.nmsrs = 1; buffer.entry.index = msr_index; buffer.entry.data = msr_value; r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header); TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n" " rc: %i errno: %i", r, errno); } /* VM VCPU Args Set * * Input Args: * vm - Virtual Machine * vcpuid - VCPU ID * num - number of arguments * ... - arguments, each of type uint64_t * * Output Args: None * * Return: None * * Sets the first num function input arguments to the values * given as variable args. Each of the variable args is expected to * be of type uint64_t. */ void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...) { va_list ap; struct kvm_regs regs; TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n" " num: %u\n", num); va_start(ap, num); vcpu_regs_get(vm, vcpuid, ®s); if (num >= 1) regs.rdi = va_arg(ap, uint64_t); if (num >= 2) regs.rsi = va_arg(ap, uint64_t); if (num >= 3) regs.rdx = va_arg(ap, uint64_t); if (num >= 4) regs.rcx = va_arg(ap, uint64_t); if (num >= 5) regs.r8 = va_arg(ap, uint64_t); if (num >= 6) regs.r9 = va_arg(ap, uint64_t); vcpu_regs_set(vm, vcpuid, ®s); va_end(ap); } /* * VM VCPU Dump * * Input Args: * vm - Virtual Machine * vcpuid - VCPU ID * indent - Left margin indent amount * * Output Args: * stream - Output FILE stream * * Return: None * * Dumps the current state of the VCPU specified by vcpuid, within the VM * given by vm, to the FILE stream given by stream. */ void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent) { struct kvm_regs regs; struct kvm_sregs sregs; fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid); fprintf(stream, "%*sregs:\n", indent + 2, ""); vcpu_regs_get(vm, vcpuid, ®s); regs_dump(stream, ®s, indent + 4); fprintf(stream, "%*ssregs:\n", indent + 2, ""); vcpu_sregs_get(vm, vcpuid, &sregs); sregs_dump(stream, &sregs, indent + 4); } struct kvm_x86_state { struct kvm_vcpu_events events; struct kvm_mp_state mp_state; struct kvm_regs regs; struct kvm_xsave xsave; struct kvm_xcrs xcrs; struct kvm_sregs sregs; struct kvm_debugregs debugregs; union { struct kvm_nested_state nested; char nested_[16384]; }; struct kvm_msrs msrs; }; static int kvm_get_num_msrs(struct kvm_vm *vm) { struct kvm_msr_list nmsrs; int r; nmsrs.nmsrs = 0; r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs); TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i", r); return nmsrs.nmsrs; } struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); struct kvm_msr_list *list; struct kvm_x86_state *state; int nmsrs, r, i; static int nested_size = -1; if (nested_size == -1) { nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE); TEST_ASSERT(nested_size <= sizeof(state->nested_), "Nested state size too big, %i > %zi", nested_size, sizeof(state->nested_)); } /* * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees * guest state is consistent only after userspace re-enters the * kernel with KVM_RUN. Complete IO prior to migrating state * to a new VM. */ vcpu_run_complete_io(vm, vcpuid); nmsrs = kvm_get_num_msrs(vm); list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0])); list->nmsrs = nmsrs; r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i", r); state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0])); r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i", r); r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i", r); r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i", r); r = ioctl(vcpu->fd, KVM_GET_XSAVE, &state->xsave); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i", r); if (kvm_check_cap(KVM_CAP_XCRS)) { r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i", r); } r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i", r); if (nested_size) { state->nested.size = sizeof(state->nested_); r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i", r); TEST_ASSERT(state->nested.size <= nested_size, "Nested state size too big, %i (KVM_CHECK_CAP gave %i)", state->nested.size, nested_size); } else state->nested.size = 0; state->msrs.nmsrs = nmsrs; for (i = 0; i < nmsrs; i++) state->msrs.entries[i].index = list->indices[i]; r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs); TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed MSR was 0x%x)", r, r == nmsrs ? -1 : list->indices[r]); r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i", r); free(list); return state; } void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); int r; r = ioctl(vcpu->fd, KVM_SET_XSAVE, &state->xsave); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i", r); if (kvm_check_cap(KVM_CAP_XCRS)) { r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i", r); } r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i", r); r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs); TEST_ASSERT(r == state->msrs.nmsrs, "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)", r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index); r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i", r); r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i", r); r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i", r); r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i", r); if (state->nested.size) { r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i", r); } } bool is_intel_cpu(void) { int eax, ebx, ecx, edx; const uint32_t *chunk; const int leaf = 0; __asm__ __volatile__( "cpuid" : /* output */ "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx) : /* input */ "0"(leaf), "2"(0)); chunk = (const uint32_t *)("GenuineIntel"); return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]); } uint32_t kvm_get_cpuid_max(void) { return kvm_get_supported_cpuid_entry(0x80000000)->eax; } void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits) { struct kvm_cpuid_entry2 *entry; bool pae; /* SDM 4.1.4 */ if (kvm_get_cpuid_max() < 0x80000008) { pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6); *pa_bits = pae ? 36 : 32; *va_bits = 32; } else { entry = kvm_get_supported_cpuid_entry(0x80000008); *pa_bits = entry->eax & 0xff; *va_bits = (entry->eax >> 8) & 0xff; } }