/*
 * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved.
 * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
 *
 * Permission to use, copy, modify, and/or distribute this software for
 * any purpose with or without fee is hereby granted, provided that the
 * above copyright notice and this permission notice appear in all
 * copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
 * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
 * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
 * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
 * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
 * PERFORMANCE OF THIS SOFTWARE.
 */

/**
 * DOC: qdf_util.h
 * This file defines utility functions.
 */

#ifndef _QDF_UTIL_H
#define _QDF_UTIL_H

#include <i_qdf_util.h>

#ifdef QCA_CONFIG_SMP
#define QDF_MAX_AVAILABLE_CPU	8
#else
#define QDF_MAX_AVAILABLE_CPU	1
#endif

typedef __qdf_wait_queue_head_t qdf_wait_queue_head_t;

/**
 * qdf_unlikely - Compiler-dependent macro denoting code unlikely to execute
 * @_expr: expression to be checked
 */
#define qdf_unlikely(_expr)     __qdf_unlikely(_expr)

/**
 * qdf_likely - Compiler-dependent macro denoting code likely to execute
 * @_expr: expression to be checked
 */
#define qdf_likely(_expr)       __qdf_likely(_expr)

/**
 * qdf_wmb - write memory barrier.
 */
#define qdf_wmb()                 __qdf_wmb()

/**
 * qdf_rmb - read memory barrier.
 */
#define qdf_rmb()                 __qdf_rmb()

/**
 * qdf_mb - read + write memory barrier.
 */
#define qdf_mb()                 __qdf_mb()

/**
 * qdf_ioread32 - read a register
 * @offset: register address
 */
#define qdf_ioread32(offset)            __qdf_ioread32(offset)

/**
 * qdf_iowrite32 - write a register
 * @offset: register address
 * @value: value to write (32bit value)
 */
#define qdf_iowrite32(offset, value)    __qdf_iowrite32(offset, value)

/**
 * qdf_assert - assert "expr" evaluates to false.
 * @expr: expression to test
 */
#ifdef QDF_DEBUG
#define qdf_assert(expr)         __qdf_assert(expr)
#else
#define qdf_assert(expr)
#endif /* QDF_DEBUG */

/**
 * qdf_assert_always - always assert "expr" evaluates to false.
 * @expr: expression to test
 */
#define qdf_assert_always(expr)  __qdf_assert(expr)

/**
 * qdf_target_assert_always - always target assert "expr" evaluates to false.
 * @expr: expression to test
 */
#define qdf_target_assert_always(expr)  __qdf_target_assert(expr)

#define QDF_SET_PARAM(__param, __val)    ((__param) |= (1 << (__val)))
#define QDF_HAS_PARAM(__param, __val)    ((__param) &  (1 << (__val)))
#define QDF_CLEAR_PARAM(__param, __val)  ((__param) &= (~(1 << (__val))))

/**
 * QDF_MAX - get maximum of two values
 * @_x: 1st argument
 * @_y: 2nd argument
 */
#define QDF_MAX(_x, _y) (((_x) > (_y)) ? (_x) : (_y))

/**
 * QDF_MIN - get minimum of two values
 * @_x: 1st argument
 * @_y: 2nd argument
 */
#define QDF_MIN(_x, _y) (((_x) < (_y)) ? (_x) : (_y))

/**
 * QDF_IS_ADDR_BROADCAST - is mac address broadcast mac address
 * @_a: pointer to mac address
 */
#define QDF_IS_ADDR_BROADCAST(_a)  \
	((_a)[0] == 0xff &&        \
	 (_a)[1] == 0xff &&        \
	 (_a)[2] == 0xff &&        \
	 (_a)[3] == 0xff &&        \
	 (_a)[4] == 0xff &&        \
	 (_a)[5] == 0xff)

/* Get number of bits from the index bit */
#define QDF_GET_BITS(_val, _index, _num_bits) \
		(((_val) >> (_index)) & ((1 << (_num_bits)) - 1))

/* Set val to number of bits from the index bit */
#define QDF_SET_BITS(_var, _index, _num_bits, _val) do { \
		(_var) &= ~(((1 << (_num_bits)) - 1) << (_index)); \
		(_var) |= (((_val) & ((1 << (_num_bits)) - 1)) << (_index)); \
		} while (0)

#define QDF_SET_BITS64(_var, _tmp, _index, _num_bits, _val) do { \
		(_var) = (((_var) & 0xffffffff00000000) >> 32); \
		(_var) &= ~(((1 << (_num_bits)) - 1) << ((_index) - 32)); \
		(_var) |= (((_val) & ((1 << (_num_bits)) - 1)) << ((_index) - 32)); \
		(_var) = (((_var) & 0x00000000ffffffff) << 32); \
		(_var) |= ((_tmp) & 0x00000000ffffffff); \
		} while (0)

/* Get number of bits from the index bit supporting 64 bits */
#define QDF_GET_BITS64(_val, _index, _num_bits) \
		(((_val) >> (_index)) & ((1LLU << (_num_bits)) - 1))

#define QDF_DECLARE_EWMA(name, factor, weight) \
	__QDF_DECLARE_EWMA(name, factor, weight)

#define qdf_ewma_tx_lag __qdf_ewma_tx_lag

#define qdf_ewma_tx_lag_init(tx_lag) \
	__qdf_ewma_tx_lag_init(tx_lag)

#define qdf_ewma_tx_lag_add(tx_lag, value) \
	__qdf_ewma_tx_lag_add(tx_lag, value)

#define qdf_ewma_tx_lag_read(tx_lag) \
	 __qdf_ewma_tx_lag_read(tx_lag)

#define qdf_ewma_rx_rssi __qdf_ewma_rx_rssi

#define qdf_ewma_rx_rssi_init(rx_rssi) \
	__qdf_ewma_rx_rssi_init(rx_rssi)

#define qdf_ewma_rx_rssi_add(rx_rssi, value) \
	__qdf_ewma_rx_rssi_add(rx_rssi, value)

#define qdf_ewma_rx_rssi_read(rx_rssi) \
	__qdf_ewma_rx_rssi_read(rx_rssi)

#define QDF_CHAR_BIT 8

/**
 * qdf_bitmap - Define a bitmap
 * @name: name of the bitmap
 * @bits: num of bits in the bitmap
 *
 * Return: none
 */
#define qdf_bitmap(name, bits) __qdf_bitmap(name, bits)

/**
 * qdf_set_bit() - set bit in address
 * @nr: bit number to be set
 * @addr: address buffer pointer
 *
 * Return: none
 */
#define qdf_set_bit(nr, addr)    __qdf_set_bit(nr, addr)

/**
 * qdf_clear_bit() - clear bit in address
 * @nr: bit number to be clear
 * @addr: address buffer pointer
 *
 * Return: none
 */
#define qdf_clear_bit(nr, addr)    __qdf_clear_bit(nr, addr)

/**
 * qdf_test_bit() - test bit position in address
 * @nr: bit number to be tested
 * @addr: address buffer pointer
 *
 * Return: none
 */
#define qdf_test_bit(nr, addr)    __qdf_test_bit(nr, addr)

/**
 * qdf_test_and_clear_bit() - test and clear bit position in address
 * @nr: bit number to be tested
 * @addr: address buffer pointer
 *
 * Return: none
 */
#define qdf_test_and_clear_bit(nr, addr)    __qdf_test_and_clear_bit(nr, addr)

/**
 * qdf_find_first_bit() - find first bit position in address
 * @addr: address buffer pointer
 * @nbits: number of bits
 *
 * Return: position first set bit in addr
 */
#define qdf_find_first_bit(addr, nbits)    __qdf_find_first_bit(addr, nbits)

/**
 * qdf_bitmap_empty() - Check if bitmap is empty
 * @addr: Address buffer pointer
 * @nbits: Number of bits
 *
 * Return: True if no bit set, else false
 */
#define qdf_bitmap_empty(addr, nbits)    __qdf_bitmap_empty(addr, nbits)

/**
 * qdf_bitmap_and() - AND operation on the bitmap
 * @dst: Destination buffer pointer
 * @src1: First source buffer pointer
 * @src2: Second source buffer pointer
 * @nbits: Number of bits
 *
 * Return: Bitwise and of src1 and src2 in dst
 */
#define qdf_bitmap_and(dst, src1, src2, nbits) \
		__qdf_bitmap_and(dst, src1, src2, nbits)

#define qdf_wait_queue_interruptible(wait_queue, condition) \
		__qdf_wait_queue_interruptible(wait_queue, condition)

/**
 * qdf_wait_queue_timeout() - wait for specified time on given condition
 * @wait_queue: wait queue to wait on
 * @condition: condition to wait on
 * @timeout: timeout value in jiffies
 *
 * Return: 0 if condition becomes false after timeout
 *         1 or remaining jiffies, if condition becomes true during timeout
 */
#define qdf_wait_queue_timeout(wait_queue, condition, timeout) \
			__qdf_wait_queue_timeout(wait_queue, \
						condition, timeout)


#define qdf_init_waitqueue_head(_q) __qdf_init_waitqueue_head(_q)

#define qdf_wake_up_interruptible(_q) __qdf_wake_up_interruptible(_q)

/**
 * qdf_wake_up() - wakes up sleeping waitqueue
 * @_q: wait queue, which needs wake up
 *
 * Return: none
 */
#define qdf_wake_up(_q) __qdf_wake_up(_q)

#define qdf_wake_up_completion(_q) __qdf_wake_up_completion(_q)

/**
 * qdf_container_of() - cast a member of a structure out to the containing
 * structure
 * @ptr: the pointer to the member.
 * @type: the type of the container struct this is embedded in.
 * @member: the name of the member within the struct.
 */
#define qdf_container_of(ptr, type, member) \
	 __qdf_container_of(ptr, type, member)

/**
 * QDF_IS_PWR2() - test input value is power of 2 integer
 * @value: input integer
 */
#define QDF_IS_PWR2(value) (((value) ^ ((value)-1)) == ((value) << 1) - 1)

/**
 * qdf_roundup() - roundup the input value
 * @x: value to roundup
 * @y: input value rounded to multiple of this
 *
 * Return: rounded value
 */
#define qdf_roundup(x, y) __qdf_roundup(x, y)

/**
 * qdf_ceil() - roundup of x/y
 * @x: dividend
 * @y: divisor
 *
 * Return: rounded value
 */
#define qdf_ceil(x, y) __qdf_ceil(x, y)

/**
 * qdf_in_interrupt - returns true if in interrupt context
 */
#define qdf_in_interrupt  __qdf_in_interrupt

/**
 * qdf_is_macaddr_equal() - compare two QDF MacAddress
 * @mac_addr1: Pointer to one qdf MacAddress to compare
 * @mac_addr2: Pointer to the other qdf MacAddress to compare
 *
 * This function returns a bool that tells if a two QDF MacAddress'
 * are equivalent.
 *
 * Return: true if the MacAddress's are equal
 * not true if the MacAddress's are not equal
 */
static inline bool qdf_is_macaddr_equal(const struct qdf_mac_addr *mac_addr1,
					const struct qdf_mac_addr *mac_addr2)
{
	return __qdf_is_macaddr_equal(mac_addr1, mac_addr2);
}


/**
 * qdf_is_macaddr_zero() - check for a MacAddress of all zeros.
 * @mac_addr: pointer to the struct qdf_mac_addr to check.
 *
 * This function returns a bool that tells if a MacAddress is made up of
 * all zeros.
 *
 * Return: true if the MacAddress is all Zeros
 * false if the MacAddress is not all Zeros.
 */
static inline bool qdf_is_macaddr_zero(const struct qdf_mac_addr *mac_addr)
{
	struct qdf_mac_addr zero_mac_addr = QDF_MAC_ADDR_ZERO_INIT;

	return qdf_is_macaddr_equal(mac_addr, &zero_mac_addr);
}

/**
 * qdf_zero_macaddr() - zero out a MacAddress
 * @mac_addr: pointer to the struct qdf_mac_addr to zero.
 *
 * This function zeros out a QDF MacAddress type.
 *
 * Return: none
 */
static inline void qdf_zero_macaddr(struct qdf_mac_addr *mac_addr)
{
	__qdf_zero_macaddr(mac_addr);
}


/**
 * qdf_is_macaddr_group() - check for a MacAddress is a 'group' address
 * @mac_addr: pointer to the qdf MacAddress to check
 *
 * This function returns a bool that tells if a the input QDF MacAddress
 * is a "group" address. Group addresses have the 'group address bit' turned
 * on in the MacAddress. Group addresses are made up of Broadcast and
 * Multicast addresses.
 *
 * Return: true if the input MacAddress is a Group address
 * false if the input MacAddress is not a Group address
 */
static inline bool qdf_is_macaddr_group(struct qdf_mac_addr *mac_addr)
{
	return mac_addr->bytes[0] & 0x01;
}


/**
 * qdf_is_macaddr_broadcast() - check for a MacAddress is a broadcast address
 * @mac_addr: Pointer to the qdf MacAddress to check
 *
 * This function returns a bool that tells if a the input QDF MacAddress
 * is a "broadcast" address.
 *
 * Return: true if the input MacAddress is a broadcast address
 * flase if the input MacAddress is not a broadcast address
 */
static inline bool qdf_is_macaddr_broadcast(const struct qdf_mac_addr *mac_addr)
{
	struct qdf_mac_addr broadcast_mac_addr = QDF_MAC_ADDR_BCAST_INIT;
	return qdf_is_macaddr_equal(mac_addr, &broadcast_mac_addr);
}

/**
 * qdf_copy_macaddr() - copy a QDF MacAddress
 * @dst_addr: pointer to the qdf MacAddress to copy TO (the destination)
 * @src_addr: pointer to the qdf MacAddress to copy FROM (the source)
 *
 * This function copies a QDF MacAddress into another QDF MacAddress.
 *
 * Return: none
 */
static inline void qdf_copy_macaddr(struct qdf_mac_addr *dst_addr,
				    const struct qdf_mac_addr *src_addr)
{
	*dst_addr = *src_addr;
}

/**
 * qdf_set_macaddr_broadcast() - set a QDF MacAddress to the 'broadcast'
 * @mac_addr: pointer to the qdf MacAddress to set to broadcast
 *
 * This function sets a QDF MacAddress to the 'broadcast' MacAddress. Broadcast
 * MacAddress contains all 0xFF bytes.
 *
 * Return: none
 */
static inline void qdf_set_macaddr_broadcast(struct qdf_mac_addr *mac_addr)
{
	__qdf_set_macaddr_broadcast(mac_addr);
}

/**
 * qdf_set_u16() - Assign 16-bit unsigned value to a byte array base on CPU's
 * endianness.
 * @ptr: Starting address of a byte array
 * @value: The value to assign to the byte array
 *
 * Caller must validate the byte array has enough space to hold the value
 *
 * Return: The address to the byte after the assignment. This may or may not
 * be valid. Caller to verify.
 */
static inline uint8_t *qdf_set_u16(uint8_t *ptr, uint16_t value)
{
#if defined(ANI_BIG_BYTE_ENDIAN)
	*(ptr) = (uint8_t) (value >> 8);
	*(ptr + 1) = (uint8_t) (value);
#else
	*(ptr + 1) = (uint8_t) (value >> 8);
	*(ptr) = (uint8_t) (value);
#endif
	return ptr + 2;
}

/**
 * qdf_get_u16() - Retrieve a 16-bit unsigned value from a byte array base on
 * CPU's endianness.
 * @ptr: Starting address of a byte array
 * @value: Pointer to a caller allocated buffer for 16 bit value. Value is to
 * assign to this location.
 *
 * Caller must validate the byte array has enough space to hold the value
 *
 * Return: The address to the byte after the assignment. This may or may not
 * be valid. Caller to verify.
 */
static inline uint8_t *qdf_get_u16(uint8_t *ptr, uint16_t *value)
{
#if defined(ANI_BIG_BYTE_ENDIAN)
	*value = (((uint16_t) (*ptr << 8)) | ((uint16_t) (*(ptr + 1))));
#else
	*value = (((uint16_t) (*(ptr + 1) << 8)) | ((uint16_t) (*ptr)));
#endif
	return ptr + 2;
}

/**
 * qdf_get_u32() - retrieve a 32-bit unsigned value from a byte array base on
 * CPU's endianness.
 * @ptr: Starting address of a byte array
 * @value: Pointer to a caller allocated buffer for 32 bit value. Value is to
 * assign to this location.
 *
 * Caller must validate the byte array has enough space to hold the value
 *
 * Return: The address to the byte after the assignment. This may or may not
 * be valid. Caller to verify.
 */
static inline uint8_t *qdf_get_u32(uint8_t *ptr, uint32_t *value)
{
#if defined(ANI_BIG_BYTE_ENDIAN)
	*value = ((uint32_t) (*(ptr) << 24) |
		   (uint32_t) (*(ptr + 1) << 16) |
		   (uint32_t) (*(ptr + 2) << 8) | (uint32_t) (*(ptr + 3)));
#else
	*value = ((uint32_t) (*(ptr + 3) << 24) |
		   (uint32_t) (*(ptr + 2) << 16) |
		   (uint32_t) (*(ptr + 1) << 8) | (uint32_t) (*(ptr)));
#endif
	return ptr + 4;
}

/**
 * qdf_abs() - Get absolute value
 * @x: value to be converted
 */
#define qdf_abs(x)                           __qdf_abs(x)

/**
 * qdf_ntohs() - Convert a 16-bit value from network byte order to host byte order
 * @x: value to be converted
 */
#define qdf_ntohs(x)                         __qdf_ntohs(x)

/**
 * qdf_ntohl() - Convert a 32-bit value from network byte order to host byte order
 * @x: value to be converted
 */
#define qdf_ntohl(x)                         __qdf_ntohl(x)

/**
 * qdf_htons() - Convert a 16-bit value from host byte order to network byte order
 * @x: value to be converted
 */
#define qdf_htons(x)                         __qdf_htons(x)

/**
 * qdf_htonl() - Convert a 32-bit value from host byte order to network byte order
 * @x: value to be converted
 */
#define qdf_htonl(x)                         __qdf_htonl(x)

/**
 * qdf_cpu_to_le16() - Convert a 16-bit value from CPU byte order to
 * little-endian byte order
 *
 * @x: value to be converted
 */
#define qdf_cpu_to_le16(x)                   __qdf_cpu_to_le16(x)

/**
 * qdf_cpu_to_le32() - Convert a 32-bit value from CPU byte order to
 * little-endian byte order
 *
 * @x: value to be converted
 */
#define qdf_cpu_to_le32(x)                   __qdf_cpu_to_le32(x)

/**
 * qdf_cpu_to_le64() - Convert a 64-bit value from CPU byte order to
 * little-endian byte order
 *
 * @x: value to be converted
 */
#define qdf_cpu_to_le64(x)                   __qdf_cpu_to_le64(x)

/**
 * qdf_le16_to_cpu() - Convert a 16-bit value from little-endian byte order
 * to CPU byte order
 *
 * @x: value to be converted
 */
#define qdf_le16_to_cpu(x)                   __qdf_le16_to_cpu(x)

/**
 * qdf_le32_to_cpu() - Convert a 32-bit value from little-endian byte
 * order to CPU byte order
 *
 * @x: value to be converted
 */
#define qdf_le32_to_cpu(x)                   __qdf_le32_to_cpu(x)

/**
 * qdf_le64_to_cpu() - Convert a 64-bit value from little-endian byte
 * order to CPU byte order
 *
 * @x: value to be converted
 */
#define qdf_le64_to_cpu(x)                   __qdf_le64_to_cpu(x)

/**
 * qdf_cpu_to_be16() - Convert a 16-bit value from CPU byte order to
 * big-endian byte order
 *
 * @x: value to be converted
 */
#define qdf_cpu_to_be16(x)                   __qdf_cpu_to_be16(x)

/**
 * qdf_cpu_to_be32() - Convert a 32-bit value from CPU byte order to
 * big-endian byte order
 *
 * @x: value to be converted
 */
#define qdf_cpu_to_be32(x)                   __qdf_cpu_to_be32(x)

/**
 * qdf_cpu_to_be64() - Convert a 64-bit value from CPU byte order to
 * big-endian byte order
 *
 * @x: value to be converted
 */
#define qdf_cpu_to_be64(x)                   __qdf_cpu_to_be64(x)


/**
 * qdf_be16_to_cpu() - Convert a 16-bit value from big-endian byte order
 * to CPU byte order
 *
 * @x: value to be converted
 */
#define qdf_be16_to_cpu(x)                   __qdf_be16_to_cpu(x)

/**
 * qdf_be32_to_cpu() - Convert a 32-bit value from big-endian byte order
 * to CPU byte order
 *
 * @x: value to be converted
 */
#define qdf_be32_to_cpu(x)                   __qdf_be32_to_cpu(x)

/**
 * qdf_be64_to_cpu() - Convert a 64-bit value from big-endian byte order
 * to CPU byte order
 *
 * @x: value to be converted
 */
#define qdf_be64_to_cpu(x)                   __qdf_be64_to_cpu(x)

/**
 * qdf_function - replace with the name of the current function
 */
#define qdf_function             __qdf_function

/**
 * qdf_min() - minimum of two numbers
 * @a: first number
 * @b: second number
 */
#define qdf_min(a, b)   __qdf_min(a, b)

/**
 * qdf_ffz() - find first (least significant) zero bit
 * @mask: the bitmask to check
 *
 * Return: The zero-based index of the first zero bit, or -1 if none are found
 */
#define qdf_ffz(mask) __qdf_ffz(mask)

/**
 * qdf_prefetch - prefetches the cacheline for read
 *
 * @x: address to be prefetched
 */
#define qdf_prefetch(x)                   __qdf_prefetch(x)

/**
 * qdf_get_pwr2() - get next power of 2 integer from input value
 * @value: input value to find next power of 2 integer
 *
 * Get next power of 2 integer from input value
 *
 * Return: Power of 2 integer
 */
static inline int qdf_get_pwr2(int value)
{
	int log2;

	if (QDF_IS_PWR2(value))
		return value;

	log2 = 0;
	while (value) {
		value >>= 1;
		log2++;
	}
	return 1 << log2;
}

static inline
int qdf_get_cpu(void)
{
	return __qdf_get_cpu();
}

/**
 * qdf_get_hweight8() - count num of 1's in 8-bit bitmap
 * @w: input bitmap
 *
 * Count num of 1's set in the 8-bit bitmap
 *
 * Return: num of 1's
 */
static inline
unsigned int qdf_get_hweight8(unsigned int w)
{
	unsigned int res = w - ((w >> 1) & 0x55);
	res = (res & 0x33) + ((res >> 2) & 0x33);
	return (res + (res >> 4)) & 0x0F;
}

/**
 * qdf_get_hweight16() - count num of 1's in 16-bit bitmap
 * @w: input bitmap
 *
 * Count num of 1's set in the 16-bit bitmap
 *
 * Return: num of 1's
 */
static inline
unsigned int qdf_get_hweight16(unsigned int w)
{
	unsigned int res = (w & 0x5555) + ((w >> 1) & 0x5555);

	res = (res & 0x3333) + ((res >> 2) & 0x3333);
	res = (res & 0x0F0F) + ((res >> 4) & 0x0F0F);
	return (res & 0x00FF) + ((res >> 8) & 0x00FF);
}

/**
 * qdf_get_hweight32() - count num of 1's in 32-bit bitmap
 * @w: input bitmap
 *
 * Count num of 1's set in the 32-bit bitmap
 *
 * Return: num of 1's
 */
static inline
unsigned int qdf_get_hweight32(unsigned int w)
{
	unsigned int res = (w & 0x55555555) + ((w >> 1) & 0x55555555);

	res = (res & 0x33333333) + ((res >> 2) & 0x33333333);
	res = (res & 0x0F0F0F0F) + ((res >> 4) & 0x0F0F0F0F);
	res = (res & 0x00FF00FF) + ((res >> 8) & 0x00FF00FF);
	return (res & 0x0000FFFF) + ((res >> 16) & 0x0000FFFF);
}

/**
 * qdf_device_init_wakeup() - allow a device to wake up the aps system
 * @qdf_dev: the qdf device context
 * @enable: enable/disable the device as a wakeup source
 *
 * Return: 0 or errno
 */
static inline int qdf_device_init_wakeup(qdf_device_t qdf_dev, bool enable)
{
	return __qdf_device_init_wakeup(qdf_dev, enable);
}

static inline
uint64_t qdf_get_totalramsize(void)
{
	return __qdf_get_totalramsize();
}

/**
 * qdf_get_lower_32_bits() - get lower 32 bits from an address.
 * @addr: address
 *
 * This api returns the lower 32 bits of an address.
 *
 * Return: lower 32 bits.
 */
static inline
uint32_t qdf_get_lower_32_bits(qdf_dma_addr_t addr)
{
	return __qdf_get_lower_32_bits(addr);
}

/**
 * qdf_get_upper_32_bits() - get upper 32 bits from an address.
 * @addr: address
 *
 * This api returns the upper 32 bits of an address.
 *
 * Return: upper 32 bits.
 */
static inline
uint32_t qdf_get_upper_32_bits(qdf_dma_addr_t addr)
{
	return __qdf_get_upper_32_bits(addr);
}

/**
 * qdf_rounddown_pow_of_two() - Round down to nearest power of two
 * @n: number to be tested
 *
 * Test if the input number is power of two, and return the nearest power of two
 *
 * Return: number rounded down to the nearest power of two
 */
static inline
unsigned long qdf_rounddown_pow_of_two(unsigned long n)
{
	return __qdf_rounddown_pow_of_two(n);
}

/**
 * qdf_set_dma_coherent_mask() - set max number of bits allowed in dma addr
 * @dev: device pointer
 * @addr_bits: max number of bits allowed in dma address
 *
 * This API sets the maximum allowed number of bits in the dma address.
 *
 * Return: 0 - success, non zero - failure
 */
static inline
int qdf_set_dma_coherent_mask(struct device *dev, uint8_t addr_bits)
{
	return __qdf_set_dma_coherent_mask(dev, addr_bits);
}

/**
 * qdf_do_div() - wrapper function for kernel macro(do_div).
 * @dividend: Dividend value
 * @divisor : Divisor value
 *
 * Return: Quotient
 */
static inline
uint64_t qdf_do_div(uint64_t dividend, uint32_t divisor)
{
	return __qdf_do_div(dividend, divisor);
}

/**
 * qdf_do_div_rem() - wrapper function for kernel macro(do_div)
 *                    to get remainder.
 * @dividend: Dividend value
 * @divisor : Divisor value
 *
 * Return: remainder
 */
static inline
uint64_t qdf_do_div_rem(uint64_t dividend, uint32_t divisor)
{
	return __qdf_do_div_rem(dividend, divisor);
}

/**
 * qdf_get_random_bytes() - returns nbytes bytes of random data
 * @buf: buffer to fill
 * @nbytes: number of bytes to fill
 *
 * Return: random bytes of data
 */
static inline
void qdf_get_random_bytes(void *buf, int nbytes)
{
	return __qdf_get_random_bytes(buf, nbytes);
}

/**
 * qdf_hex_to_bin() - QDF API to Convert hexa decimal ASCII character to
 * unsigned integer value.
 * @ch: hexa decimal ASCII character
 *
 * Return: For hexa decimal ASCII char return actual decimal value
 *	   else -1 for bad input.
 */
static inline
int qdf_hex_to_bin(char ch)
{
	return __qdf_hex_to_bin(ch);
}

/**
 * qdf_hex_str_to_binary() - QDF API to Convert string of hexa decimal
 * ASCII characters to array of unsigned integers.
 * @dst: output array to hold converted values
 * @src: input string of hexa decimal ASCII characters
 * @count: size of dst string
 *
 * This function is used to convert string of hexa decimal characters to
 * array of unsigned integers and caller should ensure:
 *	a) @dst, @src are not NULL,
 *	b) size of @dst should be (size of src / 2)
 *
 * Example 1:
 * src = 11aa, means, src[0] = '1', src[1] = '2', src[2] = 'a', src[3] = 'a'
 * count = (size of src / 2) = 2
 * after conversion, dst[0] = 0x11, dst[1] = oxAA and return (0).
 *
 * Example 2:
 * src = 11az, means, src[0] = '1', src[1] = '2', src[2] = 'a', src[3] = 'z'
 * src[3] is not ASCII hexa decimal character, return negative value (-1).
 *
 * Return: For a string of hexa decimal ASCII characters return 0
 *	   else -1 for bad input.
 */
static inline
int qdf_hex_str_to_binary(u8 *dst, const char *src, size_t count)
{
	return __qdf_hex_str_to_binary(dst, src, count);
}

/**
 * qdf_fls() - find last set bit in a given 32 bit input
 * @x: 32 bit mask
 *
 * Return: zero if the input is zero, otherwise returns the bit
 * position of the last set bit, where the LSB is 1 and MSB is 32.
 */
static inline
int qdf_fls(uint32_t x)
{
	return __qdf_fls(x);
}

/**
 * qdf_get_smp_processor_id() - Get the current CPU id
 *
 * Return: current CPU id
 */
static inline int qdf_get_smp_processor_id(void)
{
	return __qdf_get_smp_processor_id();
}

/**
 * qdf_in_atomic: Check whether current thread running in atomic context
 *
 * Return: true if current thread is running in the atomic context
 *	   else it will be return false.
 */
static inline bool qdf_in_atomic(void)
{
	return __qdf_in_atomic();
}
#endif /*_QDF_UTIL_H*/