/* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */ /* Copyright (c) 2001 by D-Link Corporation Written by Edward Peng. Created 03-May-2001, base on Linux' sundance.c. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. */ /* Rev Date Description ========================================================================== 0.01 2001/05/03 Created DL2000-based linux driver 0.02 2001/05/21 Added VLAN and hardware checksum support. 1.00 2001/06/26 Added jumbo frame support. 1.01 2001/08/21 Added two parameters, int_count and int_timeout. 1.02 2001/10/08 Supported fiber media. Added flow control parameters. 1.03 2001/10/12 Changed the default media to 1000mbps_fd for the fiber devices. 1.04 2001/11/08 Fixed a bug which Tx stop when a very busy case. */ #include "dl2k.h" static char version[] __devinitdata = KERN_INFO "D-Link DL2000-based linux driver v1.04 2001/11/08\n"; #define MAX_UNITS 8 static int mtu[MAX_UNITS]; static int vlan[MAX_UNITS]; static int jumbo[MAX_UNITS]; static char *media[MAX_UNITS]; static int tx_flow[MAX_UNITS]; static int rx_flow[MAX_UNITS]; static int copy_thresh; static int int_count; /* Rx frame count each interrupt */ static int int_timeout; /* Rx DMA wait time in 64ns increments */ MODULE_AUTHOR ("Edward Peng"); MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter"); MODULE_PARM (mtu, "1-" __MODULE_STRING (MAX_UNITS) "i"); MODULE_PARM (media, "1-" __MODULE_STRING (MAX_UNITS) "s"); MODULE_PARM (vlan, "1-" __MODULE_STRING (MAX_UNITS) "i"); MODULE_PARM (jumbo, "1-" __MODULE_STRING (MAX_UNITS) "i"); MODULE_PARM (tx_flow, "1-" __MODULE_STRING (MAX_UNITS) "i"); MODULE_PARM (rx_flow, "1-" __MODULE_STRING (MAX_UNITS) "i"); MODULE_PARM (copy_thresh, "i"); MODULE_PARM (int_count, "i"); MODULE_PARM (int_timeout, "i"); /* Enable the default interrupts */ #define EnableInt() \ writew(RxDMAComplete | HostError | IntRequested | TxComplete| \ UpdateStats | LinkEvent, ioaddr + IntEnable) static int max_intrloop = 50; static int multicast_filter_limit = 0x40; static int rio_open (struct net_device *dev); static void tx_timeout (struct net_device *dev); static void alloc_list (struct net_device *dev); static int start_xmit (struct sk_buff *skb, struct net_device *dev); static void rio_interrupt (int irq, void *dev_instance, struct pt_regs *regs); static void tx_error (struct net_device *dev, int tx_status); static int receive_packet (struct net_device *dev); static void rio_error (struct net_device *dev, int int_status); static int change_mtu (struct net_device *dev, int new_mtu); static void set_multicast (struct net_device *dev); static struct net_device_stats *get_stats (struct net_device *dev); static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd); static int rio_close (struct net_device *dev); static int find_miiphy (struct net_device *dev); static int parse_eeprom (struct net_device *dev); static int read_eeprom (long ioaddr, int eep_addr); static unsigned get_crc (unsigned char *p, int len); static int mii_wait_link (struct net_device *dev, int wait); static int mii_set_media (struct net_device *dev); static int mii_get_media (struct net_device *dev); static int mii_set_media_pcs (struct net_device *dev); static int mii_get_media_pcs (struct net_device *dev); static int mii_read (struct net_device *dev, int phy_addr, int reg_num); static int mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data); #ifdef RIO_DEBUG static int rio_ioctl_ext (struct net_device *dev, struct ioctl_data *iodata); #endif static int __devinit rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *dev; struct netdev_private *np; static int card_idx; int chip_idx = ent->driver_data; int err, irq = pdev->irq; long ioaddr; static int version_printed; void *ring_space; dma_addr_t ring_dma; if (!version_printed++) printk ("%s", version); err = pci_enable_device (pdev); if (err) return err; err = pci_request_regions (pdev, "dl2k"); if (err) goto err_out_disable; pci_set_master (pdev); dev = alloc_etherdev (sizeof (*np)); if (!dev) { err = -ENOMEM; goto err_out_res; } SET_MODULE_OWNER (dev); #ifdef USE_IO_OPS ioaddr = pci_resource_start (pdev, 0); #else ioaddr = pci_resource_start (pdev, 1); ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE); if (!ioaddr) { err = -ENOMEM; goto err_out_dev; } #endif dev->base_addr = ioaddr; dev->irq = irq; np = dev->priv; np->chip_id = chip_idx; np->pdev = pdev; spin_lock_init (&np->lock); /* Parse manual configuration */ np->an_enable = 1; if (card_idx < MAX_UNITS) { if (media[card_idx] != NULL) { np->an_enable = 0; if (strcmp (media[card_idx], "auto") == 0 || strcmp (media[card_idx], "autosense") == 0 || strcmp (media[card_idx], "0") == 0 ) { np->an_enable = 2; } else if (strcmp (media[card_idx], "100mbps_fd") == 0 || strcmp (media[card_idx], "4") == 0) { np->speed = 100; np->full_duplex = 1; } else if (strcmp (media[card_idx], "100mbps_hd") == 0 || strcmp (media[card_idx], "3") == 0) { np->speed = 100; np->full_duplex = 0; } else if (strcmp (media[card_idx], "10mbps_fd") == 0 || strcmp (media[card_idx], "2") == 0) { np->speed = 10; np->full_duplex = 1; } else if (strcmp (media[card_idx], "10mbps_hd") == 0 || strcmp (media[card_idx], "1") == 0) { np->speed = 10; np->full_duplex = 0; } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 || strcmp (media[card_idx], "5") == 0) { np->speed=1000; np->full_duplex=1; } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 || strcmp (media[card_idx], "6") == 0) { np->speed = 1000; np->full_duplex = 0; } else { np->an_enable = 1; } } if (jumbo[card_idx] != 0) { np->jumbo = 1; dev->mtu = 9000; } else { np->jumbo = 0; if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE) dev->mtu = mtu[card_idx]; } np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ? vlan[card_idx] : 0; if (int_count != 0 && int_timeout != 0) { np->int_count = int_count; np->int_timeout = int_timeout; np->coalesce = 1; } np->tx_flow = (tx_flow[card_idx]) ? 1 : 0; np->rx_flow = (rx_flow[card_idx]) ? 1 : 0; } dev->open = &rio_open; dev->hard_start_xmit = &start_xmit; dev->stop = &rio_close; dev->get_stats = &get_stats; dev->set_multicast_list = &set_multicast; dev->do_ioctl = &rio_ioctl; dev->tx_timeout = &tx_timeout; dev->watchdog_timeo = TX_TIMEOUT; dev->change_mtu = &change_mtu; #ifdef TX_HW_CHECKSUM dev->features = NETIF_F_SG | NETIF_F_HW_CSUM; #endif pci_set_drvdata (pdev, dev); ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma); if (!ring_space) goto err_out_iounmap; np->tx_ring = (struct netdev_desc *) ring_space; np->tx_ring_dma = ring_dma; ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma); if (!ring_space) goto err_out_unmap_tx; np->rx_ring = (struct netdev_desc *) ring_space; np->rx_ring_dma = ring_dma; /* Parse eeprom data */ parse_eeprom (dev); /* Find PHY address */ err = find_miiphy (dev); if (err) goto err_out_unmap_rx; /* Fiber device? */ np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0; /* Set media and reset PHY */ if (np->phy_media) { /* default 1000mbps_fd for fiber deivices */ if (np->an_enable == 1) { np->an_enable = 0; np->speed = 1000; np->full_duplex = 1; } else if (np->an_enable == 2) { np->an_enable = 1; } mii_set_media_pcs (dev); } else { /* Auto-Negotiation is mandatory for 1000BASE-T, IEEE 802.3ab Annex 28D page 14 */ if (np->speed == 1000) np->an_enable = 1; mii_set_media (dev); } /* Reset all logic functions */ writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset, ioaddr + ASICCtrl + 2); err = register_netdev (dev); if (err) goto err_out_unmap_rx; card_idx++; printk (KERN_INFO "%s: %s, %02x:%02x:%02x:%02x:%02x:%02x, IRQ %d\n", dev->name, np->name, dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5], irq); return 0; err_out_unmap_rx: pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma); err_out_unmap_tx: pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma); err_out_iounmap: #ifndef USE_IO_OPS iounmap ((void *) ioaddr); err_out_dev: #endif kfree (dev); err_out_res: pci_release_regions (pdev); err_out_disable: pci_disable_device (pdev); return err; } int find_miiphy (struct net_device *dev) { int i, phy_found = 0; struct netdev_private *np; long ioaddr; np = dev->priv; ioaddr = dev->base_addr; np->phy_addr = 1; for (i = 31; i >= 0; i--) { int mii_status = mii_read (dev, i, 1); if (mii_status != 0xffff && mii_status != 0x0000) { np->phy_addr = i; phy_found++; } } if (!phy_found) { printk (KERN_ERR "%s: No MII PHY found!\n", dev->name); return -ENODEV; } return 0; } int parse_eeprom (struct net_device *dev) { int i, j; long ioaddr = dev->base_addr; u8 sromdata[256]; u8 *psib; u32 crc; PSROM_t psrom = (PSROM_t) sromdata; struct netdev_private *np = dev->priv; int cid, next; /* Read eeprom */ for (i = 0; i < 128; i++) { ((u16 *) sromdata)[i] = le16_to_cpu (read_eeprom (ioaddr, i)); } /* Check CRC */ crc = ~get_crc (sromdata, 256 - 4); if (psrom->crc != crc) { printk (KERN_ERR "%s: EEPROM data CRC error.\n", dev->name); return -1; } /* Set MAC address */ for (i = 0; i < 6; i++) dev->dev_addr[i] = psrom->mac_addr[i]; /* Parse Software Infomation Block */ i = 0x30; psib = (u8 *) sromdata; do { cid = psib[i++]; next = psib[i++]; if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) { printk (KERN_ERR "Cell data error\n"); return -1; } switch (cid) { case 0: /* Format version */ break; case 1: /* End of cell */ return 0; case 2: /* Duplex Polarity */ np->duplex_polarity = psib[i]; writeb (readb (ioaddr + PhyCtrl) | psib[i], ioaddr + PhyCtrl); break; case 3: /* Wake Polarity */ np->wake_polarity = psib[i]; break; case 9: /* Adapter description */ j = (next - i > 255) ? 255 : next - i; memcpy (np->name, &(psib[i]), j); break; case 4: case 5: case 6: case 7: case 8: /* Reversed */ break; default: /* Unknown cell */ return -1; } i = next; } while (1); return 0; } static int rio_open (struct net_device *dev) { struct netdev_private *np = dev->priv; long ioaddr = dev->base_addr; int i; i = request_irq (dev->irq, &rio_interrupt, SA_SHIRQ, dev->name, dev); if (i) return i; /* DebugCtrl bit 4, 5, 9 must set */ writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl); /* Jumbo frame */ if (np->jumbo != 0) writew (9014, ioaddr + MaxFrameSize); alloc_list (dev); /* Get station address */ for (i = 0; i < 6; i++) writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i); set_multicast (dev); if (np->coalesce) { writel (np->int_count | np->int_timeout << 16, ioaddr + RxDMAIntCtrl); } /* Set RIO to poll every N*320nsec. */ writeb (0xff, ioaddr + RxDMAPollPeriod); writeb (0xff, ioaddr + TxDMAPollPeriod); netif_start_queue (dev); writel (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl); /* VLAN supported */ if (np->vlan) { /* priority field in RxDMAIntCtrl */ writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10, ioaddr + RxDMAIntCtrl); /* VLANId */ writew (np->vlan, ioaddr + VLANId); /* Length/Type should be 0x8100 */ writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag); /* Enable AutoVLANuntagging, but disable AutoVLANtagging. VLAN information tagged by TFC' VID, CFI fields. */ writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging, ioaddr + MACCtrl); } /* Enable default interrupts */ EnableInt (); /* clear statistics */ get_stats (dev); return 0; } static void tx_timeout (struct net_device *dev) { struct netdev_private *np = dev->priv; long ioaddr = dev->base_addr; printk (KERN_WARNING "%s: Transmit timed out, TxStatus %4.4x.\n", dev->name, readl (ioaddr + TxStatus)); dev->if_port = 0; dev->trans_start = jiffies; np->stats.tx_errors++; if (!np->tx_full) netif_wake_queue (dev); } /* allocate and initialize Tx and Rx descriptors */ static void alloc_list (struct net_device *dev) { struct netdev_private *np = dev->priv; int i; np->tx_full = 0; np->cur_rx = np->cur_tx = 0; np->old_rx = np->old_tx = 0; np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32); /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */ for (i = 0; i < TX_RING_SIZE; i++) { np->tx_skbuff[i] = 0; np->tx_ring[i].status = 0; } /* Initialize Rx descriptors */ for (i = 0; i < RX_RING_SIZE; i++) { np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma + ((i + 1) % RX_RING_SIZE) * sizeof (struct netdev_desc)); np->rx_ring[i].status = 0; np->rx_ring[i].fraginfo = 0; np->rx_skbuff[i] = 0; } /* Allocate the rx buffers */ for (i = 0; i < RX_RING_SIZE; i++) { /* Allocated fixed size of skbuff */ struct sk_buff *skb = dev_alloc_skb (np->rx_buf_sz); np->rx_skbuff[i] = skb; if (skb == NULL) { printk (KERN_ERR "%s: alloc_list: allocate Rx buffer error! ", dev->name); break; } skb->dev = dev; /* Mark as being used by this device. */ skb_reserve (skb, 2); /* 16 byte align the IP header. */ /* Rubicon now supports 40 bits of addressing space. */ np->rx_ring[i].fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->tail, np->rx_buf_sz, PCI_DMA_FROMDEVICE)); np->rx_ring[i].fraginfo |= cpu_to_le64 (np->rx_buf_sz) << 48; } /* Set RFDListPtr */ writel (cpu_to_le32 (np->rx_ring_dma), dev->base_addr + RFDListPtr0); writel (0, dev->base_addr + RFDListPtr1); return; } static int start_xmit (struct sk_buff *skb, struct net_device *dev) { struct netdev_private *np = dev->priv; struct netdev_desc *txdesc; unsigned entry; u32 ioaddr; int tx_shift; unsigned long flags; ioaddr = dev->base_addr; entry = np->cur_tx % TX_RING_SIZE; np->tx_skbuff[entry] = skb; txdesc = &np->tx_ring[entry]; txdesc->next_desc = 0; /* Set TFDDone to avoid TxDMA gather this descriptor */ txdesc->status = cpu_to_le64 (TFDDone); txdesc->status |= cpu_to_le64 (entry | WordAlignDisable | (1 << FragCountShift)); #ifdef TX_HW_CHECKSUM if (skb->ip_summed == CHECKSUM_HW) { txdesc->status |= cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable | IPChecksumEnable); } #endif if (np->vlan) { txdesc->status |= cpu_to_le64 (VLANTagInsert) | (cpu_to_le64 (np->vlan) << 32) | (cpu_to_le64 (skb->priority) << 45); } /* Send one packet each time at 10Mbps mode */ /* Tx coalescing loop do not exceed 8 */ if (entry % 0x08 == 0 || np->speed == 10) txdesc->status |= cpu_to_le64 (TxIndicate); txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data, skb->len, PCI_DMA_TODEVICE)); txdesc->fraginfo |= cpu_to_le64 (skb->len) << 48; /* Chain the last descriptor's pointer to this one */ if (np->last_tx) np->last_tx->next_desc = cpu_to_le64 (np->tx_ring_dma + entry * sizeof (struct netdev_desc)); np->last_tx = txdesc; /* Clear TFDDone, then TxDMA start to send this descriptor */ txdesc->status &= ~cpu_to_le64 (TFDDone); DEBUG_TFD_DUMP (np); /* TxDMAPollNow */ writel (readl (ioaddr + DMACtrl) | 0x00001000, ioaddr + DMACtrl); np->cur_tx++; if (np->cur_tx - np->old_tx < TX_QUEUE_LEN - 1 && np->speed != 10) { /* do nothing */ } else { np->tx_full = 1; netif_stop_queue (dev); } /* The first TFDListPtr */ if (readl (dev->base_addr + TFDListPtr0) == 0) { writel (np->tx_ring_dma + entry * sizeof (struct netdev_desc), dev->base_addr + TFDListPtr0); writel (0, dev->base_addr + TFDListPtr1); } spin_lock_irqsave (&np->lock, flags); if (np->old_tx > TX_RING_SIZE) { tx_shift = TX_RING_SIZE; np->old_tx -= tx_shift; np->cur_tx -= tx_shift; } spin_unlock_irqrestore (&np->lock, flags); /* NETDEV WATCHDOG timer */ dev->trans_start = jiffies; return 0; } static void rio_interrupt (int irq, void *dev_instance, struct pt_regs *rgs) { struct net_device *dev = dev_instance; struct netdev_private *np; unsigned int_status; long ioaddr; int cnt = max_intrloop; ioaddr = dev->base_addr; np = dev->priv; spin_lock (&np->lock); while (1) { int_status = readw (ioaddr + IntStatus) & (HostError | TxComplete | IntRequested | UpdateStats | LinkEvent | RxDMAComplete); writew (int_status & (HostError | TxComplete | RxComplete | IntRequested | UpdateStats | LinkEvent | TxDMAComplete | RxDMAComplete | RFDListEnd | RxDMAPriority), ioaddr + IntStatus); if (int_status == 0) break; /* Processing received packets */ if (int_status & RxDMAComplete) receive_packet (dev); /* TxComplete interrupt */ if (int_status & TxComplete || np->tx_full) { int tx_status = readl (ioaddr + TxStatus); if (tx_status & 0x01) tx_error (dev, tx_status); /* Send one packet each time at 10Mbps mode */ if (np->speed == 10) { np->tx_full = 0; netif_wake_queue (dev); } /* Free used tx skbuffs */ for (; np->cur_tx - np->old_tx > 0; np->old_tx++) { int entry = np->old_tx % TX_RING_SIZE; struct sk_buff *skb; if (!(np->tx_ring[entry].status & TFDDone)) break; skb = np->tx_skbuff[entry]; pci_unmap_single (np->pdev, np->tx_ring[entry].fraginfo, skb->len, PCI_DMA_TODEVICE); dev_kfree_skb_irq (skb); np->tx_skbuff[entry] = 0; } } /* If the ring is no longer full, clear tx_full and call netif_wake_queue() */ if (np->tx_full && np->cur_tx - np->old_tx < TX_QUEUE_LEN - 1) { np->tx_full = 0; netif_wake_queue (dev); } /* Handle uncommon events */ if (int_status & (IntRequested | HostError | LinkEvent | UpdateStats)) rio_error (dev, int_status); /* If too much interrupts here, disable all interrupts except IntRequest. When CountDown down to 0, IntRequest will be caught by rio_error() to recovery the interrupts */ if (--cnt < 0) { get_stats (dev); writel (1, ioaddr + CountDown); writew (IntRequested, ioaddr + IntEnable); break; } } spin_unlock (&np->lock); } static void tx_error (struct net_device *dev, int tx_status) { struct netdev_private *np; long ioaddr = dev->base_addr; int frame_id; int i; np = dev->priv; frame_id = (tx_status & 0xffff0000) >> 16; printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n", dev->name, tx_status, frame_id); np->stats.tx_errors++; np->stats.tx_dropped++; /* Ttransmit Underrun */ if (tx_status & 0x10) { np->stats.tx_fifo_errors++; writew (readw (ioaddr + TxStartThresh) + 0x10, ioaddr + TxStartThresh); /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */ writew (TxReset | DMAReset | FIFOReset | NetworkReset, ioaddr + ASICCtrl + 2); /* Wait for ResetBusy bit clear */ for (i = 50; i > 0; i--) { if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0) break; mdelay (1); } /* Free completed descriptors */ for (; np->cur_tx - np->old_tx > 0; np->old_tx++) { int entry = np->old_tx % TX_RING_SIZE; struct sk_buff *skb; if (!(np->tx_ring[entry].status & TFDDone)) break; skb = np->tx_skbuff[entry]; pci_unmap_single (np->pdev, np->tx_ring[entry].fraginfo, skb->len, PCI_DMA_TODEVICE); dev_kfree_skb_irq (skb); np->tx_skbuff[entry] = 0; } /* Reset TFDListPtr */ writel (np->tx_ring_dma + np->old_tx * sizeof (struct netdev_desc), dev->base_addr + TFDListPtr0); writel (0, dev->base_addr + TFDListPtr1); /* Let TxStartThresh stay default value */ } /* Late Collision */ if (tx_status & 0x04) { np->stats.tx_fifo_errors++; /* TxReset and clear FIFO */ writew (TxReset | FIFOReset, ioaddr + ASICCtrl + 2); /* Wait reset done */ for (i = 50; i > 0; i--) { if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0) break; mdelay (1); } /* Let TxStartThresh stay default value */ } /* Maximum Collisions */ #ifdef ETHER_STATS if (tx_status & 0x08) np->stats.collisions16++; #else if (tx_status & 0x08) np->stats.collisions++; #endif /* Restart the Tx. */ writel (readw (dev->base_addr + MACCtrl) | TxEnable, ioaddr + MACCtrl); } static int receive_packet (struct net_device *dev) { struct netdev_private *np = (struct netdev_private *) dev->priv; int entry = np->cur_rx % RX_RING_SIZE; int cnt = np->old_rx + RX_RING_SIZE - np->cur_rx; int rx_shift; if (np->old_rx > RX_RING_SIZE) { rx_shift = RX_RING_SIZE; np->old_rx -= rx_shift; np->cur_rx -= rx_shift; } DEBUG_RFD_DUMP (np, 1); /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */ while (1) { struct netdev_desc *desc = &np->rx_ring[entry]; int pkt_len; u64 frame_status; if (!(desc->status & RFDDone) || !(desc->status & FrameStart) || !(desc->status & FrameEnd)) break; /* Chip omits the CRC. */ pkt_len = le64_to_cpu (desc->status & 0xffff); frame_status = le64_to_cpu (desc->status); if (--cnt < 0) break; DEBUG_PKT_DUMP (np, pkt_len); pci_dma_sync_single (np->pdev, desc->fraginfo, np->rx_buf_sz, PCI_DMA_FROMDEVICE); /* Update rx error statistics, drop packet. */ if (frame_status & 0x003f0000) { np->stats.rx_errors++; if (frame_status & 0x00300000) np->stats.rx_length_errors++; if (frame_status & 0x00010000) np->stats.rx_fifo_errors++; if (frame_status & 0x00060000) np->stats.rx_frame_errors++; if (frame_status & 0x00080000) np->stats.rx_crc_errors++; } else { struct sk_buff *skb; /* Small skbuffs for short packets */ if (pkt_len > copy_thresh) { pci_unmap_single (np->pdev, desc->fraginfo, np->rx_buf_sz, PCI_DMA_FROMDEVICE); skb_put (skb = np->rx_skbuff[entry], pkt_len); np->rx_skbuff[entry] = NULL; } else if ((skb = dev_alloc_skb (pkt_len + 2)) != NULL) { skb->dev = dev; /* 16 byte align the IP header */ skb_reserve (skb, 2); eth_copy_and_sum (skb, np->rx_skbuff[entry]->tail, pkt_len, 0); skb_put (skb, pkt_len); } skb->protocol = eth_type_trans (skb, dev); #ifdef RX_HW_CHECKSUM /* Checksum done by hw, but csum value unavailable. */ if (!(frame_status & (TCPError | UDPError | IPError))) { skb->ip_summed = CHECKSUM_UNNECESSARY; } #endif netif_rx (skb); dev->last_rx = jiffies; } entry = (++np->cur_rx) % RX_RING_SIZE; } /* Re-allocate skbuffs to fill the descriptor ring */ for (; np->cur_rx - np->old_rx > 0; np->old_rx++) { struct sk_buff *skb; entry = np->old_rx % RX_RING_SIZE; /* Dropped packets don't need to re-allocate */ if (np->rx_skbuff[entry] == NULL) { skb = dev_alloc_skb (np->rx_buf_sz); if (skb == NULL) { np->rx_ring[entry].fraginfo = 0; printk (KERN_ERR "%s: Allocate Rx buffer error!", dev->name); break; } np->rx_skbuff[entry] = skb; skb->dev = dev; /* 16 byte align the IP header */ skb_reserve (skb, 2); np->rx_ring[entry].fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->tail, np->rx_buf_sz, PCI_DMA_FROMDEVICE)); } np->rx_ring[entry].fraginfo |= cpu_to_le64 (np->rx_buf_sz) << 48; np->rx_ring[entry].status = 0; } /* RxDMAPollNow */ writel (readl (dev->base_addr + DMACtrl) | 0x00000010, dev->base_addr + DMACtrl); DEBUG_RFD_DUMP (np, 2); return 0; } static void rio_error (struct net_device *dev, int int_status) { long ioaddr = dev->base_addr; struct netdev_private *np = dev->priv; u16 macctrl; /* Stop the down counter and recovery the interrupt */ if (int_status & IntRequested) { writew (0, ioaddr + IntEnable); writel (0, ioaddr + CountDown); /* Enable default interrupts */ EnableInt (); } /* Link change event */ if (int_status & LinkEvent) { if (mii_wait_link (dev, 10) == 0) { printk (KERN_INFO "%s: Link up\n", dev->name); if (np->phy_media) mii_get_media_pcs (dev); else mii_get_media (dev); macctrl = 0; macctrl |= (np->full_duplex) ? DuplexSelect : 0; macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0; macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0; writew(macctrl, ioaddr + MACCtrl); } else { printk (KERN_INFO "%s: Link off\n", dev->name); } } /* UpdateStats statistics registers */ if (int_status & UpdateStats) { get_stats (dev); } /* PCI Error, a catastronphic error related to the bus interface occurs, set GlobalReset and HostReset to reset. */ if (int_status & HostError) { printk (KERN_ERR "%s: PCI Error! IntStatus %4.4x.\n", dev->name, int_status); writew (GlobalReset | HostReset, ioaddr + ASICCtrl + 2); mdelay (500); } } static struct net_device_stats * get_stats (struct net_device *dev) { long ioaddr = dev->base_addr; struct netdev_private *np = dev->priv; u16 temp1; u16 temp2; int i; /* All statistics registers need to acknowledge, else overflow could cause some problem */ np->stats.rx_packets += readl (ioaddr + FramesRcvOk); np->stats.tx_packets += readl (ioaddr + FramesXmtOk); np->stats.rx_bytes += readl (ioaddr + OctetRcvOk); np->stats.tx_bytes += readl (ioaddr + OctetXmtOk); temp1 = readw (ioaddr + FrameLostRxError); np->stats.rx_errors += temp1; np->stats.rx_missed_errors += temp1; np->stats.tx_dropped += readw (ioaddr + FramesAbortXSColls); temp1 = readl (ioaddr + SingleColFrames) + readl (ioaddr + MultiColFrames) + readl (ioaddr + LateCollisions); temp2 = readw (ioaddr + CarrierSenseErrors); np->stats.tx_carrier_errors += temp2; np->stats.tx_errors += readw (ioaddr + FramesWEXDeferal) + readl (ioaddr + FramesWDeferredXmt) + temp2; /* detailed rx_error */ np->stats.rx_length_errors += readw (ioaddr + InRangeLengthErrors) + readw (ioaddr + FrameTooLongErrors); np->stats.rx_crc_errors += readw (ioaddr + FrameCheckSeqError); /* Clear all other statistic register. */ readw (ioaddr + MacControlFramesXmtd); readw (ioaddr + BcstFramesXmtdOk); readl (ioaddr + McstFramesXmtdOk); readl (ioaddr + BcstOctetXmtOk); readl (ioaddr + McstOctetXmtOk); readw (ioaddr + MacControlFramesRcvd); readw (ioaddr + BcstFramesRcvOk); readl (ioaddr + McstFramesRcvOk); readl (ioaddr + BcstOctetRcvOk); for (i = 0x100; i <= 0x150; i += 4) readl (ioaddr + i); readw (ioaddr + TxJumboFrames); readw (ioaddr + RxJumboFrames); readw (ioaddr + TCPCheckSumErrors); readw (ioaddr + UDPCheckSumErrors); readw (ioaddr + IPCheckSumErrors); return &np->stats; } int change_mtu (struct net_device *dev, int new_mtu) { struct netdev_private *np = dev->priv; int max = (np->jumbo) ? 9000 : 1536; if ((new_mtu < 68) || (new_mtu > max)) { return -EINVAL; } dev->mtu = new_mtu; return 0; } #define CRC_POLY 0xedb88320 static unsigned get_crc (unsigned char *p, int len) { int bit; unsigned char byte; unsigned crc = 0xffffffff; while (--len >= 0) { byte = *p++; for (bit = 0; bit < 8; bit++, byte >>= 1) { crc = (crc >> 1) ^ (((crc ^ byte) & 1) ? CRC_POLY : 0); } } return crc; } static void set_multicast (struct net_device *dev) { long ioaddr = dev->base_addr; u32 hash_table[2]; u16 rx_mode = 0; int i; struct dev_mc_list *mclist; struct netdev_private *np = dev->priv; /* Default: receive broadcast and unicast */ rx_mode = ReceiveBroadcast | ReceiveUnicast; if (dev->flags & IFF_PROMISC) { /* Receive all frames promiscuously. */ rx_mode |= ReceiveAllFrames; } else if (((dev->flags & IFF_MULTICAST) && (dev->mc_count > multicast_filter_limit)) || (dev->flags & IFF_ALLMULTI)) { /* Receive broadcast and multicast frames */ rx_mode |= ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast; } else if ((dev->flags & IFF_MULTICAST) & (dev->mc_count > 0)) { /* Receive broadcast frames and multicast frames filtering by Hashtable */ rx_mode |= ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast; } if (np->vlan) { /* ReceiveVLANMatch field in ReceiveMode */ rx_mode |= ReceiveVLANMatch; } hash_table[0] = 0x00000000; hash_table[1] = 0x00000000; for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) { set_bit (get_crc (mclist->dmi_addr, ETH_ALEN) & 0x3f, hash_table); } writel (hash_table[0], ioaddr + HashTable0); writel (hash_table[1], ioaddr + HashTable1); writew (rx_mode, ioaddr + ReceiveMode); } static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd) { int phy_addr; struct netdev_private *np = dev->priv; struct mii_data *miidata = (struct mii_data *) &rq->ifr_data; #ifdef RIO_DEBUG struct ioctl_data *iodata = (struct ioctl_data *) (rq->ifr_data); #endif u16 *data = (u16 *) & rq->ifr_data; struct netdev_desc *desc; int i; phy_addr = np->phy_addr; switch (cmd) { case SIOCDEVPRIVATE: #ifdef RIO_DEBUG if (rio_ioctl_ext (dev, iodata) != 0) return -EOPNOTSUPP; break; #else return -EOPNOTSUPP; #endif case SIOCDEVPRIVATE + 1: miidata->out_value = mii_read (dev, phy_addr, miidata->reg_num); break; case SIOCDEVPRIVATE + 2: mii_write (dev, phy_addr, miidata->reg_num, miidata->in_value); break; case SIOCDEVPRIVATE + 3: np->rx_debug = (data[0] <= 7) ? data[0] : 0; printk ("rx_debug = %d\n", np->rx_debug); break; case SIOCDEVPRIVATE + 4: np->tx_debug = (data[0] <= 7) ? data[0] : 0; printk ("tx_debug = %d\n", np->tx_debug); break; case SIOCDEVPRIVATE + 5: np->tx_full = 1; netif_stop_queue (dev); break; case SIOCDEVPRIVATE + 6: np->tx_full = 0; netif_wake_queue (dev); break; case SIOCDEVPRIVATE + 7: printk ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n", np->tx_full, np->cur_tx, np->old_tx, np->cur_rx, np->old_rx); break; case SIOCDEVPRIVATE + 8: for (i = 0; i < TX_RING_SIZE; i++) { desc = &np->tx_ring[i]; printk ("cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x", (u32) (np->tx_ring_dma + i * sizeof (*desc)), (u32) desc->next_desc, (u32) desc->status, (u32) (desc->fraginfo >> 32), (u32) desc->fraginfo); printk ("\n"); } printk ("\n"); break; default: return -EOPNOTSUPP; } return 0; } #ifdef RIO_DEBUG int rio_ioctl_ext (struct net_device *dev, struct ioctl_data *iodata) { struct netdev_private *np = dev->priv; int phy_addr = np->phy_addr; u32 hi, lo; int i; BMCR_t bmcr; BMSR_t bmsr; if (iodata == NULL) goto invalid_cmd; if (strcmp (iodata->signature, "rio") != 0) goto invalid_cmd; switch (iodata->cmd) { case 0: for (i = 0; i < TX_RING_SIZE; i++) { hi = np->tx_ring[i].status >> 32; lo = np->tx_ring[i].status; printk ("TFC=%08x %08x \n", hi, lo); } break; case 1: for (i = 0; i < RX_RING_SIZE; i++) { hi = np->rx_ring[i].status >> 32; lo = np->rx_ring[i].status; printk ("RFS=%08x %08x \n", hi, lo); } break; case 2: break; case 3: if (iodata->data != NULL) np->tx_debug = iodata->data[0]; break; case 4: /* Soft reset PHY */ mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET); bmcr.image = 0; bmcr.bits.an_enable = 1; bmcr.bits.reset = 1; mii_write (dev, phy_addr, MII_BMCR, bmcr.image); break; case 5: mii_write (dev, phy_addr, MII_BMCR, 0x1940); mdelay (10); mii_write (dev, phy_addr, MII_BMCR, 0x1940); mdelay (100); /* wait a certain time */ break; case 6: /* 5) Set media and Power Up */ bmcr.image = 0; bmcr.bits.power_down = 1; if (np->an_enable) { bmcr.bits.an_enable = 1; } else { if (np->speed == 100) { bmcr.bits.speed100 = 1; bmcr.bits.speed1000 = 0; printk ("Manual 100 Mbps, "); } else if (np->speed == 10) { bmcr.bits.speed100 = 0; bmcr.bits.speed1000 = 0; printk ("Manual 10 Mbps, "); } if (np->full_duplex) { bmcr.bits.duplex_mode = 1; printk ("Full duplex. \n"); } else { bmcr.bits.duplex_mode = 0; printk ("Half duplex.\n"); } } mii_write (dev, phy_addr, MII_BMCR, bmcr.image); break; case 7: bmcr.image = mii_read (dev, phy_addr, MII_BMCR); bmsr.image = mii_read (dev, phy_addr, MII_BMSR); printk ("BMCR=%x BMSR=%x LinkUp=%d\n", bmcr.image, bmsr.image, bmsr.bits.link_status); break; default: return -EOPNOTSUPP; } return 0; invalid_cmd: return -1; } #endif #define EEP_READ 0x0200 #define EEP_BUSY 0x8000 /* Read the EEPROM word */ int read_eeprom (long ioaddr, int eep_addr) { int i = 1000; writew (EEP_READ | (eep_addr & 0xff), ioaddr + EepromCtrl); while (i-- > 0) { if (!(readw (ioaddr + EepromCtrl) & EEP_BUSY)) { return readw (ioaddr + EepromData); } } return 0; } enum phy_ctrl_bits { MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04, MII_DUPLEX = 0x08, }; #define mii_delay() readb(ioaddr) static void mii_sendbit (struct net_device *dev, u32 data) { long ioaddr = dev->base_addr + PhyCtrl; data = (data) ? MII_DATA1 : 0; data |= MII_WRITE; data |= (readb (ioaddr) & 0xf8) | MII_WRITE; writeb (data, ioaddr); mii_delay (); writeb (data | MII_CLK, ioaddr); mii_delay (); } static int mii_getbit (struct net_device *dev) { long ioaddr = dev->base_addr + PhyCtrl; u8 data; data = (readb (ioaddr) & 0xf8) | MII_READ; writeb (data, ioaddr); mii_delay (); writeb (data | MII_CLK, ioaddr); mii_delay (); return ((readb (ioaddr) >> 1) & 1); } static void mii_send_bits (struct net_device *dev, u32 data, int len) { int i; for (i = len - 1; i >= 0; i--) { mii_sendbit (dev, data & (1 << i)); } } static int mii_read (struct net_device *dev, int phy_addr, int reg_num) { u32 cmd; int i; u32 retval = 0; /* Preamble */ mii_send_bits (dev, 0xffffffff, 32); /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ /* ST,OP = 0110'b for read operation */ cmd = (0x06 << 10 | phy_addr << 5 | reg_num); mii_send_bits (dev, cmd, 14); /* Turnaround */ if (mii_getbit (dev)) goto err_out; /* Read data */ for (i = 0; i < 16; i++) { retval |= mii_getbit (dev); retval <<= 1; } /* End cycle */ mii_getbit (dev); return (retval >> 1) & 0xffff; err_out: return 0; } static int mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data) { u32 cmd; /* Preamble */ mii_send_bits (dev, 0xffffffff, 32); /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */ cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data; mii_send_bits (dev, cmd, 32); /* End cycle */ mii_getbit (dev); return 0; } static int mii_wait_link (struct net_device *dev, int wait) { BMSR_t bmsr; int phy_addr; struct netdev_private *np; np = dev->priv; phy_addr = np->phy_addr; do { bmsr.image = mii_read (dev, phy_addr, MII_BMSR); if (bmsr.bits.link_status) return 0; mdelay (1); } while (--wait > 0); return -1; } static int mii_get_media (struct net_device *dev) { ANAR_t negotiate; BMSR_t bmsr; BMCR_t bmcr; MSCR_t mscr; MSSR_t mssr; int phy_addr; struct netdev_private *np; np = dev->priv; phy_addr = np->phy_addr; bmsr.image = mii_read (dev, phy_addr, MII_BMSR); if (np->an_enable) { if (!bmsr.bits.an_complete) { /* Auto-Negotiation not completed */ return -1; } negotiate.image = mii_read (dev, phy_addr, MII_ANAR) & mii_read (dev, phy_addr, MII_ANLPAR); mscr.image = mii_read (dev, phy_addr, MII_MSCR); mssr.image = mii_read (dev, phy_addr, MII_MSSR); if (mscr.bits.media_1000BT_FD & mssr.bits.lp_1000BT_FD) { np->speed = 1000; np->full_duplex = 1; printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n"); } else if (mscr.bits.media_1000BT_HD & mssr.bits.lp_1000BT_HD) { np->speed = 1000; np->full_duplex = 0; printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n"); } else if (negotiate.bits.media_100BX_FD) { np->speed = 100; np->full_duplex = 1; printk (KERN_INFO "Auto 100 Mbps, Full duplex\n"); } else if (negotiate.bits.media_100BX_HD) { np->speed = 100; np->full_duplex = 0; printk (KERN_INFO "Auto 100 Mbps, Half duplex\n"); } else if (negotiate.bits.media_10BT_FD) { np->speed = 10; np->full_duplex = 1; printk (KERN_INFO "Auto 10 Mbps, Full duplex\n"); } else if (negotiate.bits.media_10BT_HD) { np->speed = 10; np->full_duplex = 0; printk (KERN_INFO "Auto 10 Mbps, Half duplex\n"); } if (negotiate.bits.pause) { np->tx_flow = 1; np->rx_flow = 1; } else if (negotiate.bits.asymmetric) { np->rx_flow = 1; } /* else tx_flow, rx_flow = user select */ } else { bmcr.image = mii_read (dev, phy_addr, MII_BMCR); if (bmcr.bits.speed100 == 1 && bmcr.bits.speed1000 == 0) { printk (KERN_INFO "Operating at 100 Mbps, "); } else if (bmcr.bits.speed100 == 0 && bmcr.bits.speed1000 == 0) { printk (KERN_INFO "Operating at 10 Mbps, "); } else if (bmcr.bits.speed100 == 0 && bmcr.bits.speed1000 == 1) { printk (KERN_INFO "Operating at 1000 Mbps, "); } if (bmcr.bits.duplex_mode) { printk ("Full duplex\n"); } else { printk ("Half duplex\n"); } } if (np->tx_flow) printk(KERN_INFO "Enable Tx Flow Control\n"); else printk(KERN_INFO "Disable Tx Flow Control\n"); if (np->rx_flow) printk(KERN_INFO "Enable Rx Flow Control\n"); else printk(KERN_INFO "Disable Rx Flow Control\n"); return 0; } static int mii_set_media (struct net_device *dev) { PHY_SCR_t pscr; BMCR_t bmcr; BMSR_t bmsr; ANAR_t anar; int phy_addr; struct netdev_private *np; np = dev->priv; phy_addr = np->phy_addr; /* Does user set speed? */ if (np->an_enable) { /* Advertise capabilities */ bmsr.image = mii_read (dev, phy_addr, MII_BMSR); anar.image = mii_read (dev, phy_addr, MII_ANAR); anar.bits.media_100BX_FD = bmsr.bits.media_100BX_FD; anar.bits.media_100BX_HD = bmsr.bits.media_100BX_HD; anar.bits.media_100BT4 = bmsr.bits.media_100BT4; anar.bits.media_10BT_FD = bmsr.bits.media_10BT_FD; anar.bits.media_10BT_HD = bmsr.bits.media_10BT_HD; anar.bits.pause = 1; anar.bits.asymmetric = 1; mii_write (dev, phy_addr, MII_ANAR, anar.image); /* Enable Auto crossover */ pscr.image = mii_read (dev, phy_addr, MII_PHY_SCR); pscr.bits.mdi_crossover_mode = 3; /* 11'b */ mii_write (dev, phy_addr, MII_PHY_SCR, pscr.image); /* Soft reset PHY */ mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET); bmcr.image = 0; bmcr.bits.an_enable = 1; bmcr.bits.restart_an = 1; bmcr.bits.reset = 1; mii_write (dev, phy_addr, MII_BMCR, bmcr.image); mdelay(1); } else { /* Force speed setting */ /* 1) Disable Auto crossover */ pscr.image = mii_read (dev, phy_addr, MII_PHY_SCR); pscr.bits.mdi_crossover_mode = 0; mii_write (dev, phy_addr, MII_PHY_SCR, pscr.image); /* 2) PHY Reset */ bmcr.image = mii_read (dev, phy_addr, MII_BMCR); bmcr.bits.reset = 1; mii_write (dev, phy_addr, MII_BMCR, bmcr.image); /* 3) Power Down */ bmcr.image = 0x1940; /* must be 0x1940 */ mii_write (dev, phy_addr, MII_BMCR, bmcr.image); mdelay (10); /* wait a certain time */ /* 4) Advertise nothing */ mii_write (dev, phy_addr, MII_ANAR, 0); /* 5) Set media and Power Up */ bmcr.image = 0; bmcr.bits.power_down = 1; if (np->speed == 100) { bmcr.bits.speed100 = 1; bmcr.bits.speed1000 = 0; printk (KERN_INFO "Manual 100 Mbps, "); } else if (np->speed == 10) { bmcr.bits.speed100 = 0; bmcr.bits.speed1000 = 0; printk (KERN_INFO "Manual 10 Mbps, "); } if (np->full_duplex) { bmcr.bits.duplex_mode = 1; printk ("Full duplex\n"); } else { bmcr.bits.duplex_mode = 0; printk ("Half duplex\n"); } #if 0 /* Set 1000BaseT Master/Slave setting */ mscr.image = mii_read (dev, phy_addr, MII_MSCR); mscr.bits.cfg_enable = 1; mscr.bits.cfg_value = 0; #endif mii_write (dev, phy_addr, MII_BMCR, bmcr.image); mdelay(10); } return 0; } static int mii_get_media_pcs (struct net_device *dev) { ANAR_PCS_t negotiate; BMSR_t bmsr; BMCR_t bmcr; int phy_addr; struct netdev_private *np; np = dev->priv; phy_addr = np->phy_addr; bmsr.image = mii_read (dev, phy_addr, PCS_BMSR); if (np->an_enable) { if (!bmsr.bits.an_complete) { /* Auto-Negotiation not completed */ return -1; } negotiate.image = mii_read (dev, phy_addr, PCS_ANAR) & mii_read (dev, phy_addr, PCS_ANLPAR); np->speed = 1000; if (negotiate.bits.full_duplex) { printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n"); np->full_duplex = 1; } else { printk (KERN_INFO "Auto 1000 Mbps, half duplex\n"); np->full_duplex = 0; } if (negotiate.bits.pause) { np->tx_flow = 1; np->rx_flow = 1; } else if (negotiate.bits.asymmetric) { np->rx_flow = 1; } /* else tx_flow, rx_flow = user select */ } else { bmcr.image = mii_read (dev, phy_addr, PCS_BMCR); printk (KERN_INFO "Operating at 1000 Mbps, "); if (bmcr.bits.duplex_mode) { printk ("Full duplex\n"); } else { printk ("Half duplex\n"); } } if (np->tx_flow) printk(KERN_INFO "Enable Tx Flow Control\n"); else printk(KERN_INFO "Disable Tx Flow Control\n"); if (np->rx_flow) printk(KERN_INFO "Enable Rx Flow Control\n"); else printk(KERN_INFO "Disable Rx Flow Control\n"); return 0; } static int mii_set_media_pcs (struct net_device *dev) { BMCR_t bmcr; ESR_t esr; ANAR_PCS_t anar; int phy_addr; struct netdev_private *np; np = dev->priv; phy_addr = np->phy_addr; /* Auto-Negotiation? */ if (np->an_enable) { /* Advertise capabilities */ esr.image = mii_read (dev, phy_addr, PCS_ESR); anar.image = mii_read (dev, phy_addr, MII_ANAR); anar.bits.half_duplex = esr.bits.media_1000BT_HD | esr.bits.media_1000BX_HD; anar.bits.full_duplex = esr.bits.media_1000BT_FD | esr.bits.media_1000BX_FD; anar.bits.pause = 1; anar.bits.asymmetric = 1; mii_write (dev, phy_addr, MII_ANAR, anar.image); /* Soft reset PHY */ mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET); bmcr.image = 0; bmcr.bits.an_enable = 1; bmcr.bits.restart_an = 1; bmcr.bits.reset = 1; mii_write (dev, phy_addr, MII_BMCR, bmcr.image); mdelay(1); } else { /* Force speed setting */ /* PHY Reset */ bmcr.image = 0; bmcr.bits.reset = 1; mii_write (dev, phy_addr, MII_BMCR, bmcr.image); mdelay(10); bmcr.image = 0; bmcr.bits.an_enable = 0; if (np->full_duplex) { bmcr.bits.duplex_mode = 1; printk (KERN_INFO "Manual full duplex\n"); } else { bmcr.bits.duplex_mode = 0; printk (KERN_INFO "Manual half duplex\n"); } mii_write (dev, phy_addr, MII_BMCR, bmcr.image); mdelay(10); /* Advertise nothing */ mii_write (dev, phy_addr, MII_ANAR, 0); } return 0; } static int rio_close (struct net_device *dev) { long ioaddr = dev->base_addr; struct netdev_private *np = dev->priv; struct sk_buff *skb; int i; netif_stop_queue (dev); /* Disable interrupts */ writew (0, ioaddr + IntEnable); /* Stop Tx and Rx logics */ writel (TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl); synchronize_irq (); free_irq (dev->irq, dev); /* Free all the skbuffs in the queue. */ for (i = 0; i < RX_RING_SIZE; i++) { np->rx_ring[i].status = 0; np->rx_ring[i].fraginfo = 0; skb = np->rx_skbuff[i]; if (skb) { pci_unmap_single (np->pdev, np->rx_ring[i].fraginfo, skb->len, PCI_DMA_FROMDEVICE); dev_kfree_skb (skb); np->rx_skbuff[i] = 0; } } for (i = 0; i < TX_RING_SIZE; i++) { skb = np->tx_skbuff[i]; if (skb) { pci_unmap_single (np->pdev, np->tx_ring[i].fraginfo, skb->len, PCI_DMA_TODEVICE); dev_kfree_skb (skb); np->tx_skbuff[i] = 0; } } return 0; } static void __devexit rio_remove1 (struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata (pdev); if (dev) { struct netdev_private *np = dev->priv; unregister_netdev (dev); pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma); pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma); #ifndef USE_IO_OPS iounmap ((char *) (dev->base_addr)); #endif kfree (dev); pci_release_regions (pdev); pci_disable_device (pdev); } pci_set_drvdata (pdev, NULL); } static struct pci_driver rio_driver = { name:"dl2k", id_table:rio_pci_tbl, probe:rio_probe1, remove:__devexit_p(rio_remove1), }; static int __init rio_init (void) { return pci_module_init (&rio_driver); } static void __exit rio_exit (void) { pci_unregister_driver (&rio_driver); } module_init (rio_init); module_exit (rio_exit); /* Compile command: gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2x.c Read Documentation/networking/dl2k.txt for details. */