/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Driver for SGI's IOC3 based Ethernet cards as found in the PCI card. * * Copyright (C) 1999, 2000, 2001 Ralf Baechle * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc. * * References: * o IOC3 ASIC specification 4.51, 1996-04-18 * o IEEE 802.3 specification, 2000 edition * o DP38840A Specification, National Semiconductor, March 1997 * * To do: * * o Handle allocation failures in ioc3_alloc_skb() more gracefully. * o Handle allocation failures in ioc3_init_rings(). * o Use prefetching for large packets. What is a good lower limit for * prefetching? * o We're probably allocating a bit too much memory. * o Use hardware checksums. * o Convert to using a IOC3 meta driver. * o Which PHYs might possibly be attached to the IOC3 in real live, * which workarounds are required for them? Do we ever have Lucent's? * o For the 2.5 branch kill the mii-tool ioctls. */ #include #include #include #include #include #include #include #ifdef CONFIG_SERIAL #include #include #define IOC3_BAUD (22000000 / (3*16)) #define IOC3_COM_FLAGS (ASYNC_BOOT_AUTOCONF | ASYNC_SKIP_TEST) #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * 64 RX buffers. This is tunable in the range of 16 <= x < 512. The * value must be a power of two. */ #define RX_BUFFS 64 /* Timer state engine. */ enum ioc3_timer_state { arbwait = 0, /* Waiting for auto negotiation to complete. */ lupwait = 1, /* Auto-neg complete, awaiting link-up status. */ ltrywait = 2, /* Forcing try of all modes, from fastest to slowest. */ asleep = 3, /* Time inactive. */ }; /* Private per NIC data of the driver. */ struct ioc3_private { struct ioc3 *regs; int phy; unsigned long *rxr; /* pointer to receiver ring */ struct ioc3_etxd *txr; struct sk_buff *rx_skbs[512]; struct sk_buff *tx_skbs[128]; struct net_device_stats stats; int rx_ci; /* RX consumer index */ int rx_pi; /* RX producer index */ int tx_ci; /* TX consumer index */ int tx_pi; /* TX producer index */ int txqlen; u32 emcr, ehar_h, ehar_l; spinlock_t ioc3_lock; struct net_device *dev; /* Members used by autonegotiation */ struct timer_list ioc3_timer; enum ioc3_timer_state timer_state; /* State of auto-neg timer. */ unsigned int timer_ticks; /* Number of clicks at each state */ unsigned short sw_bmcr; /* sw copy of MII config register */ unsigned short sw_bmsr; /* sw copy of MII status register */ unsigned short sw_physid1; /* sw copy of PHYSID1 */ unsigned short sw_physid2; /* sw copy of PHYSID2 */ unsigned short sw_advertise; /* sw copy of ADVERTISE */ unsigned short sw_lpa; /* sw copy of LPA */ unsigned short sw_csconfig; /* sw copy of CSCONFIG */ }; static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); static void ioc3_set_multicast_list(struct net_device *dev); static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev); static void ioc3_timeout(struct net_device *dev); static inline unsigned int ioc3_hash(const unsigned char *addr); static inline void ioc3_stop(struct ioc3_private *ip); static void ioc3_init(struct ioc3_private *ip); static const char ioc3_str[] = "IOC3 Ethernet"; /* We use this to acquire receive skb's that we can DMA directly into. */ #define ALIGNED_RX_SKB_ADDR(addr) \ ((((unsigned long)(addr) + (128 - 1)) & ~(128 - 1)) - (unsigned long)(addr)) #define ioc3_alloc_skb(__length, __gfp_flags) \ ({ struct sk_buff *__skb; \ __skb = alloc_skb((__length) + 128, (__gfp_flags)); \ if (__skb) { \ int __offset = ALIGNED_RX_SKB_ADDR(__skb->data); \ if(__offset) \ skb_reserve(__skb, __offset); \ } \ __skb; \ }) /* BEWARE: The IOC3 documentation documents the size of rx buffers as 1644 while it's actually 1664. This one was nasty to track down ... */ #define RX_OFFSET 10 #define RX_BUF_ALLOC_SIZE (1664 + RX_OFFSET + 128) /* DMA barrier to separate cached and uncached accesses. */ #define BARRIER() \ __asm__("sync" ::: "memory") #define IOC3_SIZE 0x100000 #define ioc3_r(reg) \ ({ \ u32 __res; \ __res = ioc3->reg; \ __res; \ }) #define ioc3_w(reg,val) \ do { \ (ioc3->reg = (val)); \ } while(0) static inline u32 mcr_pack(u32 pulse, u32 sample) { return (pulse << 10) | (sample << 2); } static int nic_wait(struct ioc3 *ioc3) { u32 mcr; do { mcr = ioc3_r(mcr); } while (!(mcr & 2)); return mcr & 1; } static int nic_reset(struct ioc3 *ioc3) { int presence; ioc3_w(mcr, mcr_pack(500, 65)); presence = nic_wait(ioc3); ioc3_w(mcr, mcr_pack(0, 500)); nic_wait(ioc3); return presence; } static inline int nic_read_bit(struct ioc3 *ioc3) { int result; ioc3_w(mcr, mcr_pack(6, 13)); result = nic_wait(ioc3); ioc3_w(mcr, mcr_pack(0, 100)); nic_wait(ioc3); return result; } static inline void nic_write_bit(struct ioc3 *ioc3, int bit) { if (bit) ioc3_w(mcr, mcr_pack(6, 110)); else ioc3_w(mcr, mcr_pack(80, 30)); nic_wait(ioc3); } /* * Read a byte from an iButton device */ static u32 nic_read_byte(struct ioc3 *ioc3) { u32 result = 0; int i; for (i = 0; i < 8; i++) result = (result >> 1) | (nic_read_bit(ioc3) << 7); return result; } /* * Write a byte to an iButton device */ static void nic_write_byte(struct ioc3 *ioc3, int byte) { int i, bit; for (i = 8; i; i--) { bit = byte & 1; byte >>= 1; nic_write_bit(ioc3, bit); } } static u64 nic_find(struct ioc3 *ioc3, int *last) { int a, b, index, disc; u64 address = 0; nic_reset(ioc3); /* Search ROM. */ nic_write_byte(ioc3, 0xf0); /* Algorithm from ``Book of iButton Standards''. */ for (index = 0, disc = 0; index < 64; index++) { a = nic_read_bit(ioc3); b = nic_read_bit(ioc3); if (a && b) { printk("NIC search failed (not fatal).\n"); *last = 0; return 0; } if (!a && !b) { if (index == *last) { address |= 1UL << index; } else if (index > *last) { address &= ~(1UL << index); disc = index; } else if ((address & (1UL << index)) == 0) disc = index; nic_write_bit(ioc3, address & (1UL << index)); continue; } else { if (a) address |= 1UL << index; else address &= ~(1UL << index); nic_write_bit(ioc3, a); continue; } } *last = disc; return address; } static int nic_init(struct ioc3 *ioc3) { const char *type; u8 crc; u8 serial[6]; int save = 0, i; type = "unknown"; while (1) { u64 reg; reg = nic_find(ioc3, &save); switch (reg & 0xff) { case 0x91: type = "DS1981U"; break; default: if (save == 0) { /* Let the caller try again. */ return -1; } continue; } nic_reset(ioc3); /* Match ROM. */ nic_write_byte(ioc3, 0x55); for (i = 0; i < 8; i++) nic_write_byte(ioc3, (reg >> (i << 3)) & 0xff); reg >>= 8; /* Shift out type. */ for (i = 0; i < 6; i++) { serial[i] = reg & 0xff; reg >>= 8; } crc = reg & 0xff; break; } printk("Found %s NIC", type); if (type != "unknown") { printk (" registration number %02x:%02x:%02x:%02x:%02x:%02x," " CRC %02x", serial[0], serial[1], serial[2], serial[3], serial[4], serial[5], crc); } printk(".\n"); return 0; } /* * Read the NIC (Number-In-a-Can) device. */ static void ioc3_get_eaddr(struct ioc3_private *ip) { struct ioc3 *ioc3 = ip->regs; u8 nic[14]; int i; int tries = 2; /* There may be some problem with the battery? */ ioc3_w(gpcr_s, (1 << 21)); while (tries--) { if (!nic_init(ioc3)) break; udelay(500); } if (tries < 0) { printk("Failed to read MAC address\n"); return; } /* Read Memory. */ nic_write_byte(ioc3, 0xf0); nic_write_byte(ioc3, 0x00); nic_write_byte(ioc3, 0x00); for (i = 13; i >= 0; i--) nic[i] = nic_read_byte(ioc3); printk("Ethernet address is "); for (i = 2; i < 8; i++) { ip->dev->dev_addr[i - 2] = nic[i]; printk("%02x", nic[i]); if (i < 7) printk(":"); } printk(".\n"); } /* * Caller must hold the ioc3_lock ever for MII readers. This is also * used to protect the transmitter side but it's low contention. */ static u16 mii_read(struct ioc3_private *ip, int reg) { struct ioc3 *ioc3 = ip->regs; int phy = ip->phy; while (ioc3->micr & MICR_BUSY); ioc3->micr = (phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG; while (ioc3->micr & MICR_BUSY); return ioc3->midr_r & MIDR_DATA_MASK; } static void mii_write(struct ioc3_private *ip, int reg, u16 data) { struct ioc3 *ioc3 = ip->regs; int phy = ip->phy; while (ioc3->micr & MICR_BUSY); ioc3->midr_w = data; ioc3->micr = (phy << MICR_PHYADDR_SHIFT) | reg; while (ioc3->micr & MICR_BUSY); } static int ioc3_mii_init(struct ioc3_private *ip); static struct net_device_stats *ioc3_get_stats(struct net_device *dev) { struct ioc3_private *ip = dev->priv; struct ioc3 *ioc3 = ip->regs; ip->stats.collisions += (ioc3->etcdc & ETCDC_COLLCNT_MASK); return &ip->stats; } static inline void ioc3_rx(struct ioc3_private *ip) { struct sk_buff *skb, *new_skb; struct ioc3 *ioc3 = ip->regs; int rx_entry, n_entry, len; struct ioc3_erxbuf *rxb; unsigned long *rxr; u32 w0, err; rxr = (unsigned long *) ip->rxr; /* Ring base */ rx_entry = ip->rx_ci; /* RX consume index */ n_entry = ip->rx_pi; skb = ip->rx_skbs[rx_entry]; rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET); w0 = rxb->w0; while (w0 & ERXBUF_V) { err = rxb->err; /* It's valid ... */ if (err & ERXBUF_GOODPKT) { len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4; skb_trim(skb, len); skb->protocol = eth_type_trans(skb, ip->dev); new_skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC); if (!new_skb) { /* Ouch, drop packet and just recycle packet to keep the ring filled. */ ip->stats.rx_dropped++; new_skb = skb; goto next; } netif_rx(skb); ip->rx_skbs[rx_entry] = NULL; /* Poison */ new_skb->dev = ip->dev; /* Because we reserve afterwards. */ skb_put(new_skb, (1664 + RX_OFFSET)); rxb = (struct ioc3_erxbuf *) new_skb->data; skb_reserve(new_skb, RX_OFFSET); ip->dev->last_rx = jiffies; ip->stats.rx_packets++; /* Statistics */ ip->stats.rx_bytes += len; } else { /* The frame is invalid and the skb never reached the network layer so we can just recycle it. */ new_skb = skb; ip->stats.rx_errors++; } if (err & ERXBUF_CRCERR) /* Statistics */ ip->stats.rx_crc_errors++; if (err & ERXBUF_FRAMERR) ip->stats.rx_frame_errors++; next: ip->rx_skbs[n_entry] = new_skb; rxr[n_entry] = (0xa5UL << 56) | ((unsigned long) rxb & TO_PHYS_MASK); rxb->w0 = 0; /* Clear valid flag */ n_entry = (n_entry + 1) & 511; /* Update erpir */ /* Now go on to the next ring entry. */ rx_entry = (rx_entry + 1) & 511; skb = ip->rx_skbs[rx_entry]; rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET); w0 = rxb->w0; } ioc3->erpir = (n_entry << 3) | ERPIR_ARM; ip->rx_pi = n_entry; ip->rx_ci = rx_entry; } static inline void ioc3_tx(struct ioc3_private *ip) { unsigned long packets, bytes; struct ioc3 *ioc3 = ip->regs; int tx_entry, o_entry; struct sk_buff *skb; u32 etcir; spin_lock(&ip->ioc3_lock); etcir = ioc3->etcir; tx_entry = (etcir >> 7) & 127; o_entry = ip->tx_ci; packets = 0; bytes = 0; while (o_entry != tx_entry) { packets++; skb = ip->tx_skbs[o_entry]; bytes += skb->len; dev_kfree_skb_irq(skb); ip->tx_skbs[o_entry] = NULL; o_entry = (o_entry + 1) & 127; /* Next */ etcir = ioc3->etcir; /* More pkts sent? */ tx_entry = (etcir >> 7) & 127; } ip->stats.tx_packets += packets; ip->stats.tx_bytes += bytes; ip->txqlen -= packets; if (ip->txqlen < 128) netif_wake_queue(ip->dev); ip->tx_ci = o_entry; spin_unlock(&ip->ioc3_lock); } /* * Deal with fatal IOC3 errors. This condition might be caused by a hard or * software problems, so we should try to recover * more gracefully if this ever happens. In theory we might be flooded * with such error interrupts if something really goes wrong, so we might * also consider to take the interface down. */ static void ioc3_error(struct ioc3_private *ip, u32 eisr) { struct net_device *dev = ip->dev; unsigned char *iface = dev->name; if (eisr & EISR_RXOFLO) printk(KERN_ERR "%s: RX overflow.\n", iface); if (eisr & EISR_RXBUFOFLO) printk(KERN_ERR "%s: RX buffer overflow.\n", iface); if (eisr & EISR_RXMEMERR) printk(KERN_ERR "%s: RX PCI error.\n", iface); if (eisr & EISR_RXPARERR) printk(KERN_ERR "%s: RX SSRAM parity error.\n", iface); if (eisr & EISR_TXBUFUFLO) printk(KERN_ERR "%s: TX buffer underflow.\n", iface); if (eisr & EISR_TXMEMERR) printk(KERN_ERR "%s: TX PCI error.\n", iface); ioc3_stop(ip); ioc3_init(ip); ioc3_mii_init(ip); dev->trans_start = jiffies; netif_wake_queue(dev); } /* The interrupt handler does all of the Rx thread work and cleans up after the Tx thread. */ static void ioc3_interrupt(int irq, void *_dev, struct pt_regs *regs) { struct net_device *dev = (struct net_device *)_dev; struct ioc3_private *ip = dev->priv; struct ioc3 *ioc3 = ip->regs; const u32 enabled = EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXEXPLICIT | EISR_TXMEMERR; u32 eisr; eisr = ioc3->eisr & enabled; while (eisr) { ioc3->eisr = eisr; ioc3->eisr; /* Flush */ if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR)) ioc3_error(ip, eisr); if (eisr & EISR_RXTIMERINT) ioc3_rx(ip); if (eisr & EISR_TXEXPLICIT) ioc3_tx(ip); eisr = ioc3->eisr & enabled; } } /* * Auto negotiation. The scheme is very simple. We have a timer routine that * keeps watching the auto negotiation process as it progresses. The DP83840 * is first told to start doing it's thing, we set up the time and place the * timer state machine in it's initial state. * * Here the timer peeks at the DP83840 status registers at each click to see * if the auto negotiation has completed, we assume here that the DP83840 PHY * will time out at some point and just tell us what (didn't) happen. For * complete coverage we only allow so many of the ticks at this level to run, * when this has expired we print a warning message and try another strategy. * This "other" strategy is to force the interface into various speed/duplex * configurations and we stop when we see a link-up condition before the * maximum number of "peek" ticks have occurred. * * Once a valid link status has been detected we configure the IOC3 to speak * the most efficient protocol we could get a clean link for. The priority * for link configurations, highest first is: * * 100 Base-T Full Duplex * 100 Base-T Half Duplex * 10 Base-T Full Duplex * 10 Base-T Half Duplex * * We start a new timer now, after a successful auto negotiation status has * been detected. This timer just waits for the link-up bit to get set in * the BMCR of the DP83840. When this occurs we print a kernel log message * describing the link type in use and the fact that it is up. * * If a fatal error of some sort is signalled and detected in the interrupt * service routine, and the chip is reset, or the link is ifconfig'd down * and then back up, this entire process repeats itself all over again. */ static int ioc3_try_next_permutation(struct ioc3_private *ip) { ip->sw_bmcr = mii_read(ip, MII_BMCR); /* Downgrade from full to half duplex. Only possible via ethtool. */ if (ip->sw_bmcr & BMCR_FULLDPLX) { ip->sw_bmcr &= ~BMCR_FULLDPLX; mii_write(ip, MII_BMCR, ip->sw_bmcr); return 0; } /* Downgrade from 100 to 10. */ if (ip->sw_bmcr & BMCR_SPEED100) { ip->sw_bmcr &= ~BMCR_SPEED100; mii_write(ip, MII_BMCR, ip->sw_bmcr); return 0; } /* We've tried everything. */ return -1; } static void ioc3_display_link_mode(struct ioc3_private *ip) { char *tmode = ""; ip->sw_lpa = mii_read(ip, MII_LPA); if (ip->sw_lpa & (LPA_100HALF | LPA_100FULL)) { if (ip->sw_lpa & LPA_100FULL) tmode = "100Mb/s, Full Duplex"; else tmode = "100Mb/s, Half Duplex"; } else { if (ip->sw_lpa & LPA_10FULL) tmode = "10Mb/s, Full Duplex"; else tmode = "10Mb/s, Half Duplex"; } printk(KERN_INFO "%s: Link is up at %s.\n", ip->dev->name, tmode); } static void ioc3_display_forced_link_mode(struct ioc3_private *ip) { char *speed = "", *duplex = ""; ip->sw_bmcr = mii_read(ip, MII_BMCR); if (ip->sw_bmcr & BMCR_SPEED100) speed = "100Mb/s, "; else speed = "10Mb/s, "; if (ip->sw_bmcr & BMCR_FULLDPLX) duplex = "Full Duplex.\n"; else duplex = "Half Duplex.\n"; printk(KERN_INFO "%s: Link has been forced up at %s%s", ip->dev->name, speed, duplex); } static int ioc3_set_link_modes(struct ioc3_private *ip) { struct ioc3 *ioc3 = ip->regs; int full; /* * All we care about is making sure the bigmac tx_cfg has a * proper duplex setting. */ if (ip->timer_state == arbwait) { ip->sw_lpa = mii_read(ip, MII_LPA); if (!(ip->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL))) goto no_response; if (ip->sw_lpa & LPA_100FULL) full = 1; else if (ip->sw_lpa & LPA_100HALF) full = 0; else if (ip->sw_lpa & LPA_10FULL) full = 1; else full = 0; } else { /* Forcing a link mode. */ ip->sw_bmcr = mii_read(ip, MII_BMCR); if (ip->sw_bmcr & BMCR_FULLDPLX) full = 1; else full = 0; } if (full) ip->emcr |= EMCR_DUPLEX; else ip->emcr &= ~EMCR_DUPLEX; ioc3->emcr = ip->emcr; ioc3->emcr; return 0; no_response: return 1; } static int is_lucent_phy(struct ioc3_private *ip) { unsigned short mr2, mr3; int ret = 0; mr2 = mii_read(ip, MII_PHYSID1); mr3 = mii_read(ip, MII_PHYSID2); if ((mr2 & 0xffff) == 0x0180 && ((mr3 & 0xffff) >> 10) == 0x1d) { ret = 1; } return ret; } static void ioc3_timer(unsigned long data) { struct ioc3_private *ip = (struct ioc3_private *) data; int restart_timer = 0; ip->timer_ticks++; switch (ip->timer_state) { case arbwait: /* * Only allow for 5 ticks, thats 10 seconds and much too * long to wait for arbitration to complete. */ if (ip->timer_ticks >= 10) { /* Enter force mode. */ do_force_mode: ip->sw_bmcr = mii_read(ip, MII_BMCR); printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful," " trying force link mode\n", ip->dev->name); ip->sw_bmcr = BMCR_SPEED100; mii_write(ip, MII_BMCR, ip->sw_bmcr); if (!is_lucent_phy(ip)) { /* * OK, seems we need do disable the transceiver * for the first tick to make sure we get an * accurate link state at the second tick. */ ip->sw_csconfig = mii_read(ip, MII_CSCONFIG); ip->sw_csconfig &= ~(CSCONFIG_TCVDISAB); mii_write(ip, MII_CSCONFIG, ip->sw_csconfig); } ip->timer_state = ltrywait; ip->timer_ticks = 0; restart_timer = 1; } else { /* Anything interesting happen? */ ip->sw_bmsr = mii_read(ip, MII_BMSR); if (ip->sw_bmsr & BMSR_ANEGCOMPLETE) { int ret; /* Just what we've been waiting for... */ ret = ioc3_set_link_modes(ip); if (ret) { /* Ooops, something bad happened, go to * force mode. * * XXX Broken hubs which don't support * XXX 802.3u auto-negotiation make this * XXX happen as well. */ goto do_force_mode; } /* * Success, at least so far, advance our state * engine. */ ip->timer_state = lupwait; restart_timer = 1; } else { restart_timer = 1; } } break; case lupwait: /* * Auto negotiation was successful and we are awaiting a * link up status. I have decided to let this timer run * forever until some sort of error is signalled, reporting * a message to the user at 10 second intervals. */ ip->sw_bmsr = mii_read(ip, MII_BMSR); if (ip->sw_bmsr & BMSR_LSTATUS) { /* * Wheee, it's up, display the link mode in use and put * the timer to sleep. */ ioc3_display_link_mode(ip); ip->timer_state = asleep; restart_timer = 0; } else { if (ip->timer_ticks >= 10) { printk(KERN_NOTICE "%s: Auto negotiation successful, link still " "not completely up.\n", ip->dev->name); ip->timer_ticks = 0; restart_timer = 1; } else { restart_timer = 1; } } break; case ltrywait: /* * Making the timeout here too long can make it take * annoyingly long to attempt all of the link mode * permutations, but then again this is essentially * error recovery code for the most part. */ ip->sw_bmsr = mii_read(ip, MII_BMSR); ip->sw_csconfig = mii_read(ip, MII_CSCONFIG); if (ip->timer_ticks == 1) { if (!is_lucent_phy(ip)) { /* * Re-enable transceiver, we'll re-enable the * transceiver next tick, then check link state * on the following tick. */ ip->sw_csconfig |= CSCONFIG_TCVDISAB; mii_write(ip, MII_CSCONFIG, ip->sw_csconfig); } restart_timer = 1; break; } if (ip->timer_ticks == 2) { if (!is_lucent_phy(ip)) { ip->sw_csconfig &= ~(CSCONFIG_TCVDISAB); mii_write(ip, MII_CSCONFIG, ip->sw_csconfig); } restart_timer = 1; break; } if (ip->sw_bmsr & BMSR_LSTATUS) { /* Force mode selection success. */ ioc3_display_forced_link_mode(ip); ioc3_set_link_modes(ip); /* XXX error? then what? */ ip->timer_state = asleep; restart_timer = 0; } else { if (ip->timer_ticks >= 4) { /* 6 seconds or so... */ int ret; ret = ioc3_try_next_permutation(ip); if (ret == -1) { /* * Aieee, tried them all, reset the * chip and try all over again. */ printk(KERN_NOTICE "%s: Link down, " "cable problem?\n", ip->dev->name); ioc3_init(ip); return; } if (!is_lucent_phy(ip)) { ip->sw_csconfig = mii_read(ip, MII_CSCONFIG); ip->sw_csconfig |= CSCONFIG_TCVDISAB; mii_write(ip, MII_CSCONFIG, ip->sw_csconfig); } ip->timer_ticks = 0; restart_timer = 1; } else { restart_timer = 1; } } break; case asleep: default: /* Can't happens.... */ printk(KERN_ERR "%s: Aieee, link timer is asleep but we got " "one anyways!\n", ip->dev->name); restart_timer = 0; ip->timer_ticks = 0; ip->timer_state = asleep; /* foo on you */ break; }; if (restart_timer) { ip->ioc3_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2s */ add_timer(&ip->ioc3_timer); } } static void ioc3_start_auto_negotiation(struct ioc3_private *ip, struct ethtool_cmd *ep) { int timeout; /* Read all of the registers we are interested in now. */ ip->sw_bmsr = mii_read(ip, MII_BMSR); ip->sw_bmcr = mii_read(ip, MII_BMCR); ip->sw_physid1 = mii_read(ip, MII_PHYSID1); ip->sw_physid2 = mii_read(ip, MII_PHYSID2); /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */ ip->sw_advertise = mii_read(ip, MII_ADVERTISE); if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) { /* Advertise everything we can support. */ if (ip->sw_bmsr & BMSR_10HALF) ip->sw_advertise |= ADVERTISE_10HALF; else ip->sw_advertise &= ~ADVERTISE_10HALF; if (ip->sw_bmsr & BMSR_10FULL) ip->sw_advertise |= ADVERTISE_10FULL; else ip->sw_advertise &= ~ADVERTISE_10FULL; if (ip->sw_bmsr & BMSR_100HALF) ip->sw_advertise |= ADVERTISE_100HALF; else ip->sw_advertise &= ~ADVERTISE_100HALF; if (ip->sw_bmsr & BMSR_100FULL) ip->sw_advertise |= ADVERTISE_100FULL; else ip->sw_advertise &= ~ADVERTISE_100FULL; mii_write(ip, MII_ADVERTISE, ip->sw_advertise); /* * XXX Currently no IOC3 card I know off supports 100BaseT4, * XXX and this is because the DP83840 does not support it, * XXX changes XXX would need to be made to the tx/rx logic in * XXX the driver as well so I completely skip checking for it * XXX in the BMSR for now. */ #ifdef AUTO_SWITCH_DEBUG ASD(("%s: Advertising [ ", ip->dev->name)); if (ip->sw_advertise & ADVERTISE_10HALF) ASD(("10H ")); if (ip->sw_advertise & ADVERTISE_10FULL) ASD(("10F ")); if (ip->sw_advertise & ADVERTISE_100HALF) ASD(("100H ")); if (ip->sw_advertise & ADVERTISE_100FULL) ASD(("100F ")); #endif /* Enable Auto-Negotiation, this is usually on already... */ ip->sw_bmcr |= BMCR_ANENABLE; mii_write(ip, MII_BMCR, ip->sw_bmcr); /* Restart it to make sure it is going. */ ip->sw_bmcr |= BMCR_ANRESTART; mii_write(ip, MII_BMCR, ip->sw_bmcr); /* BMCR_ANRESTART self clears when the process has begun. */ timeout = 64; /* More than enough. */ while (--timeout) { ip->sw_bmcr = mii_read(ip, MII_BMCR); if (!(ip->sw_bmcr & BMCR_ANRESTART)) break; /* got it. */ udelay(10); } if (!timeout) { printk(KERN_ERR "%s: IOC3 would not start auto " "negotiation BMCR=0x%04x\n", ip->dev->name, ip->sw_bmcr); printk(KERN_NOTICE "%s: Performing force link " "detection.\n", ip->dev->name); goto force_link; } else { ip->timer_state = arbwait; } } else { force_link: /* * Force the link up, trying first a particular mode. Either * we are here at the request of ethtool or because the IOC3 * would not start to autoneg. */ /* * Disable auto-negotiation in BMCR, enable the duplex and * speed setting, init the timer state machine, and fire it off. */ if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) { ip->sw_bmcr = BMCR_SPEED100; } else { if (ep->speed == SPEED_100) ip->sw_bmcr = BMCR_SPEED100; else ip->sw_bmcr = 0; if (ep->duplex == DUPLEX_FULL) ip->sw_bmcr |= BMCR_FULLDPLX; } mii_write(ip, MII_BMCR, ip->sw_bmcr); if (!is_lucent_phy(ip)) { /* * OK, seems we need do disable the transceiver for the * first tick to make sure we get an accurate link * state at the second tick. */ ip->sw_csconfig = mii_read(ip, MII_CSCONFIG); ip->sw_csconfig &= ~(CSCONFIG_TCVDISAB); mii_write(ip, MII_CSCONFIG, ip->sw_csconfig); } ip->timer_state = ltrywait; } del_timer(&ip->ioc3_timer); ip->timer_ticks = 0; ip->ioc3_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */ ip->ioc3_timer.data = (unsigned long) ip; ip->ioc3_timer.function = &ioc3_timer; add_timer(&ip->ioc3_timer); } static int ioc3_mii_init(struct ioc3_private *ip) { int i, found; u16 word; found = 0; spin_lock_irq(&ip->ioc3_lock); for (i = 0; i < 32; i++) { ip->phy = i; word = mii_read(ip, 2); if ((word != 0xffff) && (word != 0x0000)) { found = 1; break; /* Found a PHY */ } } if (!found) { spin_unlock_irq(&ip->ioc3_lock); return -ENODEV; } ioc3_start_auto_negotiation(ip, NULL); // XXX ethtool spin_unlock_irq(&ip->ioc3_lock); return 0; } static inline void ioc3_clean_rx_ring(struct ioc3_private *ip) { struct sk_buff *skb; int i; for (i = ip->rx_ci; i & 15; i++) { ip->rx_skbs[ip->rx_pi] = ip->rx_skbs[ip->rx_ci]; ip->rxr[ip->rx_pi++] = ip->rxr[ip->rx_ci++]; } ip->rx_pi &= 511; ip->rx_ci &= 511; for (i = ip->rx_ci; i != ip->rx_pi; i = (i+1) & 511) { struct ioc3_erxbuf *rxb; skb = ip->rx_skbs[i]; rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET); rxb->w0 = 0; } } static inline void ioc3_clean_tx_ring(struct ioc3_private *ip) { struct sk_buff *skb; int i; for (i=0; i < 128; i++) { skb = ip->tx_skbs[i]; if (skb) { ip->tx_skbs[i] = NULL; dev_kfree_skb_any(skb); } ip->txr[i].cmd = 0; } ip->tx_pi = 0; ip->tx_ci = 0; } static void ioc3_free_rings(struct ioc3_private *ip) { struct sk_buff *skb; int rx_entry, n_entry; if (ip->txr) { ioc3_clean_tx_ring(ip); free_pages((unsigned long)ip->txr, 2); ip->txr = NULL; } if (ip->rxr) { n_entry = ip->rx_ci; rx_entry = ip->rx_pi; while (n_entry != rx_entry) { skb = ip->rx_skbs[n_entry]; if (skb) dev_kfree_skb_any(skb); n_entry = (n_entry + 1) & 511; } free_page((unsigned long)ip->rxr); ip->rxr = NULL; } } static void ioc3_alloc_rings(struct net_device *dev, struct ioc3_private *ip, struct ioc3 *ioc3) { struct ioc3_erxbuf *rxb; unsigned long *rxr; int i; if (ip->rxr == NULL) { /* Allocate and initialize rx ring. 4kb = 512 entries */ ip->rxr = (unsigned long *) get_free_page(GFP_ATOMIC); rxr = (unsigned long *) ip->rxr; if (!rxr) printk("ioc3_alloc_rings(): get_free_page() failed!\n"); /* Now the rx buffers. The RX ring may be larger but we only allocate 16 buffers for now. Need to tune this for performance and memory later. */ for (i = 0; i < RX_BUFFS; i++) { struct sk_buff *skb; skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC); if (!skb) { show_free_areas(); continue; } ip->rx_skbs[i] = skb; skb->dev = dev; /* Because we reserve afterwards. */ skb_put(skb, (1664 + RX_OFFSET)); rxb = (struct ioc3_erxbuf *) skb->data; rxr[i] = (0xa5UL << 56) | ((unsigned long) rxb & TO_PHYS_MASK); skb_reserve(skb, RX_OFFSET); } ip->rx_ci = 0; ip->rx_pi = RX_BUFFS; } if (ip->txr == NULL) { /* Allocate and initialize tx rings. 16kb = 128 bufs. */ ip->txr = (struct ioc3_etxd *)__get_free_pages(GFP_KERNEL, 2); if (!ip->txr) printk("ioc3_alloc_rings(): get_free_page() failed!\n"); ip->tx_pi = 0; ip->tx_ci = 0; } } static void ioc3_init_rings(struct net_device *dev, struct ioc3_private *ip, struct ioc3 *ioc3) { unsigned long ring; ioc3_free_rings(ip); ioc3_alloc_rings(dev, ip, ioc3); ioc3_clean_rx_ring(ip); ioc3_clean_tx_ring(ip); /* Now the rx ring base, consume & produce registers. */ ring = (0xa5UL << 56) | ((unsigned long)ip->rxr & TO_PHYS_MASK); ioc3->erbr_h = ring >> 32; ioc3->erbr_l = ring & 0xffffffff; ioc3->ercir = (ip->rx_ci << 3); ioc3->erpir = (ip->rx_pi << 3) | ERPIR_ARM; ring = (0xa5UL << 56) | ((unsigned long)ip->txr & TO_PHYS_MASK); ip->txqlen = 0; /* nothing queued */ /* Now the tx ring base, consume & produce registers. */ ioc3->etbr_h = ring >> 32; ioc3->etbr_l = ring & 0xffffffff; ioc3->etpir = (ip->tx_pi << 7); ioc3->etcir = (ip->tx_ci << 7); ioc3->etcir; /* Flush */ } static inline void ioc3_ssram_disc(struct ioc3_private *ip) { struct ioc3 *ioc3 = ip->regs; volatile u32 *ssram0 = &ioc3->ssram[0x0000]; volatile u32 *ssram1 = &ioc3->ssram[0x4000]; unsigned int pattern = 0x5555; /* Assume the larger size SSRAM and enable parity checking */ ioc3->emcr |= (EMCR_BUFSIZ | EMCR_RAMPAR); *ssram0 = pattern; *ssram1 = ~pattern & IOC3_SSRAM_DM; if ((*ssram0 & IOC3_SSRAM_DM) != pattern || (*ssram1 & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) { /* set ssram size to 64 KB */ ip->emcr = EMCR_RAMPAR; ioc3->emcr &= ~EMCR_BUFSIZ; } else { ip->emcr = EMCR_BUFSIZ | EMCR_RAMPAR; } } static void ioc3_init(struct ioc3_private *ip) { struct net_device *dev = ip->dev; struct ioc3 *ioc3 = ip->regs; del_timer(&ip->ioc3_timer); /* Kill if running */ ioc3->emcr = EMCR_RST; /* Reset */ ioc3->emcr; /* Flush WB */ udelay(4); /* Give it time ... */ ioc3->emcr = 0; ioc3->emcr; /* Misc registers */ ioc3->erbar = 0; ioc3->etcsr = (17<etcdc; /* Clear on read */ ioc3->ercsr = 15; /* RX low watermark */ ioc3->ertr = 0; /* Interrupt immediately */ ioc3->emar_h = (dev->dev_addr[5] << 8) | dev->dev_addr[4]; ioc3->emar_l = (dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) | (dev->dev_addr[1] << 8) | dev->dev_addr[0]; ioc3->ehar_h = ip->ehar_h; ioc3->ehar_l = ip->ehar_l; ioc3->ersr = 42; /* XXX should be random */ ioc3_init_rings(ip->dev, ip, ioc3); ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN | EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN; ioc3->emcr = ip->emcr; ioc3->eier = EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXEXPLICIT | EISR_TXMEMERR; ioc3->eier; } static inline void ioc3_stop(struct ioc3_private *ip) { struct ioc3 *ioc3 = ip->regs; ioc3->emcr = 0; /* Shutup */ ioc3->eier = 0; /* Disable interrupts */ ioc3->eier; /* Flush */ } static int ioc3_open(struct net_device *dev) { struct ioc3_private *ip = dev->priv; if (request_irq(dev->irq, ioc3_interrupt, SA_SHIRQ, ioc3_str, dev)) { printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq); return -EAGAIN; } ip->ehar_h = 0; ip->ehar_l = 0; ioc3_init(ip); netif_start_queue(dev); return 0; } static int ioc3_close(struct net_device *dev) { struct ioc3_private *ip = dev->priv; del_timer(&ip->ioc3_timer); netif_stop_queue(dev); ioc3_stop(ip); free_irq(dev->irq, dev); ioc3_free_rings(ip); return 0; } /* * MENET cards have four IOC3 chips, which are attached to two sets of * PCI slot resources each: the primary connections are on slots * 0..3 and the secondaries are on 4..7 * * All four ethernets are brought out to connectors; six serial ports * (a pair from each of the first three IOC3s) are brought out to * MiniDINs; all other subdevices are left swinging in the wind, leave * them disabled. */ static inline int ioc3_is_menet(struct pci_dev *pdev) { struct pci_dev *dev; return pdev->bus->parent == NULL && (dev = pci_find_slot(pdev->bus->number, PCI_DEVFN(0, 0))) && dev->vendor == PCI_VENDOR_ID_SGI && dev->device == PCI_DEVICE_ID_SGI_IOC3 && (dev = pci_find_slot(pdev->bus->number, PCI_DEVFN(1, 0))) && dev->vendor == PCI_VENDOR_ID_SGI && dev->device == PCI_DEVICE_ID_SGI_IOC3 && (dev = pci_find_slot(pdev->bus->number, PCI_DEVFN(2, 0))) && dev->vendor == PCI_VENDOR_ID_SGI && dev->device == PCI_DEVICE_ID_SGI_IOC3; } static void inline ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3) { struct serial_struct req; /* * We need to recognice and treat the fourth MENET serial as it * does not have an SuperIO chip attached to it, therefore attempting * to access it will result in bus errors. We call something an * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3 * in it. This is paranoid but we want to avoid blowing up on a * showhorn PCI box that happens to have 4 IOC3 cards in it so it's * not paranoid enough ... */ if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3) return; /* Register to interrupt zero because we share the interrupt with the serial driver which we don't properly support yet. */ memset(&req, 0, sizeof(req)); req.irq = 0; req.flags = IOC3_COM_FLAGS; req.io_type = SERIAL_IO_MEM; req.iomem_reg_shift = 0; req.baud_base = IOC3_BAUD; req.iomem_base = (unsigned char *) &ioc3->sregs.uarta; register_serial(&req); req.iomem_base = (unsigned char *) &ioc3->sregs.uartb; register_serial(&req); } static int __devinit ioc3_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *dev = NULL; struct ioc3_private *ip; struct ioc3 *ioc3; unsigned long ioc3_base, ioc3_size; u32 vendor, model, rev; int err; dev = alloc_etherdev(sizeof(struct ioc3_private)); if (!dev) return -ENOMEM; err = pci_request_regions(pdev, "ioc3"); if (err) goto out_free; SET_MODULE_OWNER(dev); ip = dev->priv; ip->dev = dev; dev->irq = pdev->irq; ioc3_base = pci_resource_start(pdev, 0); ioc3_size = pci_resource_len(pdev, 0); ioc3 = (struct ioc3 *) ioremap(ioc3_base, ioc3_size); if (!ioc3) { printk(KERN_CRIT "ioc3eth(%s): ioremap failed, goodbye.\n", pdev->slot_name); err = -ENOMEM; goto out_res; } ip->regs = ioc3; #ifdef CONFIG_SERIAL ioc3_serial_probe(pdev, ioc3); #endif spin_lock_init(&ip->ioc3_lock); ioc3_stop(ip); ioc3_init(ip); init_timer(&ip->ioc3_timer); ioc3_mii_init(ip); if (ip->phy == -1) { printk(KERN_CRIT "ioc3-eth(%s): Didn't find a PHY, goodbye.\n", pdev->slot_name); err = -ENODEV; goto out_stop; } ioc3_ssram_disc(ip); ioc3_get_eaddr(ip); /* The IOC3-specific entries in the device structure. */ dev->open = ioc3_open; dev->hard_start_xmit = ioc3_start_xmit; dev->tx_timeout = ioc3_timeout; dev->watchdog_timeo = 5 * HZ; dev->stop = ioc3_close; dev->get_stats = ioc3_get_stats; dev->do_ioctl = ioc3_ioctl; dev->set_multicast_list = ioc3_set_multicast_list; err = register_netdev(dev); if (err) goto out_stop; vendor = (ip->sw_physid1 << 12) | (ip->sw_physid2 >> 4); model = (ip->sw_physid2 >> 4) & 0x3f; rev = ip->sw_physid2 & 0xf; printk(KERN_INFO "%s: Using PHY %d, vendor 0x%x, model %d, " "rev %d.\n", dev->name, ip->phy, vendor, model, rev); printk(KERN_INFO "%s: IOC3 SSRAM has %d kbyte.\n", dev->name, ip->emcr & EMCR_BUFSIZ ? 128 : 64); return 0; out_stop: ioc3_stop(ip); free_irq(dev->irq, dev); ioc3_free_rings(ip); out_res: pci_release_regions(pdev); out_free: kfree(dev); return err; } static void __devexit ioc3_remove_one (struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct ioc3_private *ip = dev->priv; struct ioc3 *ioc3 = ip->regs; iounmap(ioc3); pci_release_regions(pdev); kfree(dev); } static struct pci_device_id ioc3_pci_tbl[] __devinitdata = { { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID }, { 0 } }; MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl); static struct pci_driver ioc3_driver = { name: "ioc3-eth", id_table: ioc3_pci_tbl, probe: ioc3_probe, remove: __devexit_p(ioc3_remove_one), }; static int __init ioc3_init_module(void) { return pci_module_init(&ioc3_driver); } static void __exit ioc3_cleanup_module(void) { pci_unregister_driver(&ioc3_driver); } static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev) { unsigned long data; struct ioc3_private *ip = dev->priv; struct ioc3 *ioc3 = ip->regs; unsigned int len; struct ioc3_etxd *desc; int produce; spin_lock_irq(&ip->ioc3_lock); data = (unsigned long) skb->data; len = skb->len; produce = ip->tx_pi; desc = &ip->txr[produce]; if (len <= 104) { /* Short packet, let's copy it directly into the ring. */ memcpy(desc->data, skb->data, skb->len); if (len < ETH_ZLEN) { /* Very short packet, pad with zeros at the end. */ memset(desc->data + len, 0, ETH_ZLEN - len); len = ETH_ZLEN; } desc->cmd = len | ETXD_INTWHENDONE | ETXD_D0V; desc->bufcnt = len; } else if ((data ^ (data + len)) & 0x4000) { unsigned long b2, s1, s2; b2 = (data | 0x3fffUL) + 1UL; s1 = b2 - data; s2 = data + len - b2; desc->cmd = len | ETXD_INTWHENDONE | ETXD_B1V | ETXD_B2V; desc->bufcnt = (s1 << ETXD_B1CNT_SHIFT) | (s2 << ETXD_B2CNT_SHIFT); desc->p1 = (0xa5UL << 56) | (data & TO_PHYS_MASK); desc->p2 = (0xa5UL << 56) | (data & TO_PHYS_MASK); } else { /* Normal sized packet that doesn't cross a page boundary. */ desc->cmd = len | ETXD_INTWHENDONE | ETXD_B1V; desc->bufcnt = len << ETXD_B1CNT_SHIFT; desc->p1 = (0xa5UL << 56) | (data & TO_PHYS_MASK); } BARRIER(); dev->trans_start = jiffies; ip->tx_skbs[produce] = skb; /* Remember skb */ produce = (produce + 1) & 127; ip->tx_pi = produce; ioc3->etpir = produce << 7; /* Fire ... */ ip->txqlen++; if (ip->txqlen > 127) netif_stop_queue(dev); spin_unlock_irq(&ip->ioc3_lock); return 0; } static void ioc3_timeout(struct net_device *dev) { struct ioc3_private *ip = dev->priv; printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name); ioc3_stop(ip); ioc3_init(ip); ioc3_mii_init(ip); dev->trans_start = jiffies; netif_wake_queue(dev); } /* * Given a multicast ethernet address, this routine calculates the * address's bit index in the logical address filter mask */ #define CRC_MASK 0xedb88320 static inline unsigned int ioc3_hash(const unsigned char *addr) { unsigned int temp = 0; unsigned char byte; unsigned int crc; int bits, len; len = ETH_ALEN; for (crc = ~0; --len >= 0; addr++) { byte = *addr; for (bits = 8; --bits >= 0; ) { if ((byte ^ crc) & 1) crc = (crc >> 1) ^ CRC_MASK; else crc >>= 1; byte >>= 1; } } crc &= 0x3f; /* bit reverse lowest 6 bits for hash index */ for (bits = 6; --bits >= 0; ) { temp <<= 1; temp |= (crc & 0x1); crc >>= 1; } return temp; } /* We provide both the mii-tools and the ethtool ioctls. */ static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct ioc3_private *ip = dev->priv; struct ethtool_cmd *ep_user = (struct ethtool_cmd *) rq->ifr_data; u16 *data = (u16 *)&rq->ifr_data; struct ioc3 *ioc3 = ip->regs; struct ethtool_cmd ecmd; switch (cmd) { case SIOCGMIIPHY: /* Get the address of the PHY in use. */ if (ip->phy == -1) return -ENODEV; data[0] = ip->phy; return 0; case SIOCGMIIREG: { /* Read a PHY register. */ unsigned int phy = data[0]; unsigned int reg = data[1]; if (phy > 0x1f || reg > 0x1f) return -EINVAL; spin_lock_irq(&ip->ioc3_lock); while (ioc3->micr & MICR_BUSY); ioc3->micr = (phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG; while (ioc3->micr & MICR_BUSY); data[3] = (ioc3->midr_r & MIDR_DATA_MASK); spin_unlock_irq(&ip->ioc3_lock); return 0; case SIOCSMIIREG: /* Write a PHY register. */ phy = data[0]; reg = data[1]; if (!capable(CAP_NET_ADMIN)) return -EPERM; if (phy > 0x1f || reg > 0x1f) return -EINVAL; spin_lock_irq(&ip->ioc3_lock); while (ioc3->micr & MICR_BUSY); ioc3->midr_w = data[2]; ioc3->micr = (phy << MICR_PHYADDR_SHIFT) | reg; while (ioc3->micr & MICR_BUSY); spin_unlock_irq(&ip->ioc3_lock); return 0; } case SIOCETHTOOL: if (copy_from_user(&ecmd, ep_user, sizeof(ecmd))) return -EFAULT; if (ecmd.cmd == ETHTOOL_GSET) { ecmd.supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII); ecmd.port = PORT_TP; ecmd.transceiver = XCVR_INTERNAL; ecmd.phy_address = ip->phy; /* Record PHY settings. */ spin_lock_irq(&ip->ioc3_lock); ip->sw_bmcr = mii_read(ip, MII_BMCR); ip->sw_lpa = mii_read(ip, MII_LPA); spin_unlock_irq(&ip->ioc3_lock); if (ip->sw_bmcr & BMCR_ANENABLE) { ecmd.autoneg = AUTONEG_ENABLE; ecmd.speed = (ip->sw_lpa & (LPA_100HALF | LPA_100FULL)) ? SPEED_100 : SPEED_10; if (ecmd.speed == SPEED_100) ecmd.duplex = (ip->sw_lpa & (LPA_100FULL)) ? DUPLEX_FULL : DUPLEX_HALF; else ecmd.duplex = (ip->sw_lpa & (LPA_10FULL)) ? DUPLEX_FULL : DUPLEX_HALF; } else { ecmd.autoneg = AUTONEG_DISABLE; ecmd.speed = (ip->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10; ecmd.duplex = (ip->sw_bmcr & BMCR_FULLDPLX) ? DUPLEX_FULL : DUPLEX_HALF; } if (copy_to_user(ep_user, &ecmd, sizeof(ecmd))) return -EFAULT; return 0; } else if (ecmd.cmd == ETHTOOL_SSET) { if (!capable(CAP_NET_ADMIN)) return -EPERM; /* Verify the settings we care about. */ if (ecmd.autoneg != AUTONEG_ENABLE && ecmd.autoneg != AUTONEG_DISABLE) return -EINVAL; if (ecmd.autoneg == AUTONEG_DISABLE && ((ecmd.speed != SPEED_100 && ecmd.speed != SPEED_10) || (ecmd.duplex != DUPLEX_HALF && ecmd.duplex != DUPLEX_FULL))) return -EINVAL; /* Ok, do it to it. */ del_timer(&ip->ioc3_timer); spin_lock_irq(&ip->ioc3_lock); ioc3_start_auto_negotiation(ip, &ecmd); spin_unlock_irq(&ip->ioc3_lock); return 0; } else default: return -EOPNOTSUPP; } return -EOPNOTSUPP; } static void ioc3_set_multicast_list(struct net_device *dev) { struct dev_mc_list *dmi = dev->mc_list; struct ioc3_private *ip = dev->priv; struct ioc3 *ioc3 = ip->regs; u64 ehar = 0; int i; netif_stop_queue(dev); /* Lock out others. */ if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ /* Unconditionally log net taps. */ printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name); ip->emcr |= EMCR_PROMISC; ioc3->emcr = ip->emcr; ioc3->emcr; } else { ip->emcr &= ~EMCR_PROMISC; ioc3->emcr = ip->emcr; /* Clear promiscuous. */ ioc3->emcr; if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) { /* Too many for hashing to make sense or we want all multicast packets anyway, so skip computing all the hashes and just accept all packets. */ ip->ehar_h = 0xffffffff; ip->ehar_l = 0xffffffff; } else { for (i = 0; i < dev->mc_count; i++) { char *addr = dmi->dmi_addr; dmi = dmi->next; if (!(*addr & 1)) continue; ehar |= (1UL << ioc3_hash(addr)); } ip->ehar_h = ehar >> 32; ip->ehar_l = ehar & 0xffffffff; } ioc3->ehar_h = ip->ehar_h; ioc3->ehar_l = ip->ehar_l; } netif_wake_queue(dev); /* Let us get going again. */ } MODULE_AUTHOR("Ralf Baechle "); MODULE_DESCRIPTION("SGI IOC3 Ethernet driver"); MODULE_LICENSE("GPL"); module_init(ioc3_init_module); module_exit(ioc3_cleanup_module);