/* * drivers/sbus/char/jsflash.c * * Copyright (C) 1991, 1992 Linus Torvalds (drivers/char/mem.c) * Copyright (C) 1997 Eddie C. Dost (drivers/sbus/char/flash.c) * Copyright (C) 1997-2000 Pavel Machek (drivers/block/nbd.c) * Copyright (C) 1999-2000 Pete Zaitcev * * This driver is used to program OS into a Flash SIMM on * Krups and Espresso platforms. * * TODO: do not allow erase/programming if file systems are mounted. * TODO: Erase/program both banks of a 8MB SIMM. * * It is anticipated that programming an OS Flash will be a routine * procedure. In the same time it is exeedingly dangerous because * a user can program its OBP flash with OS image and effectively * kill the machine. * * This driver uses an interface different from Eddie's flash.c * as a silly safeguard. * * XXX The flash.c manipulates page caching characteristics in a certain * dubious way; also it assumes that remap_page_range() can remap * PCI bus locations, which may be false. ioremap() must be used * instead. We should discuss this. */ #include #include #include #include #include #include #include #include #include #include /* * is controlled from the outside with these definitions. */ #define MAJOR_NR JSFD_MAJOR #define DEVICE_NAME "jsfd" #define DEVICE_REQUEST jsfd_do_request #define DEVICE_NR(device) (MINOR(device)) #define DEVICE_ON(device) #define DEVICE_OFF(device) #define DEVICE_NO_RANDOM #include #include #include #include #include #include #include /* ioctl arguments. ?? */ #define JSFIDSZ (sizeof(struct jsflash_ident_arg)) #define JSFPRGSZ (sizeof(struct jsflash_program_arg)) /* * Our device numbers have no business in system headers. * The only thing a user knows is the device name /dev/jsflash. * * Block devices are laid out like this: * minor+0 - Bootstrap, for 8MB SIMM 0x20400000[0x800000] * minor+1 - Filesystem to mount, normally 0x20400400[0x7ffc00] * minor+2 - Whole flash area for any case... 0x20000000[0x01000000] * Total 3 minors per flash device. * * It is easier to have static size vectors, so we define * a total minor range JSF_MAX, which must cover all minors. */ /* character device */ #define JSF_MINOR 178 /* 178 is registered with hpa */ /* block device */ #define JSF_MAX 3 /* 3 minors wasted total so far. */ #define JSF_NPART 3 /* 3 minors per flash device */ #define JSF_PART_BITS 2 /* 2 bits of minors to cover JSF_NPART */ #define JSF_PART_MASK 0x3 /* 2 bits mask */ /* * Access functions. * We could ioremap(), but it's easier this way. */ static unsigned int jsf_inl(unsigned long addr) { unsigned long retval; __asm__ __volatile__("lda [%1] %2, %0\n\t" : "=r" (retval) : "r" (addr), "i" (ASI_M_BYPASS)); return retval; } static void jsf_outl(unsigned long addr, __u32 data) { __asm__ __volatile__("sta %0, [%1] %2\n\t" : : "r" (data), "r" (addr), "i" (ASI_M_BYPASS) : "memory"); } /* * soft carrier */ struct jsfd_part { unsigned long dbase; unsigned long dsize; int refcnt; }; struct jsflash { unsigned long base; unsigned long size; unsigned long busy; /* In use? */ struct jsflash_ident_arg id; /* int mbase; */ /* Minor base, typically zero */ struct jsfd_part dv[JSF_NPART]; }; /* * We do not map normal memory or obio as a safety precaution. * But offsets are real, for ease of userland programming. */ #define JSF_BASE_TOP 0x30000000 #define JSF_BASE_ALL 0x20000000 #define JSF_BASE_JK 0x20400000 /* */ static int jsfd_blksizes[JSF_MAX]; static int jsfd_sizes[JSF_MAX]; static u64 jsfd_bytesizes[JSF_MAX]; /* * Let's pretend we may have several of these... */ static struct jsflash jsf0; /* * Wait for AMD to finish its embedded algorithm. * We use the Toggle bit DQ6 (0x40) because it does not * depend on the data value as /DATA bit DQ7 does. * * XXX Do we need any timeout here? So far it never hanged, beware broken hw. */ static void jsf_wait(unsigned long p) { unsigned int x1, x2; for (;;) { x1 = jsf_inl(p); x2 = jsf_inl(p); if ((x1 & 0x40404040) == (x2 & 0x40404040)) return; } } /* * Programming will only work if Flash is clean, * we leave it to the programmer application. * * AMD must be programmed one byte at a time; * thus, Simple Tech SIMM must be written 4 bytes at a time. * * Write waits for the chip to become ready after the write * was finished. This is done so that application would read * consistent data after the write is done. */ static void jsf_write4(unsigned long fa, u32 data) { jsf_outl(fa, 0xAAAAAAAA); /* Unlock 1 Write 1 */ jsf_outl(fa, 0x55555555); /* Unlock 1 Write 2 */ jsf_outl(fa, 0xA0A0A0A0); /* Byte Program */ jsf_outl(fa, data); jsf_wait(fa); } /* */ static void jsfd_read(char *buf, unsigned long p, size_t togo) { union byte4 { char s[4]; unsigned int n; } b; while (togo >= 4) { togo -= 4; b.n = jsf_inl(p); memcpy(buf, b.s, 4); p += 4; buf += 4; } } static void jsfd_do_request(request_queue_t *q) { struct request *req; int dev; struct jsfd_part *jdp; unsigned long offset; size_t len; for (;;) { INIT_REQUEST; /* if (QUEUE_EMPTY) return; */ req = CURRENT; dev = MINOR(req->rq_dev); if (dev >= JSF_MAX || (dev & JSF_PART_MASK) >= JSF_NPART) { end_request(0); continue; } jdp = &jsf0.dv[dev & JSF_PART_MASK]; offset = req->sector << 9; len = req->current_nr_sectors << 9; if ((offset + len) > jdp->dsize) { end_request(0); continue; } if (req->cmd == WRITE) { printk(KERN_ERR "jsfd: write\n"); end_request(0); continue; } if (req->cmd != READ) { printk(KERN_ERR "jsfd: bad req->cmd %d\n", req->cmd); end_request(0); continue; } if ((jdp->dbase & 0xff000000) != 0x20000000) { printk(KERN_ERR "jsfd: bad base %x\n", (int)jdp->dbase); end_request(0); continue; } /* printk("jsfd%d: read buf %p off %x len %x\n", dev, req->buffer, (int)offset, (int)len); */ /* P3 */ jsfd_read(req->buffer, jdp->dbase + offset, len); end_request(1); } } /* * The memory devices use the full 32/64 bits of the offset, and so we cannot * check against negative addresses: they are ok. The return value is weird, * though, in that case (0). * * also note that seeking relative to the "end of file" isn't supported: * it has no meaning, so it returns -EINVAL. */ static loff_t jsf_lseek(struct file * file, loff_t offset, int orig) { switch (orig) { case 0: file->f_pos = offset; return file->f_pos; case 1: file->f_pos += offset; return file->f_pos; default: return -EINVAL; } } /* * OS SIMM Cannot be read in other size but a 32bits word. */ static ssize_t jsf_read(struct file * file, char * buf, size_t togo, loff_t *ppos) { unsigned long p = *ppos; char *tmp = buf; union byte4 { char s[4]; unsigned int n; } b; if (verify_area(VERIFY_WRITE, buf, togo)) return -EFAULT; if (p < JSF_BASE_ALL || p >= JSF_BASE_TOP) { return 0; } if ((p + togo) < p /* wrap */ || (p + togo) >= JSF_BASE_TOP) { togo = JSF_BASE_TOP - p; } if (p < JSF_BASE_ALL && togo != 0) { #if 0 /* __bzero XXX */ size_t x = JSF_BASE_ALL - p; if (x > togo) x = togo; clear_user(tmp, x); tmp += x; p += x; togo -= x; #else /* * Implementation of clear_user() calls __bzero * without regard to modversions, * so we cannot build a module. */ return 0; #endif } while (togo >= 4) { togo -= 4; b.n = jsf_inl(p); copy_to_user(tmp, b.s, 4); tmp += 4; p += 4; } /* * XXX Small togo may remain if 1 byte is ordered. * It would be nice if we did a word size read and unpacked it. */ *ppos = p; return tmp-buf; } static ssize_t jsf_write(struct file * file, const char * buf, size_t count, loff_t *ppos) { return -ENOSPC; } /* */ static int jsf_ioctl_erase(unsigned long arg) { unsigned long p; /* p = jsf0.base; hits wrong bank */ p = 0x20400000; jsf_outl(p, 0xAAAAAAAA); /* Unlock 1 Write 1 */ jsf_outl(p, 0x55555555); /* Unlock 1 Write 2 */ jsf_outl(p, 0x80808080); /* Erase setup */ jsf_outl(p, 0xAAAAAAAA); /* Unlock 2 Write 1 */ jsf_outl(p, 0x55555555); /* Unlock 2 Write 2 */ jsf_outl(p, 0x10101010); /* Chip erase */ #if 0 /* * This code is ok, except that counter based timeout * has no place in this world. Let's just drop timeouts... */ { int i; __u32 x; for (i = 0; i < 1000000; i++) { x = jsf_inl(p); if ((x & 0x80808080) == 0x80808080) break; } if ((x & 0x80808080) != 0x80808080) { printk("jsf0: erase timeout with 0x%08x\n", x); } else { printk("jsf0: erase done with 0x%08x\n", x); } } #else jsf_wait(p); #endif return 0; } /* * Program a block of flash. * Very simple because we can do it byte by byte anyway. */ static int jsf_ioctl_program(unsigned long arg) { struct jsflash_program_arg abuf; char *uptr; unsigned long p; unsigned int togo; union { unsigned int n; char s[4]; } b; if (verify_area(VERIFY_READ, (void *)arg, JSFPRGSZ)) return -EFAULT; copy_from_user(&abuf, (char *)arg, JSFPRGSZ); p = abuf.off; togo = abuf.size; if ((togo & 3) || (p & 3)) return -EINVAL; uptr = (char *) (unsigned long) abuf.data; if (verify_area(VERIFY_READ, uptr, togo)) return -EFAULT; while (togo != 0) { togo -= 4; copy_from_user(&b.s[0], uptr, 4); jsf_write4(p, b.n); p += 4; uptr += 4; } return 0; } static int jsf_ioctl(struct inode *inode, struct file *f, unsigned int cmd, unsigned long arg) { int error = -ENOTTY; if (!capable(CAP_SYS_ADMIN)) return -EPERM; switch (cmd) { case JSFLASH_IDENT: if (verify_area(VERIFY_WRITE, (void *)arg, JSFIDSZ)) return -EFAULT; copy_to_user(arg, &jsf0.id, JSFIDSZ); error = 0; break; case JSFLASH_ERASE: error = jsf_ioctl_erase(arg); break; case JSFLASH_PROGRAM: error = jsf_ioctl_program(arg); break; } return error; } static int jsfd_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { int dev; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!inode) return -EINVAL; if ((dev = MINOR(inode->i_rdev)) >= JSF_MAX) return -ENODEV; switch (cmd) { case BLKGETSIZE: return put_user(jsfd_bytesizes[dev] >> 9, (unsigned long *) arg); case BLKGETSIZE64: return put_user(jsfd_bytesizes[dev], (u64 *) arg); #if 0 case BLKROSET: case BLKROGET: case BLKSSZGET: return blk_ioctl(inode->i_rdev, cmd, arg); #endif /* case BLKFLSBUF: */ /* Program, then read, what happens? Stale? */ default: ; } return -ENOTTY; } static int jsf_mmap(struct file * file, struct vm_area_struct * vma) { return -ENXIO; } static int jsf_open(struct inode * inode, struct file * filp) { if (jsf0.base == 0) return -ENXIO; if (test_and_set_bit(0, (void *)&jsf0.busy) != 0) return -EBUSY; return 0; /* XXX What security? */ } static int jsfd_open(struct inode *inode, struct file *file) { struct jsfd_part *jdp; int dev; if (!inode) return -EINVAL; dev = MINOR(inode->i_rdev); if (dev >= JSF_MAX || (dev & JSF_PART_MASK) >= JSF_NPART) { printk(KERN_ALERT "jsfd_open: illegal minor %d\n", dev); return -ENODEV; } jdp = &jsf0.dv[dev]; jdp->refcnt++; return 0; } static int jsf_release(struct inode *inode, struct file *file) { jsf0.busy = 0; return 0; } static int jsfd_release(struct inode *inode, struct file *file) { struct jsfd_part *jdp; int dev; if (!inode) return -ENODEV; dev = MINOR(inode->i_rdev); if (dev >= JSF_MAX || (dev & JSF_PART_MASK) >= JSF_NPART) { printk(KERN_ALERT "jsfd_release: illegal minor %d\n", dev); return -ENODEV; } jdp = &jsf0.dv[dev]; if (jdp->refcnt <= 0) { printk(KERN_ALERT "jsfd_release: bad ref on minor %d\n", dev); } else { --jdp->refcnt; } /* N.B. Doesn't lo->file need an fput?? */ return 0; } static struct file_operations jsf_fops = { owner: THIS_MODULE, llseek: jsf_lseek, read: jsf_read, write: jsf_write, ioctl: jsf_ioctl, mmap: jsf_mmap, open: jsf_open, release: jsf_release, }; static struct miscdevice jsf_dev = { JSF_MINOR, "jsflash", &jsf_fops }; static struct block_device_operations jsfd_fops = { owner: THIS_MODULE, open: jsfd_open, release: jsfd_release, ioctl: jsfd_ioctl, }; EXPORT_NO_SYMBOLS; int jsflash_init(void) { int rc; struct jsflash *jsf; int node; char banner[128]; struct linux_prom_registers reg0; node = prom_getchild(prom_root_node); node = prom_searchsiblings(node, "flash-memory"); if (node != 0 && node != -1) { if (prom_getproperty(node, "reg", (char *)®0, sizeof(reg0)) == -1) { printk("jsflash: no \"reg\" property\n"); return -ENXIO; } if (reg0.which_io != 0) { printk("jsflash: bus number nonzero: 0x%x:%x\n", reg0.which_io, reg0.phys_addr); return -ENXIO; } /* * Flash may be somewhere else, for instance on Ebus. * So, don't do the following check for IIep flash space. */ #if 0 if ((reg0.phys_addr >> 24) != 0x20) { printk("jsflash: suspicious address: 0x%x:%x\n", reg0.which_io, reg0.phys_addr); return -ENXIO; } #endif if ((int)reg0.reg_size <= 0) { printk("jsflash: bad size 0x%x\n", (int)reg0.reg_size); return -ENXIO; } } else { /* XXX Remove this code once PROLL ID12 got widespread */ printk("jsflash: no /flash-memory node, use PROLL >= 12\n"); prom_getproperty(prom_root_node, "banner-name", banner, 128); if (strcmp (banner, "JavaStation-NC") != 0 && strcmp (banner, "JavaStation-E") != 0) { return -ENXIO; } reg0.which_io = 0; reg0.phys_addr = 0x20400000; reg0.reg_size = 0x00800000; } /* Let us be really paranoid for modifications to probing code. */ /* extern enum sparc_cpu sparc_cpu_model; */ /* in */ if (sparc_cpu_model != sun4m) { /* We must be on sun4m because we use MMU Bypass ASI. */ return -ENXIO; } if (jsf0.base == 0) { jsf = &jsf0; jsf->base = reg0.phys_addr; jsf->size = reg0.reg_size; /* XXX Redo the userland interface. */ jsf->id.off = JSF_BASE_ALL; jsf->id.size = 0x01000000; /* 16M - all segments */ strcpy(jsf->id.name, "Krups_all"); jsf->dv[0].dbase = jsf->base; jsf->dv[0].dsize = jsf->size; jsf->dv[1].dbase = jsf->base + 1024; jsf->dv[1].dsize = jsf->size - 1024; jsf->dv[2].dbase = JSF_BASE_ALL; jsf->dv[2].dsize = 0x01000000; printk("Espresso Flash @0x%lx [%d MB]\n", jsf->base, (int) (jsf->size / (1024*1024))); } if ((rc = misc_register(&jsf_dev)) != 0) { printk(KERN_ERR "jsf: unable to get misc minor %d\n", JSF_MINOR); jsf0.base = 0; return rc; } return 0; } int jsfd_init(void) { struct jsflash *jsf; struct jsfd_part *jdp; int i; if (jsf0.base == 0) { return -ENXIO; } if (register_blkdev(JSFD_MAJOR, "jsfd", &jsfd_fops)) { printk("jsfd_init: unable to get major number %d\n", JSFD_MAJOR); return -EIO; } blksize_size[JSFD_MAJOR] = jsfd_blksizes; blk_size[JSFD_MAJOR] = jsfd_sizes; blk_init_queue(BLK_DEFAULT_QUEUE(MAJOR_NR), DEVICE_REQUEST); /* blk_queue_headactive(BLK_DEFAULT_QUEUE(MAJOR_NR), 0); */ for (i = 0; i < JSF_MAX; i++) { if ((i & JSF_PART_MASK) >= JSF_NPART) continue; jsf = &jsf0; /* actually, &jsfv[i >> JSF_PART_BITS] */ jdp = &jsf->dv[i&JSF_PART_MASK]; jdp->refcnt = 0; jsfd_blksizes[i] = 1024; jsfd_bytesizes[i] = jdp->dsize; jsfd_sizes[i] = jsfd_bytesizes[i] >> 10; register_disk(NULL, MKDEV(JSFD_MAJOR, i), 1, &jsfd_fops, jsfd_bytesizes[i] >> 9); set_device_ro(MKDEV(JSFD_MAJOR, i), 1); } return 0; } #ifdef MODULE MODULE_LICENSE("GPL"); int init_module(void) { int rc; if ((rc = jsflash_init()) == 0) { jsfd_init(); return 0; } return rc; } void cleanup_module(void) { /* for (all probed units) { } */ if (jsf0.busy) printk("jsf0: cleaning busy unit\n"); jsf0.base = 0; jsf0.busy = 0; misc_deregister(&jsf_dev); if (unregister_blkdev(JSFD_MAJOR, "jsfd") != 0) printk("jsfd: cleanup_module failed\n"); blk_cleanup_queue(BLK_DEFAULT_QUEUE(MAJOR_NR)); } #endif