/* Driver for Datafab USB Compact Flash reader * * datafab driver v0.1: * * First release * * Current development and maintenance by: * (c) 2000 Jimmie Mayfield (mayfield+datafab@sackheads.org) * many thanks to Robert Baruch for the SanDisk SmartMedia reader driver * which I used as a template for this driver. * Some bugfixes and scatter-gather code by Gregory P. Smith * (greg-usb@electricrain.com) * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * This driver attempts to support USB CompactFlash reader/writer devices * based on Datafab USB-to-ATA chips. It was specifically developed for the * Datafab MDCFE-B USB CompactFlash reader but has since been found to work * with a variety of Datafab-based devices from a number of manufacturers. * I've received a report of this driver working with a Datafab-based * SmartMedia device though please be aware that I'm personally unable to * test SmartMedia support. * * This driver supports reading and writing. If you're truly paranoid, * however, you can force the driver into a write-protected state by setting * the WP enable bits in datafab_handle_mode_sense(). Basically this means * setting mode_param_header[3] = 0x80. */ #include "transport.h" #include "protocol.h" #include "usb.h" #include "debug.h" #include "datafab.h" #include #include #include extern int usb_stor_bulk_msg(struct us_data *us, void *data, int pipe, unsigned int len, unsigned int *act_len); static int datafab_determine_lun(struct us_data *us, struct datafab_info *info); static void datafab_dump_data(unsigned char *data, int len) { unsigned char buf[80]; int sofar = 0; if (!data) return; memset(buf, 0, sizeof(buf)); for (sofar = 0; sofar < len; sofar++) { sprintf(buf + strlen(buf), "%02x ", ((unsigned int) data[sofar]) & 0xFF); if (sofar % 16 == 15) { US_DEBUGP("datafab: %s\n", buf); memset(buf, 0, sizeof(buf)); } } if (strlen(buf) != 0) US_DEBUGP("datafab: %s\n", buf); } static int datafab_raw_bulk(int direction, struct us_data *us, unsigned char *data, unsigned int len) { int result; int act_len; int pipe; if (direction == SCSI_DATA_READ) pipe = usb_rcvbulkpipe(us->pusb_dev, us->ep_in); else pipe = usb_sndbulkpipe(us->pusb_dev, us->ep_out); result = usb_stor_bulk_msg(us, data, pipe, len, &act_len); // if we stall, we need to clear it before we go on if (result == -EPIPE) { US_DEBUGP("datafab_raw_bulk: EPIPE. clearing endpoint halt for" " pipe 0x%x, stalled at %d bytes\n", pipe, act_len); usb_clear_halt(us->pusb_dev, pipe); } if (result) { // NAK - that means we've retried a few times already if (result == -ETIMEDOUT) { US_DEBUGP("datafab_raw_bulk: device NAKed\n"); return US_BULK_TRANSFER_FAILED; } // -ENOENT -- we canceled this transfer if (result == -ENOENT) { US_DEBUGP("datafab_raw_bulk: transfer aborted\n"); return US_BULK_TRANSFER_ABORTED; } if (result == -EPIPE) { US_DEBUGP("datafab_raw_bulk: output pipe stalled\n"); return USB_STOR_TRANSPORT_FAILED; } // the catch-all case US_DEBUGP("datafab_raw_bulk: unknown error\n"); return US_BULK_TRANSFER_FAILED; } if (act_len != len) { US_DEBUGP("datafab_raw_bulk: Warning. Transferred only %d bytes\n", act_len); return US_BULK_TRANSFER_SHORT; } US_DEBUGP("datafab_raw_bulk: Transfered %d of %d bytes\n", act_len, len); return US_BULK_TRANSFER_GOOD; } static inline int datafab_bulk_read(struct us_data *us, unsigned char *data, unsigned int len) { if (len == 0) return USB_STOR_TRANSPORT_GOOD; US_DEBUGP("datafab_bulk_read: len = %d\n", len); return datafab_raw_bulk(SCSI_DATA_READ, us, data, len); } static inline int datafab_bulk_write(struct us_data *us, unsigned char *data, unsigned int len) { if (len == 0) return USB_STOR_TRANSPORT_GOOD; US_DEBUGP("datafab_bulk_write: len = %d\n", len); return datafab_raw_bulk(SCSI_DATA_WRITE, us, data, len); } static int datafab_read_data(struct us_data *us, struct datafab_info *info, u32 sector, u32 sectors, unsigned char *dest, int use_sg) { unsigned char command[8] = { 0, 0, 0, 0, 0, 0xE0, 0x20, 0x01 }; unsigned char *buffer = NULL; unsigned char *ptr; unsigned char thistime; struct scatterlist *sg = NULL; int totallen, len, result; int sg_idx = 0, current_sg_offset = 0; int transferred, rc; // we're working in LBA mode. according to the ATA spec, // we can support up to 28-bit addressing. I don't know if Datafab // supports beyond 24-bit addressing. It's kind of hard to test // since it requires > 8GB CF card. // if (sectors > 0x0FFFFFFF) return USB_STOR_TRANSPORT_ERROR; if (info->lun == -1) { rc = datafab_determine_lun(us, info); if (rc != USB_STOR_TRANSPORT_GOOD) return rc; } command[5] += (info->lun << 4); // If we're using scatter-gather, we have to create a new // buffer to read all of the data in first, since a // scatter-gather buffer could in theory start in the middle // of a page, which would be bad. A developer who wants a // challenge might want to write a limited-buffer // version of this code. totallen = sectors * info->ssize; do { // loop, never allocate or transfer more than 64k at once (min(128k, 255*info->ssize) is the real limit) len = min_t(int, totallen, 65536); if (use_sg) { sg = (struct scatterlist *) dest; buffer = kmalloc(len, GFP_KERNEL); if (buffer == NULL) return USB_STOR_TRANSPORT_ERROR; ptr = buffer; } else { ptr = dest; } thistime = (len / info->ssize) & 0xff; command[0] = 0; command[1] = thistime; command[2] = sector & 0xFF; command[3] = (sector >> 8) & 0xFF; command[4] = (sector >> 16) & 0xFF; command[5] |= (sector >> 24) & 0x0F; // send the command US_DEBUGP("datafab_read_data: sending following command\n"); datafab_dump_data(command, sizeof(command)); result = datafab_bulk_write(us, command, sizeof(command)); if (result != USB_STOR_TRANSPORT_GOOD) { if (use_sg) kfree(buffer); return result; } // read the result result = datafab_bulk_read(us, ptr, len); if (result != USB_STOR_TRANSPORT_GOOD) { if (use_sg) kfree(buffer); return result; } US_DEBUGP("datafab_read_data results: %d bytes\n", len); // datafab_dump_data(ptr, len); sectors -= thistime; sector += thistime; if (use_sg) { transferred = 0; while (sg_idx < use_sg && transferred < len) { if (len - transferred >= sg[sg_idx].length - current_sg_offset) { US_DEBUGP("datafab_read_data: adding %d bytes to %d byte sg buffer\n", sg[sg_idx].length - current_sg_offset, sg[sg_idx].length); memcpy(sg[sg_idx].address + current_sg_offset, buffer + transferred, sg[sg_idx].length - current_sg_offset); transferred += sg[sg_idx].length - current_sg_offset; current_sg_offset = 0; // on to the next sg buffer ++sg_idx; } else { US_DEBUGP("datafab_read_data: adding %d bytes to %d byte sg buffer\n", len - transferred, sg[sg_idx].length); memcpy(sg[sg_idx].address + current_sg_offset, buffer + transferred, len - transferred); current_sg_offset += len - transferred; // this sg buffer is only partially full and we're out of data to copy in break; } } kfree(buffer); } else { dest += len; } totallen -= len; } while (totallen > 0); return USB_STOR_TRANSPORT_GOOD; } static int datafab_write_data(struct us_data *us, struct datafab_info *info, u32 sector, u32 sectors, unsigned char *src, int use_sg) { unsigned char command[8] = { 0, 0, 0, 0, 0, 0xE0, 0x30, 0x02 }; unsigned char reply[2] = { 0, 0 }; unsigned char *buffer = NULL; unsigned char *ptr; unsigned char thistime; struct scatterlist *sg = NULL; int totallen, len, result; int sg_idx = 0, current_sg_offset = 0; int transferred, rc; // we're working in LBA mode. according to the ATA spec, // we can support up to 28-bit addressing. I don't know if Datafab // supports beyond 24-bit addressing. It's kind of hard to test // since it requires > 8GB CF card. // if (sectors > 0x0FFFFFFF) return USB_STOR_TRANSPORT_ERROR; if (info->lun == -1) { rc = datafab_determine_lun(us, info); if (rc != USB_STOR_TRANSPORT_GOOD) return rc; } command[5] += (info->lun << 4); // If we're using scatter-gather, we have to create a new // buffer to read all of the data in first, since a // scatter-gather buffer could in theory start in the middle // of a page, which would be bad. A developer who wants a // challenge might want to write a limited-buffer // version of this code. totallen = sectors * info->ssize; do { // loop, never allocate or transfer more than 64k at once (min(128k, 255*info->ssize) is the real limit) len = min_t(int, totallen, 65536); if (use_sg) { sg = (struct scatterlist *) src; buffer = kmalloc(len, GFP_KERNEL); if (buffer == NULL) return USB_STOR_TRANSPORT_ERROR; ptr = buffer; memset(buffer, 0, len); // copy the data from the sg bufs into the big contiguous buf // transferred = 0; while (transferred < len) { if (len - transferred >= sg[sg_idx].length - current_sg_offset) { US_DEBUGP("datafab_write_data: getting %d bytes from %d byte sg buffer\n", sg[sg_idx].length - current_sg_offset, sg[sg_idx].length); memcpy(ptr + transferred, sg[sg_idx].address + current_sg_offset, sg[sg_idx].length - current_sg_offset); transferred += sg[sg_idx].length - current_sg_offset; current_sg_offset = 0; // on to the next sg buffer ++sg_idx; } else { US_DEBUGP("datafab_write_data: getting %d bytes from %d byte sg buffer\n", len - transferred, sg[sg_idx].length); memcpy(ptr + transferred, sg[sg_idx].address + current_sg_offset, len - transferred); current_sg_offset += len - transferred; // we only copied part of this sg buffer break; } } } else { ptr = src; } thistime = (len / info->ssize) & 0xff; command[0] = 0; command[1] = thistime; command[2] = sector & 0xFF; command[3] = (sector >> 8) & 0xFF; command[4] = (sector >> 16) & 0xFF; command[5] |= (sector >> 24) & 0x0F; // send the command US_DEBUGP("datafab_write_data: sending following command\n"); datafab_dump_data(command, sizeof(command)); result = datafab_bulk_write(us, command, sizeof(command)); if (result != USB_STOR_TRANSPORT_GOOD) { if (use_sg) kfree(buffer); return result; } // send the data result = datafab_bulk_write(us, ptr, len); if (result != USB_STOR_TRANSPORT_GOOD) { if (use_sg) kfree(buffer); return result; } // read the result result = datafab_bulk_read(us, reply, sizeof(reply)); if (result != USB_STOR_TRANSPORT_GOOD) { if (use_sg) kfree(buffer); return result; } if (reply[0] != 0x50 && reply[1] != 0) { US_DEBUGP("datafab_write_data: Gah! write return code: %02x %02x\n", reply[0], reply[1]); if (use_sg) kfree(buffer); return USB_STOR_TRANSPORT_ERROR; } sectors -= thistime; sector += thistime; if (use_sg) { kfree(buffer); } else { src += len; } totallen -= len; } while (totallen > 0); return USB_STOR_TRANSPORT_GOOD; } static int datafab_determine_lun(struct us_data *us, struct datafab_info *info) { // dual-slot readers can be thought of as dual-LUN devices. we need to // determine which card slot is being used. we'll send an IDENTIFY DEVICE // command and see which LUN responds... // // there might be a better way of doing this? // unsigned char command[8] = { 0, 1, 0, 0, 0, 0xa0, 0xec, 1 }; unsigned char buf[512]; int count = 0, rc; if (!us || !info) return USB_STOR_TRANSPORT_ERROR; US_DEBUGP("datafab_determine_lun: locating...\n"); // we'll try 10 times before giving up... // while (count++ < 10) { command[5] = 0xa0; rc = datafab_bulk_write(us, command, 8); if (rc != USB_STOR_TRANSPORT_GOOD) return rc; rc = datafab_bulk_read(us, buf, sizeof(buf)); if (rc == USB_STOR_TRANSPORT_GOOD) { info->lun = 0; return USB_STOR_TRANSPORT_GOOD; } command[5] = 0xb0; rc = datafab_bulk_write(us, command, 8); if (rc != USB_STOR_TRANSPORT_GOOD) return rc; rc = datafab_bulk_read(us, buf, sizeof(buf)); if (rc == USB_STOR_TRANSPORT_GOOD) { info->lun = 1; return USB_STOR_TRANSPORT_GOOD; } wait_ms(20); } return USB_STOR_TRANSPORT_FAILED; } static int datafab_id_device(struct us_data *us, struct datafab_info *info) { // this is a variation of the ATA "IDENTIFY DEVICE" command...according // to the ATA spec, 'Sector Count' isn't used but the Windows driver // sets this bit so we do too... // unsigned char command[8] = { 0, 1, 0, 0, 0, 0xa0, 0xec, 1 }; unsigned char reply[512]; int rc; if (!us || !info) return USB_STOR_TRANSPORT_ERROR; if (info->lun == -1) { rc = datafab_determine_lun(us, info); if (rc != USB_STOR_TRANSPORT_GOOD) return rc; } command[5] += (info->lun << 4); rc = datafab_bulk_write(us, command, 8); if (rc != USB_STOR_TRANSPORT_GOOD) return rc; // we'll go ahead and extract the media capacity while we're here... // rc = datafab_bulk_read(us, reply, sizeof(reply)); if (rc == USB_STOR_TRANSPORT_GOOD) { // capacity is at word offset 57-58 // info->sectors = ((u32)(reply[117]) << 24) | ((u32)(reply[116]) << 16) | ((u32)(reply[115]) << 8) | ((u32)(reply[114]) ); } return rc; } static int datafab_handle_mode_sense(struct us_data *us, Scsi_Cmnd * srb, unsigned char *ptr, int sense_6) { unsigned char mode_param_header[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; unsigned char rw_err_page[12] = { 0x1, 0xA, 0x21, 1, 0, 0, 0, 0, 1, 0, 0, 0 }; unsigned char cache_page[12] = { 0x8, 0xA, 0x1, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; unsigned char rbac_page[12] = { 0x1B, 0xA, 0, 0x81, 0, 0, 0, 0, 0, 0, 0, 0 }; unsigned char timer_page[8] = { 0x1C, 0x6, 0, 0, 0, 0 }; unsigned char pc, page_code; unsigned short total_len = 0; unsigned short param_len, i = 0; // most of this stuff is just a hack to get things working. the // datafab reader doesn't present a SCSI interface so we // fudge the SCSI commands... // if (sense_6) param_len = srb->cmnd[4]; else param_len = ((u16) (srb->cmnd[7]) >> 8) | ((u16) (srb->cmnd[8])); pc = srb->cmnd[2] >> 6; page_code = srb->cmnd[2] & 0x3F; switch (pc) { case 0x0: US_DEBUGP("datafab_handle_mode_sense: Current values\n"); break; case 0x1: US_DEBUGP("datafab_handle_mode_sense: Changeable values\n"); break; case 0x2: US_DEBUGP("datafab_handle_mode_sense: Default values\n"); break; case 0x3: US_DEBUGP("datafab_handle_mode_sense: Saves values\n"); break; } mode_param_header[3] = 0x80; // write enable switch (page_code) { case 0x0: // vendor-specific mode return USB_STOR_TRANSPORT_ERROR; case 0x1: total_len = sizeof(rw_err_page); mode_param_header[0] = total_len >> 8; mode_param_header[1] = total_len & 0xFF; mode_param_header[3] = 0x00; // WP enable: 0x80 memcpy(ptr, mode_param_header, sizeof(mode_param_header)); i += sizeof(mode_param_header); memcpy(ptr + i, rw_err_page, sizeof(rw_err_page)); break; case 0x8: total_len = sizeof(cache_page); mode_param_header[0] = total_len >> 8; mode_param_header[1] = total_len & 0xFF; mode_param_header[3] = 0x00; // WP enable: 0x80 memcpy(ptr, mode_param_header, sizeof(mode_param_header)); i += sizeof(mode_param_header); memcpy(ptr + i, cache_page, sizeof(cache_page)); break; case 0x1B: total_len = sizeof(rbac_page); mode_param_header[0] = total_len >> 8; mode_param_header[1] = total_len & 0xFF; mode_param_header[3] = 0x00; // WP enable: 0x80 memcpy(ptr, mode_param_header, sizeof(mode_param_header)); i += sizeof(mode_param_header); memcpy(ptr + i, rbac_page, sizeof(rbac_page)); break; case 0x1C: total_len = sizeof(timer_page); mode_param_header[0] = total_len >> 8; mode_param_header[1] = total_len & 0xFF; mode_param_header[3] = 0x00; // WP enable: 0x80 memcpy(ptr, mode_param_header, sizeof(mode_param_header)); i += sizeof(mode_param_header); memcpy(ptr + i, timer_page, sizeof(timer_page)); break; case 0x3F: // retrieve all pages total_len = sizeof(timer_page) + sizeof(rbac_page) + sizeof(cache_page) + sizeof(rw_err_page); mode_param_header[0] = total_len >> 8; mode_param_header[1] = total_len & 0xFF; mode_param_header[3] = 0x00; // WP enable memcpy(ptr, mode_param_header, sizeof(mode_param_header)); i += sizeof(mode_param_header); memcpy(ptr + i, timer_page, sizeof(timer_page)); i += sizeof(timer_page); memcpy(ptr + i, rbac_page, sizeof(rbac_page)); i += sizeof(rbac_page); memcpy(ptr + i, cache_page, sizeof(cache_page)); i += sizeof(cache_page); memcpy(ptr + i, rw_err_page, sizeof(rw_err_page)); break; } return USB_STOR_TRANSPORT_GOOD; } void datafab_info_destructor(void *extra) { // this routine is a placeholder... // currently, we don't allocate any extra memory so we're okay } // Transport for the Datafab MDCFE-B // int datafab_transport(Scsi_Cmnd * srb, struct us_data *us) { struct datafab_info *info; int rc; unsigned long block, blocks; unsigned char *ptr = NULL; unsigned char inquiry_reply[36] = { 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00 }; if (!us->extra) { us->extra = kmalloc(sizeof(struct datafab_info), GFP_KERNEL); if (!us->extra) { US_DEBUGP("datafab_transport: Gah! Can't allocate storage for Datafab info struct!\n"); return USB_STOR_TRANSPORT_ERROR; } memset(us->extra, 0, sizeof(struct datafab_info)); us->extra_destructor = datafab_info_destructor; ((struct datafab_info *)us->extra)->lun = -1; } info = (struct datafab_info *) (us->extra); ptr = (unsigned char *) srb->request_buffer; if (srb->cmnd[0] == INQUIRY) { US_DEBUGP("datafab_transport: INQUIRY. Returning bogus response"); memset( inquiry_reply + 8, 0, 28 ); fill_inquiry_response(us, inquiry_reply, 36); return USB_STOR_TRANSPORT_GOOD; } if (srb->cmnd[0] == READ_CAPACITY) { info->ssize = 0x200; // hard coded 512 byte sectors as per ATA spec rc = datafab_id_device(us, info); if (rc != USB_STOR_TRANSPORT_GOOD) return rc; US_DEBUGP("datafab_transport: READ_CAPACITY: %ld sectors, %ld bytes per sector\n", info->sectors, info->ssize); // build the reply // ptr[0] = (info->sectors >> 24) & 0xFF; ptr[1] = (info->sectors >> 16) & 0xFF; ptr[2] = (info->sectors >> 8) & 0xFF; ptr[3] = (info->sectors) & 0xFF; ptr[4] = (info->ssize >> 24) & 0xFF; ptr[5] = (info->ssize >> 16) & 0xFF; ptr[6] = (info->ssize >> 8) & 0xFF; ptr[7] = (info->ssize) & 0xFF; return USB_STOR_TRANSPORT_GOOD; } if (srb->cmnd[0] == MODE_SELECT_10) { US_DEBUGP("datafab_transport: Gah! MODE_SELECT_10.\n"); return USB_STOR_TRANSPORT_ERROR; } // don't bother implementing READ_6 or WRITE_6. Just set MODE_XLATE and // let the usb storage code convert to READ_10/WRITE_10 // if (srb->cmnd[0] == READ_10) { block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) | ((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5])); blocks = ((u32)(srb->cmnd[7]) << 8) | ((u32)(srb->cmnd[8])); US_DEBUGP("datafab_transport: READ_10: read block 0x%04lx count %ld\n", block, blocks); return datafab_read_data(us, info, block, blocks, ptr, srb->use_sg); } if (srb->cmnd[0] == READ_12) { // we'll probably never see a READ_12 but we'll do it anyway... // block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) | ((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5])); blocks = ((u32)(srb->cmnd[6]) << 24) | ((u32)(srb->cmnd[7]) << 16) | ((u32)(srb->cmnd[8]) << 8) | ((u32)(srb->cmnd[9])); US_DEBUGP("datafab_transport: READ_12: read block 0x%04lx count %ld\n", block, blocks); return datafab_read_data(us, info, block, blocks, ptr, srb->use_sg); } if (srb->cmnd[0] == WRITE_10) { block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) | ((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5])); blocks = ((u32)(srb->cmnd[7]) << 8) | ((u32)(srb->cmnd[8])); US_DEBUGP("datafab_transport: WRITE_10: write block 0x%04lx count %ld\n", block, blocks); return datafab_write_data(us, info, block, blocks, ptr, srb->use_sg); } if (srb->cmnd[0] == WRITE_12) { // we'll probably never see a WRITE_12 but we'll do it anyway... // block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) | ((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5])); blocks = ((u32)(srb->cmnd[6]) << 24) | ((u32)(srb->cmnd[7]) << 16) | ((u32)(srb->cmnd[8]) << 8) | ((u32)(srb->cmnd[9])); US_DEBUGP("datafab_transport: WRITE_12: write block 0x%04lx count %ld\n", block, blocks); return datafab_write_data(us, info, block, blocks, ptr, srb->use_sg); } if (srb->cmnd[0] == TEST_UNIT_READY) { US_DEBUGP("datafab_transport: TEST_UNIT_READY.\n"); return datafab_id_device(us, info); } if (srb->cmnd[0] == REQUEST_SENSE) { US_DEBUGP("datafab_transport: REQUEST_SENSE. Returning faked response\n"); // this response is pretty bogus right now. eventually if necessary // we can set the correct sense data. so far though it hasn't been // necessary // ptr[0] = 0xF0; ptr[2] = info->sense_key; ptr[7] = 11; ptr[12] = info->sense_asc; ptr[13] = info->sense_ascq; return USB_STOR_TRANSPORT_GOOD; } if (srb->cmnd[0] == MODE_SENSE) { US_DEBUGP("datafab_transport: MODE_SENSE_6 detected\n"); return datafab_handle_mode_sense(us, srb, ptr, TRUE); } if (srb->cmnd[0] == MODE_SENSE_10) { US_DEBUGP("datafab_transport: MODE_SENSE_10 detected\n"); return datafab_handle_mode_sense(us, srb, ptr, FALSE); } if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) { // sure. whatever. not like we can stop the user from // popping the media out of the device (no locking doors, etc) // return USB_STOR_TRANSPORT_GOOD; } US_DEBUGP("datafab_transport: Gah! Unknown command: %d (0x%x)\n", srb->cmnd[0], srb->cmnd[0]); return USB_STOR_TRANSPORT_ERROR; }