#ifndef _S390_BITOPS_H #define _S390_BITOPS_H /* * include/asm-s390/bitops.h * * S390 version * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com) * * Derived from "include/asm-i386/bitops.h" * Copyright (C) 1992, Linus Torvalds * */ #include /* * bit 0 is the LSB of *addr; bit 31 is the MSB of *addr; * bit 32 is the LSB of *(addr+4). That combined with the * big endian byte order on S390 give the following bit * order in memory: * 1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10 \ * 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00 * after that follows the next long with bit numbers * 3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30 * 2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20 * The reason for this bit ordering is the fact that * in the architecture independent code bits operations * of the form "flags |= (1 << bitnr)" are used INTERMIXED * with operation of the form "set_bit(bitnr, flags)". */ /* set ALIGN_CS to 1 if the SMP safe bit operations should * align the address to 4 byte boundary. It seems to work * without the alignment. */ #ifdef __KERNEL__ #define ALIGN_CS 0 #else #define ALIGN_CS 1 #ifndef CONFIG_SMP #error "bitops won't work without CONFIG_SMP" #endif #endif /* bitmap tables from arch/S390/kernel/bitmap.S */ extern const char _oi_bitmap[]; extern const char _ni_bitmap[]; extern const char _zb_findmap[]; #ifdef CONFIG_SMP /* * SMP save set_bit routine based on compare and swap (CS) */ static __inline__ void set_bit_cs(int nr, volatile void * addr) { __asm__ __volatile__( #if ALIGN_CS == 1 " lhi 1,3\n" /* CS must be aligned on 4 byte b. */ " nr 1,%1\n" /* isolate last 2 bits of address */ " xr %1,1\n" /* make addr % 4 == 0 */ " sll 1,3\n" " ar %0,1\n" /* add alignement to bitnr */ #endif " lhi 1,31\n" " nr 1,%0\n" /* make shift value */ " xr %0,1\n" " srl %0,3\n" " lhi 2,1\n" " la %1,0(%0,%1)\n" /* calc. address for CS */ " sll 2,0(1)\n" /* make OR mask */ " l %0,0(%1)\n" "0: lr 1,%0\n" /* CS loop starts here */ " or 1,2\n" /* set bit */ " cs %0,1,0(%1)\n" " jl 0b" : "+a" (nr), "+a" (addr) : : "cc", "memory", "1", "2" ); } /* * SMP save clear_bit routine based on compare and swap (CS) */ static __inline__ void clear_bit_cs(int nr, volatile void * addr) { static const int mask = -1; __asm__ __volatile__( #if ALIGN_CS == 1 " lhi 1,3\n" /* CS must be aligned on 4 byte b. */ " nr 1,%1\n" /* isolate last 2 bits of address */ " xr %1,1\n" /* make addr % 4 == 0 */ " sll 1,3\n" " ar %0,1\n" /* add alignement to bitnr */ #endif " lhi 1,31\n" " nr 1,%0\n" /* make shift value */ " xr %0,1\n" " srl %0,3\n" " lhi 2,1\n" " la %1,0(%0,%1)\n" /* calc. address for CS */ " sll 2,0(1)\n" " x 2,%2\n" /* make AND mask */ " l %0,0(%1)\n" "0: lr 1,%0\n" /* CS loop starts here */ " nr 1,2\n" /* clear bit */ " cs %0,1,0(%1)\n" " jl 0b" : "+a" (nr), "+a" (addr) : "m" (mask) : "cc", "memory", "1", "2" ); } /* * SMP save change_bit routine based on compare and swap (CS) */ static __inline__ void change_bit_cs(int nr, volatile void * addr) { __asm__ __volatile__( #if ALIGN_CS == 1 " lhi 1,3\n" /* CS must be aligned on 4 byte b. */ " nr 1,%1\n" /* isolate last 2 bits of address */ " xr %1,1\n" /* make addr % 4 == 0 */ " sll 1,3\n" " ar %0,1\n" /* add alignement to bitnr */ #endif " lhi 1,31\n" " nr 1,%0\n" /* make shift value */ " xr %0,1\n" " srl %0,3\n" " lhi 2,1\n" " la %1,0(%0,%1)\n" /* calc. address for CS */ " sll 2,0(1)\n" /* make XR mask */ " l %0,0(%1)\n" "0: lr 1,%0\n" /* CS loop starts here */ " xr 1,2\n" /* change bit */ " cs %0,1,0(%1)\n" " jl 0b" : "+a" (nr), "+a" (addr) : : "cc", "memory", "1", "2" ); } /* * SMP save test_and_set_bit routine based on compare and swap (CS) */ static __inline__ int test_and_set_bit_cs(int nr, volatile void * addr) { __asm__ __volatile__( #if ALIGN_CS == 1 " lhi 1,3\n" /* CS must be aligned on 4 byte b. */ " nr 1,%1\n" /* isolate last 2 bits of address */ " xr %1,1\n" /* make addr % 4 == 0 */ " sll 1,3\n" " ar %0,1\n" /* add alignement to bitnr */ #endif " lhi 1,31\n" " nr 1,%0\n" /* make shift value */ " xr %0,1\n" " srl %0,3\n" " la %1,0(%0,%1)\n" /* calc. address for CS */ " lhi 2,1\n" " sll 2,0(1)\n" /* make OR mask */ " l %0,0(%1)\n" "0: lr 1,%0\n" /* CS loop starts here */ " or 1,2\n" /* set bit */ " cs %0,1,0(%1)\n" " jl 0b\n" " nr %0,2\n" /* isolate old bit */ : "+a" (nr), "+a" (addr) : : "cc", "memory", "1", "2" ); return nr; } /* * SMP save test_and_clear_bit routine based on compare and swap (CS) */ static __inline__ int test_and_clear_bit_cs(int nr, volatile void * addr) { static const int mask = -1; __asm__ __volatile__( #if ALIGN_CS == 1 " lhi 1,3\n" /* CS must be aligned on 4 byte b. */ " nr 1,%1\n" /* isolate last 2 bits of address */ " xr %1,1\n" /* make addr % 4 == 0 */ " sll 1,3\n" " ar %0,1\n" /* add alignement to bitnr */ #endif " lhi 1,31\n" " nr 1,%0\n" /* make shift value */ " xr %0,1\n" " srl %0,3\n" " la %1,0(%0,%1)\n" /* calc. address for CS */ " lhi 2,1\n" " sll 2,0(1)\n" " x 2,%2\n" /* make AND mask */ " l %0,0(%1)\n" "0: lr 1,%0\n" /* CS loop starts here */ " nr 1,2\n" /* clear bit */ " cs %0,1,0(%1)\n" " jl 0b\n" " x 2,%2\n" " nr %0,2\n" /* isolate old bit */ : "+a" (nr), "+a" (addr) : "m" (mask) : "cc", "memory", "1", "2" ); return nr; } /* * SMP save test_and_change_bit routine based on compare and swap (CS) */ static __inline__ int test_and_change_bit_cs(int nr, volatile void * addr) { __asm__ __volatile__( #if ALIGN_CS == 1 " lhi 1,3\n" /* CS must be aligned on 4 byte b. */ " nr 1,%1\n" /* isolate last 2 bits of address */ " xr %1,1\n" /* make addr % 4 == 0 */ " sll 1,3\n" " ar %0,1\n" /* add alignement to bitnr */ #endif " lhi 1,31\n" " nr 1,%0\n" /* make shift value */ " xr %0,1\n" " srl %0,3\n" " la %1,0(%0,%1)\n" /* calc. address for CS */ " lhi 2,1\n" " sll 2,0(1)\n" /* make OR mask */ " l %0,0(%1)\n" "0: lr 1,%0\n" /* CS loop starts here */ " xr 1,2\n" /* change bit */ " cs %0,1,0(%1)\n" " jl 0b\n" " nr %0,2\n" /* isolate old bit */ : "+a" (nr), "+a" (addr) : : "cc", "memory", "1", "2" ); return nr; } #endif /* CONFIG_SMP */ /* * fast, non-SMP set_bit routine */ static __inline__ void __set_bit(int nr, volatile void * addr) { __asm__ __volatile__( " lhi 2,24\n" " lhi 1,7\n" " xr 2,%0\n" " nr 1,%0\n" " srl 2,3\n" " la 2,0(2,%1)\n" " la 1,0(1,%2)\n" " oc 0(1,2),0(1)" : : "r" (nr), "a" (addr), "a" (&_oi_bitmap) : "cc", "memory", "1", "2" ); } static __inline__ void __constant_set_bit(const int nr, volatile void * addr) { switch (nr&7) { case 0: __asm__ __volatile__ ("la 1,%0\n\t" "oi 0(1),0x01" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory"); break; case 1: __asm__ __volatile__ ("la 1,%0\n\t" "oi 0(1),0x02" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 2: __asm__ __volatile__ ("la 1,%0\n\t" "oi 0(1),0x04" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 3: __asm__ __volatile__ ("la 1,%0\n\t" "oi 0(1),0x08" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 4: __asm__ __volatile__ ("la 1,%0\n\t" "oi 0(1),0x10" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 5: __asm__ __volatile__ ("la 1,%0\n\t" "oi 0(1),0x20" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 6: __asm__ __volatile__ ("la 1,%0\n\t" "oi 0(1),0x40" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 7: __asm__ __volatile__ ("la 1,%0\n\t" "oi 0(1),0x80" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; } } #define set_bit_simple(nr,addr) \ (__builtin_constant_p((nr)) ? \ __constant_set_bit((nr),(addr)) : \ __set_bit((nr),(addr)) ) /* * fast, non-SMP clear_bit routine */ static __inline__ void __clear_bit(int nr, volatile void * addr) { __asm__ __volatile__( " lhi 2,24\n" " lhi 1,7\n" " xr 2,%0\n" " nr 1,%0\n" " srl 2,3\n" " la 2,0(2,%1)\n" " la 1,0(1,%2)\n" " nc 0(1,2),0(1)" : : "r" (nr), "a" (addr), "a" (&_ni_bitmap) : "cc", "memory", "1", "2" ); } static __inline__ void __constant_clear_bit(const int nr, volatile void * addr) { switch (nr&7) { case 0: __asm__ __volatile__ ("la 1,%0\n\t" "ni 0(1),0xFE" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 1: __asm__ __volatile__ ("la 1,%0\n\t" "ni 0(1),0xFD" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 2: __asm__ __volatile__ ("la 1,%0\n\t" "ni 0(1),0xFB" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 3: __asm__ __volatile__ ("la 1,%0\n\t" "ni 0(1),0xF7" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 4: __asm__ __volatile__ ("la 1,%0\n\t" "ni 0(1),0xEF" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "cc", "memory" ); break; case 5: __asm__ __volatile__ ("la 1,%0\n\t" "ni 0(1),0xDF" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 6: __asm__ __volatile__ ("la 1,%0\n\t" "ni 0(1),0xBF" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 7: __asm__ __volatile__ ("la 1,%0\n\t" "ni 0(1),0x7F" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; } } #define clear_bit_simple(nr,addr) \ (__builtin_constant_p((nr)) ? \ __constant_clear_bit((nr),(addr)) : \ __clear_bit((nr),(addr)) ) /* * fast, non-SMP change_bit routine */ static __inline__ void __change_bit(int nr, volatile void * addr) { __asm__ __volatile__( " lhi 2,24\n" " lhi 1,7\n" " xr 2,%0\n" " nr 1,%0\n" " srl 2,3\n" " la 2,0(2,%1)\n" " la 1,0(1,%2)\n" " xc 0(1,2),0(1)" : : "r" (nr), "a" (addr), "a" (&_oi_bitmap) : "cc", "memory", "1", "2" ); } static __inline__ void __constant_change_bit(const int nr, volatile void * addr) { switch (nr&7) { case 0: __asm__ __volatile__ ("la 1,%0\n\t" "xi 0(1),0x01" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "cc", "memory" ); break; case 1: __asm__ __volatile__ ("la 1,%0\n\t" "xi 0(1),0x02" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "cc", "memory" ); break; case 2: __asm__ __volatile__ ("la 1,%0\n\t" "xi 0(1),0x04" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "cc", "memory" ); break; case 3: __asm__ __volatile__ ("la 1,%0\n\t" "xi 0(1),0x08" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "cc", "memory" ); break; case 4: __asm__ __volatile__ ("la 1,%0\n\t" "xi 0(1),0x10" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "cc", "memory" ); break; case 5: __asm__ __volatile__ ("la 1,%0\n\t" "xi 0(1),0x20" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 6: __asm__ __volatile__ ("la 1,%0\n\t" "xi 0(1),0x40" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 7: __asm__ __volatile__ ("la 1,%0\n\t" "xi 0(1),0x80" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; } } #define change_bit_simple(nr,addr) \ (__builtin_constant_p((nr)) ? \ __constant_change_bit((nr),(addr)) : \ __change_bit((nr),(addr)) ) /* * fast, non-SMP test_and_set_bit routine */ static __inline__ int test_and_set_bit_simple(int nr, volatile void * addr) { static const int mask = 1; int oldbit; __asm__ __volatile__( " lhi 1,24\n" " lhi 2,7\n" " xr 1,%1\n" " nr 2,1\n" " srl 1,3\n" " la 1,0(1,%2)\n" " ic %0,0(1)\n" " srl %0,0(2)\n" " n %0,%4\n" " la 2,0(2,%3)\n" " oc 0(1,1),0(2)" : "=d&" (oldbit) : "r" (nr), "a" (addr), "a" (&_oi_bitmap), "m" (mask) : "cc", "memory", "1", "2" ); return oldbit; } #define __test_and_set_bit(X,Y) test_and_set_bit_simple(X,Y) /* * fast, non-SMP test_and_clear_bit routine */ static __inline__ int test_and_clear_bit_simple(int nr, volatile void * addr) { static const int mask = 1; int oldbit; __asm__ __volatile__( " lhi 1,24\n" " lhi 2,7\n" " xr 1,%1\n" " nr 2,1\n" " srl 1,3\n" " la 1,0(1,%2)\n" " ic %0,0(1)\n" " srl %0,0(2)\n" " n %0,%4\n" " la 2,0(2,%3)\n" " nc 0(1,1),0(2)" : "=d&" (oldbit) : "r" (nr), "a" (addr), "a" (&_ni_bitmap), "m" (mask) : "cc", "memory", "1", "2" ); return oldbit; } #define __test_and_clear_bit(X,Y) test_and_clear_bit_simple(X,Y) /* * fast, non-SMP test_and_change_bit routine */ static __inline__ int test_and_change_bit_simple(int nr, volatile void * addr) { static const int mask = 1; int oldbit; __asm__ __volatile__( " lhi 1,24\n" " lhi 2,7\n" " xr 1,%1\n" " nr 2,1\n" " srl 1,3\n" " la 1,0(1,%2)\n" " ic %0,0(1)\n" " srl %0,0(2)\n" " n %0,%4\n" " la 2,0(2,%3)\n" " xc 0(1,1),0(2)" : "=d&" (oldbit) : "r" (nr), "a" (addr), "a" (&_oi_bitmap), "m" (mask) : "cc", "memory", "1", "2" ); return oldbit; } #define __test_and_change_bit(X,Y) test_and_change_bit_simple(X,Y) #ifdef CONFIG_SMP #define set_bit set_bit_cs #define clear_bit clear_bit_cs #define change_bit change_bit_cs #define test_and_set_bit test_and_set_bit_cs #define test_and_clear_bit test_and_clear_bit_cs #define test_and_change_bit test_and_change_bit_cs #else #define set_bit set_bit_simple #define clear_bit clear_bit_simple #define change_bit change_bit_simple #define test_and_set_bit test_and_set_bit_simple #define test_and_clear_bit test_and_clear_bit_simple #define test_and_change_bit test_and_change_bit_simple #endif /* * This routine doesn't need to be atomic. */ static __inline__ int __test_bit(int nr, volatile void * addr) { static const int mask = 1; int oldbit; __asm__ __volatile__( " lhi 2,24\n" " lhi 1,7\n" " xr 2,%1\n" " nr 1,%1\n" " srl 2,3\n" " ic %0,0(2,%2)\n" " srl %0,0(1)\n" " n %0,%3" : "=d&" (oldbit) : "r" (nr), "a" (addr), "m" (mask) : "cc", "1", "2" ); return oldbit; } static __inline__ int __constant_test_bit(int nr, volatile void * addr) { return (((volatile char *) addr)[(nr>>3)^3] & (1<<(nr&7))) != 0; } #define test_bit(nr,addr) \ (__builtin_constant_p((nr)) ? \ __constant_test_bit((nr),(addr)) : \ __test_bit((nr),(addr)) ) /* * Find-bit routines.. */ static __inline__ int find_first_zero_bit(void * addr, unsigned size) { static const int mask = 0xffL; int res; if (!size) return 0; __asm__(" lhi 0,-1\n" " lr 1,%1\n" " ahi 1,31\n" " srl 1,5\n" " sr 2,2\n" "0: c 0,0(2,%2)\n" " jne 1f\n" " ahi 2,4\n" " brct 1,0b\n" " lr 2,%1\n" " j 4f\n" "1: l 1,0(2,%2)\n" " sll 2,3\n" " tml 1,0xFFFF\n" " jno 2f\n" " ahi 2,16\n" " srl 1,16\n" "2: tml 1,0x00FF\n" " jno 3f\n" " ahi 2,8\n" " srl 1,8\n" "3: n 1,%3\n" " ic 1,0(1,%4)\n" " n 1,%3\n" " ar 2,1\n" "4: lr %0,2" : "=d" (res) : "a" (size), "a" (addr), "m" (mask), "a" (&_zb_findmap) : "cc", "0", "1", "2" ); return (res < size) ? res : size; } static __inline__ int find_next_zero_bit (void * addr, int size, int offset) { static const int mask = 0xffL; unsigned long * p = ((unsigned long *) addr) + (offset >> 5); unsigned long bitvec; int set, bit = offset & 31, res; if (bit) { /* * Look for zero in first word */ bitvec = (*p) >> bit; __asm__(" lr 1,%1\n" " sr %0,%0\n" " tml 1,0xFFFF\n" " jno 0f\n" " ahi %0,16\n" " srl 1,16\n" "0: tml 1,0x00FF\n" " jno 1f\n" " ahi %0,8\n" " srl 1,8\n" "1: n 1,%2\n" " ic 1,0(1,%3)\n" " n 1,%2\n" " ar %0,1" : "=d&" (set) : "d" (bitvec), "m" (mask), "a" (&_zb_findmap) : "cc", "1" ); if (set < (32 - bit)) return set + offset; offset += 32 - bit; p++; } /* * No zero yet, search remaining full words for a zero */ res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr)); return (offset + res); } /* * ffz = Find First Zero in word. Undefined if no zero exists, * so code should check against ~0UL first.. */ static __inline__ unsigned long ffz(unsigned long word) { static const int mask = 0xffL; int result; __asm__(" lr 1,%1\n" " sr %0,%0\n" " tml 1,0xFFFF\n" " jno 0f\n" " ahi %0,16\n" " srl 1,16\n" "0: tml 1,0x00FF\n" " jno 1f\n" " ahi %0,8\n" " srl 1,8\n" "1: n 1,%2\n" " ic 1,0(1,%3)\n" " n 1,%2\n" " ar %0,1" : "=d&" (result) : "d" (word), "m" (mask), "a" (&_zb_findmap) : "cc", "1" ); return result; } /* * ffs: find first bit set. This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). */ extern int __inline__ ffs (int x) { int r; if (x == 0) return 0; __asm__(" lr %%r1,%1\n" " sr %0,%0\n" " tml %%r1,0xFFFF\n" " jnz 0f\n" " ahi %0,16\n" " srl %%r1,16\n" "0: tml %%r1,0x00FF\n" " jnz 1f\n" " ahi %0,8\n" " srl %%r1,8\n" "1: tml %%r1,0x000F\n" " jnz 2f\n" " ahi %0,4\n" " srl %%r1,4\n" "2: tml %%r1,0x0003\n" " jnz 3f\n" " ahi %0,2\n" " srl %%r1,2\n" "3: tml %%r1,0x0001\n" " jnz 4f\n" " ahi %0,1\n" "4:" : "=&d" (r) : "d" (x) : "cc", "1" ); return r+1; } /* * hweightN: returns the hamming weight (i.e. the number * of bits set) of a N-bit word */ #define hweight32(x) generic_hweight32(x) #define hweight16(x) generic_hweight16(x) #define hweight8(x) generic_hweight8(x) #ifdef __KERNEL__ /* * ATTENTION: intel byte ordering convention for ext2 and minix !! * bit 0 is the LSB of addr; bit 31 is the MSB of addr; * bit 32 is the LSB of (addr+4). * That combined with the little endian byte order of Intel gives the * following bit order in memory: * 07 06 05 04 03 02 01 00 15 14 13 12 11 10 09 08 \ * 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24 */ #define ext2_set_bit(nr, addr) test_and_set_bit((nr)^24, addr) #define ext2_clear_bit(nr, addr) test_and_clear_bit((nr)^24, addr) #define ext2_test_bit(nr, addr) test_bit((nr)^24, addr) static __inline__ int ext2_find_first_zero_bit(void *vaddr, unsigned size) { int res; if (!size) return 0; __asm__(" lhi 0,-1\n" " lr 1,%1\n" " ahi 1,31\n" " srl 1,5\n" " sr 2,2\n" "0: c 0,0(2,%2)\n" " jne 1f\n" " ahi 2,4\n" " brct 1,0b\n" " lr 2,%1\n" " j 4f\n" "1: l 1,0(2,%2)\n" " sll 2,3\n" " lhi 0,0xff\n" " ahi 2,24\n" " tmh 1,0xFFFF\n" " jo 2f\n" " ahi 2,-16\n" " srl 1,16\n" "2: tml 1,0xFF00\n" " jo 3f\n" " ahi 2,-8\n" " srl 1,8\n" "3: nr 1,0\n" " ic 1,0(1,%3)\n" " ar 2,1\n" "4: lr %0,2" : "=d" (res) : "a" (size), "a" (vaddr), "a" (&_zb_findmap) : "cc", "0", "1", "2" ); return (res < size) ? res : size; } static __inline__ int ext2_find_next_zero_bit(void *vaddr, unsigned size, unsigned offset) { unsigned long *addr = vaddr; unsigned long *p = addr + (offset >> 5); unsigned long word; int bit = offset & 31UL, res; if (offset >= size) return size; if (bit) { __asm__(" ic %0,0(%1)\n" " icm %0,2,1(%1)\n" " icm %0,4,2(%1)\n" " icm %0,8,3(%1)" : "=&a" (word) : "a" (p) : "cc" ); word >>= bit; res = bit; /* Look for zero in first longword */ __asm__(" lhi 0,0xff\n" " tml %1,0xffff\n" " jno 0f\n" " ahi %0,16\n" " srl %1,16\n" "0: tml %1,0x00ff\n" " jno 1f\n" " ahi %0,8\n" " srl %1,8\n" "1: nr %1,0\n" " ic %1,0(%1,%2)\n" " alr %0,%1" : "+&d" (res), "+&a" (word) : "a" (&_zb_findmap) : "cc", "0" ); if (res < 32) return (p - addr)*32 + res; p++; } /* No zero yet, search remaining full bytes for a zero */ res = ext2_find_first_zero_bit (p, size - 32 * (p - addr)); return (p - addr) * 32 + res; } /* Bitmap functions for the minix filesystem. */ /* FIXME !!! */ #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) #define minix_set_bit(nr,addr) set_bit(nr,addr) #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) #define minix_test_bit(nr,addr) test_bit(nr,addr) #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) #endif /* __KERNEL__ */ #endif /* _S390_BITOPS_H */