/* * include/asm-s390/pgtable.h * * S390 version * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation * Author(s): Hartmut Penner (hp@de.ibm.com) * Ulrich Weigand (weigand@de.ibm.com) * Martin Schwidefsky (schwidefsky@de.ibm.com) * * Derived from "include/asm-i386/pgtable.h" */ #ifndef _ASM_S390_PGTABLE_H #define _ASM_S390_PGTABLE_H /* * The Linux memory management assumes a three-level page table setup. On * the S390, we use that, but "fold" the mid level into the top-level page * table, so that we physically have the same two-level page table as the * S390 mmu expects. * * The "pgd_xxx()" functions are trivial for a folded two-level * setup: the pgd is never bad, and a pmd always exists (as it's folded * into the pgd entry) * * This file contains the functions and defines necessary to modify and use * the S390 page table tree. */ #ifndef __ASSEMBLY__ #include <asm/processor.h> #include <linux/threads.h> extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096))); extern void paging_init(void); /* Caches aren't brain-dead on S390. */ #define flush_cache_all() do { } while (0) #define flush_cache_mm(mm) do { } while (0) #define flush_cache_range(mm, start, end) do { } while (0) #define flush_cache_page(vma, vmaddr) do { } while (0) #define flush_page_to_ram(page) do { } while (0) #define flush_dcache_page(page) do { } while (0) #define flush_icache_range(start, end) do { } while (0) #define flush_icache_page(vma,pg) do { } while (0) /* * The S390 doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */ #define update_mmu_cache(vma, address, pte) do { } while (0) /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern char empty_zero_page[PAGE_SIZE]; #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) #endif /* !__ASSEMBLY__ */ /* * PMD_SHIFT determines the size of the area a second-level page * table can map */ #define PMD_SHIFT 22 #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT 22 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* * entries per page directory level: the S390 is two-level, so * we don't really have any PMD directory physically. * for S390 segment-table entries are combined to one PGD * that leads to 1024 pte per pgd */ #define PTRS_PER_PTE 1024 #define PTRS_PER_PMD 1 #define PTRS_PER_PGD 512 /* * pgd entries used up by user/kernel: */ #define USER_PTRS_PER_PGD 512 #define USER_PGD_PTRS 512 #define KERNEL_PGD_PTRS 512 #define FIRST_USER_PGD_NR 0 #define pte_ERROR(e) \ printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) #ifndef __ASSEMBLY__ /* * Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */ #define VMALLOC_OFFSET (8*1024*1024) #define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) \ & ~(VMALLOC_OFFSET-1)) #define VMALLOC_VMADDR(x) ((unsigned long)(x)) #define VMALLOC_END (0x7fffffffL) /* * A pagetable entry of S390 has following format: * | PFRA | | OS | * 0 0IP0 * 00000000001111111111222222222233 * 01234567890123456789012345678901 * * I Page-Invalid Bit: Page is not available for address-translation * P Page-Protection Bit: Store access not possible for page * * A segmenttable entry of S390 has following format: * | P-table origin | |PTL * 0 IC * 00000000001111111111222222222233 * 01234567890123456789012345678901 * * I Segment-Invalid Bit: Segment is not available for address-translation * C Common-Segment Bit: Segment is not private (PoP 3-30) * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256) * * The segmenttable origin of S390 has following format: * * |S-table origin | | STL | * X **GPS * 00000000001111111111222222222233 * 01234567890123456789012345678901 * * X Space-Switch event: * G Segment-Invalid Bit: * * P Private-Space Bit: Segment is not private (PoP 3-30) * S Storage-Alteration: * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048) * * A storage key has the following format: * | ACC |F|R|C|0| * 0 3 4 5 6 7 * ACC: access key * F : fetch protection bit * R : referenced bit * C : changed bit */ /* Bits in the page table entry */ #define _PAGE_PRESENT 0x001 /* Software */ #define _PAGE_MKCLEAR 0x002 /* Software */ #define _PAGE_RO 0x200 /* HW read-only */ #define _PAGE_INVALID 0x400 /* HW invalid */ /* Bits in the segment table entry */ #define _PAGE_TABLE_LEN 0xf /* only full page-tables */ #define _PAGE_TABLE_COM 0x10 /* common page-table */ #define _PAGE_TABLE_INV 0x20 /* invalid page-table */ #define _SEG_PRESENT 0x001 /* Software (overlap with PTL) */ /* Bits int the storage key */ #define _PAGE_CHANGED 0x02 /* HW changed bit */ #define _PAGE_REFERENCED 0x04 /* HW referenced bit */ #define _USER_SEG_TABLE_LEN 0x7f /* user-segment-table up to 2 GB */ #define _KERNEL_SEG_TABLE_LEN 0x7f /* kernel-segment-table up to 2 GB */ /* * User and Kernel pagetables are identical */ #define _PAGE_TABLE (_PAGE_TABLE_LEN ) #define _KERNPG_TABLE (_PAGE_TABLE_LEN ) /* * The Kernel segment-tables includes the User segment-table */ #define _SEGMENT_TABLE (_USER_SEG_TABLE_LEN|0x80000000|0x100) #define _KERNSEG_TABLE (_KERNEL_SEG_TABLE_LEN) /* * No mapping available */ #define PAGE_INVALID __pgprot(_PAGE_INVALID) #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID) #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_RO) #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_RO) #define PAGE_SHARED __pgprot(_PAGE_PRESENT) #define PAGE_KERNEL __pgprot(_PAGE_PRESENT) /* * The S390 can't do page protection for execute, and considers that the * same are read. Also, write permissions imply read permissions. This is * the closest we can get.. */ /*xwr*/ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY #define __P101 PAGE_READONLY #define __P110 PAGE_COPY #define __P111 PAGE_COPY #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY #define __S101 PAGE_READONLY #define __S110 PAGE_SHARED #define __S111 PAGE_SHARED /* * Certain architectures need to do special things when PTEs * within a page table are directly modified. Thus, the following * hook is made available. */ extern inline void set_pte(pte_t *pteptr, pte_t pteval) { if ((pte_val(pteval) & (_PAGE_MKCLEAR|_PAGE_INVALID)) == _PAGE_MKCLEAR) { pte_val(pteval) &= ~_PAGE_MKCLEAR; asm volatile ("sske %0,%1" : : "d" (0), "a" (pte_val(pteval))); } *pteptr = pteval; } /* * Permanent address of a page. */ #define page_address(page) ((page)->virtual) #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) /* * pgd/pmd/pte query functions */ extern inline int pgd_present(pgd_t pgd) { return 1; } extern inline int pgd_none(pgd_t pgd) { return 0; } extern inline int pgd_bad(pgd_t pgd) { return 0; } extern inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _SEG_PRESENT; } extern inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) & _PAGE_TABLE_INV; } extern inline int pmd_bad(pmd_t pmd) { return (pmd_val(pmd) & (~PAGE_MASK & ~_PAGE_TABLE_INV)) != _PAGE_TABLE; } extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; } extern inline int pte_none(pte_t pte) { return ((pte_val(pte) & (_PAGE_INVALID | _PAGE_RO | _PAGE_PRESENT)) == _PAGE_INVALID); } #define pte_same(a,b) (pte_val(a) == pte_val(b)) /* * query functions pte_write/pte_dirty/pte_young only work if * pte_present() is true. Undefined behaviour if not.. */ extern inline int pte_write(pte_t pte) { return (pte_val(pte) & _PAGE_RO) == 0; } extern inline int pte_dirty(pte_t pte) { int skey; asm volatile ("iske %0,%1" : "=d" (skey) : "a" (pte_val(pte))); return skey & _PAGE_CHANGED; } extern inline int pte_young(pte_t pte) { int skey; asm volatile ("iske %0,%1" : "=d" (skey) : "a" (pte_val(pte))); return skey & _PAGE_REFERENCED; } /* * pgd/pmd/pte modification functions */ extern inline void pgd_clear(pgd_t * pgdp) { } extern inline void pmd_clear(pmd_t * pmdp) { pmd_val(pmdp[0]) = _PAGE_TABLE_INV; pmd_val(pmdp[1]) = _PAGE_TABLE_INV; pmd_val(pmdp[2]) = _PAGE_TABLE_INV; pmd_val(pmdp[3]) = _PAGE_TABLE_INV; } extern inline void pte_clear(pte_t *ptep) { pte_val(*ptep) = _PAGE_INVALID; } #define PTE_INIT(x) pte_clear(x) /* * The following pte modification functions only work if * pte_present() is true. Undefined behaviour if not.. */ extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_val(pte) = (pte_val(pte) & PAGE_MASK) | pgprot_val(newprot); return pte; } extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) |= _PAGE_RO; return pte; } extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) &= ~_PAGE_RO; return pte; } extern inline pte_t pte_mkclean(pte_t pte) { /* The only user of pte_mkclean is the fork() code. We must *not* clear the *physical* page dirty bit just because fork() wants to clear the dirty bit in *one* of the page's mappings. So we just do nothing. */ return pte; } extern inline pte_t pte_mkdirty(pte_t pte) { /* We can't set the changed bit atomically. For now we * set (!) the page referenced bit. */ asm volatile ("sske %0,%1" : : "d" (_PAGE_CHANGED|_PAGE_REFERENCED), "a" (pte_val(pte))); pte_val(pte) &= ~_PAGE_MKCLEAR; return pte; } extern inline pte_t pte_mkold(pte_t pte) { asm volatile ("rrbe 0,%0" : : "a" (pte_val(pte)) : "cc" ); return pte; } extern inline pte_t pte_mkyoung(pte_t pte) { /* To set the referenced bit we read the first word from the real * page with a special instruction: load using real address (lura). * Isn't S/390 a nice architecture ?! */ asm volatile ("lura 0,%0" : : "a" (pte_val(pte) & PAGE_MASK) : "0" ); return pte; } static inline int ptep_test_and_clear_young(pte_t *ptep) { int ccode; asm volatile ("rrbe 0,%1\n\t" "ipm %0\n\t" "srl %0,28\n\t" : "=d" (ccode) : "a" (pte_val(*ptep)) : "cc" ); return ccode & 2; } static inline int ptep_test_and_clear_dirty(pte_t *ptep) { int skey; asm volatile ("iske %0,%1" : "=d" (skey) : "a" (*ptep)); if ((skey & _PAGE_CHANGED) == 0) return 0; /* We can't clear the changed bit atomically. For now we * clear (!) the page referenced bit. */ asm volatile ("sske %0,%1" : : "d" (0), "a" (*ptep)); return 1; } static inline pte_t ptep_get_and_clear(pte_t *ptep) { pte_t pte = *ptep; pte_clear(ptep); return pte; } static inline void ptep_set_wrprotect(pte_t *ptep) { pte_t old_pte = *ptep; set_pte(ptep, pte_wrprotect(old_pte)); } static inline void ptep_mkdirty(pte_t *ptep) { pte_mkdirty(*ptep); } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ extern inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) { pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); return __pte; } #define mk_pte(pg, pgprot) \ ({ \ struct page *__page = (pg); \ unsigned long __physpage = __pa((__page-mem_map) << PAGE_SHIFT); \ pte_t __pte = mk_pte_phys(__physpage, (pgprot)); \ \ if (__page != ZERO_PAGE(__physpage)) { \ int __users = page_count(__page); \ __users -= !!__page->buffers + !!__page->mapping; \ \ if (__users == 1) \ pte_val(__pte) |= _PAGE_MKCLEAR; \ } \ \ __pte; \ }) #define pte_page(x) (mem_map+(unsigned long)((pte_val(x) >> PAGE_SHIFT))) #define pmd_page(pmd) \ ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) /* to find an entry in a page-table-directory */ #define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) /* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) /* Find an entry in the second-level page table.. */ extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) { return (pmd_t *) dir; } /* Find an entry in the third-level page table.. */ #define pte_offset(pmd, address) \ ((pte_t *) (pmd_page(*pmd) + ((address>>10) & ((PTRS_PER_PTE-1)<<2)))) /* * A page-table entry has some bits we have to treat in a special way. * Bits 0, 20 and bit 23 have to be zero, otherwise an specification * exception will occur instead of a page translation exception. The * specifiation exception has the bad habit not to store necessary * information in the lowcore. * Bit 21 and bit 22 are the page invalid bit and the page protection * bit. We set both to indicate a swapped page. * Bit 31 is used as the software page present bit. If a page is * swapped this obviously has to be zero. * This leaves the bits 1-19 and bits 24-30 to store type and offset. * We use the 7 bits from 24-30 for the type and the 19 bits from 1-19 * for the offset. * 0| offset |0110|type |0 * 00000000001111111111222222222233 * 01234567890123456789012345678901 */ extern inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) { pte_t pte; pte_val(pte) = (type << 1) | (offset << 12) | _PAGE_INVALID | _PAGE_RO; pte_val(pte) &= 0x7ffff6fe; /* better to be paranoid */ return pte; } #define SWP_TYPE(entry) (((entry).val >> 1) & 0x3f) #define SWP_OFFSET(entry) (((entry).val >> 12) & 0x7FFFF ) #define SWP_ENTRY(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) }) #define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define swp_entry_to_pte(x) ((pte_t) { (x).val }) #endif /* !__ASSEMBLY__ */ /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ #define PageSkip(page) (0) #define kern_addr_valid(addr) (1) /* * No page table caches to initialise */ #define pgtable_cache_init() do { } while (0) #endif /* _S390_PAGE_H */