/* LzmaDecodeSize.c LZMA Decoder (optimized for Size version) LZMA SDK 4.27 Copyright (c) 1999-2005 Igor Pavlov (2005-08-07) http://www.7-zip.org/ LZMA SDK is licensed under two licenses: 1) GNU Lesser General Public License (GNU LGPL) 2) Common Public License (CPL) It means that you can select one of these two licenses and follow rules of that license. SPECIAL EXCEPTION: Igor Pavlov, as the author of this code, expressly permits you to statically or dynamically link your code (or bind by name) to the interfaces of this file without subjecting your linked code to the terms of the CPL or GNU LGPL. Any modifications or additions to this file, however, are subject to the LGPL or CPL terms. */ #include "LzmaDecode.h" #ifndef Byte #define Byte unsigned char #endif #define kNumTopBits 24 #define kTopValue ((UInt32)1 << kNumTopBits) #define kNumBitModelTotalBits 11 #define kBitModelTotal (1 << kNumBitModelTotalBits) #define kNumMoveBits 5 typedef struct _CRangeDecoder { const Byte *Buffer; const Byte *BufferLim; UInt32 Range; UInt32 Code; #ifdef _LZMA_IN_CB ILzmaInCallback *InCallback; int Result; #endif int ExtraBytes; } CRangeDecoder; Byte RangeDecoderReadByte(CRangeDecoder *rd) { if (rd->Buffer == rd->BufferLim) { #ifdef _LZMA_IN_CB SizeT size; rd->Result = rd->InCallback->Read(rd->InCallback, &rd->Buffer, &size); rd->BufferLim = rd->Buffer + size; if (size == 0) #endif { rd->ExtraBytes = 1; return 0xFF; } } return (*rd->Buffer++); } /* #define ReadByte (*rd->Buffer++) */ #define ReadByte (RangeDecoderReadByte(rd)) void RangeDecoderInit(CRangeDecoder *rd #ifndef _LZMA_IN_CB , const Byte *stream, SizeT bufferSize #endif ) { int i; #ifdef _LZMA_IN_CB rd->Buffer = rd->BufferLim = 0; #else rd->Buffer = stream; rd->BufferLim = stream + bufferSize; #endif rd->ExtraBytes = 0; rd->Code = 0; rd->Range = (0xFFFFFFFF); for(i = 0; i < 5; i++) rd->Code = (rd->Code << 8) | ReadByte; } #define RC_INIT_VAR UInt32 range = rd->Range; UInt32 code = rd->Code; #define RC_FLUSH_VAR rd->Range = range; rd->Code = code; #define RC_NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | ReadByte; } UInt32 RangeDecoderDecodeDirectBits(CRangeDecoder *rd, int numTotalBits) { RC_INIT_VAR UInt32 result = 0; int i; for (i = numTotalBits; i != 0; i--) { /* UInt32 t; */ range >>= 1; result <<= 1; if (code >= range) { code -= range; result |= 1; } /* t = (code - range) >> 31; t &= 1; code -= range & (t - 1); result = (result + result) | (1 - t); */ RC_NORMALIZE } RC_FLUSH_VAR return result; } int RangeDecoderBitDecode(CProb *prob, CRangeDecoder *rd) { UInt32 bound = (rd->Range >> kNumBitModelTotalBits) * *prob; if (rd->Code < bound) { rd->Range = bound; *prob += (kBitModelTotal - *prob) >> kNumMoveBits; if (rd->Range < kTopValue) { rd->Code = (rd->Code << 8) | ReadByte; rd->Range <<= 8; } return 0; } else { rd->Range -= bound; rd->Code -= bound; *prob -= (*prob) >> kNumMoveBits; if (rd->Range < kTopValue) { rd->Code = (rd->Code << 8) | ReadByte; rd->Range <<= 8; } return 1; } } #define RC_GET_BIT2(prob, mi, A0, A1) \ UInt32 bound = (range >> kNumBitModelTotalBits) * *prob; \ if (code < bound) \ { A0; range = bound; *prob += (kBitModelTotal - *prob) >> kNumMoveBits; mi <<= 1; } \ else \ { A1; range -= bound; code -= bound; *prob -= (*prob) >> kNumMoveBits; mi = (mi + mi) + 1; } \ RC_NORMALIZE #define RC_GET_BIT(prob, mi) RC_GET_BIT2(prob, mi, ; , ;) int RangeDecoderBitTreeDecode(CProb *probs, int numLevels, CRangeDecoder *rd) { int mi = 1; int i; #ifdef _LZMA_LOC_OPT RC_INIT_VAR #endif for(i = numLevels; i != 0; i--) { #ifdef _LZMA_LOC_OPT CProb *prob = probs + mi; RC_GET_BIT(prob, mi) #else mi = (mi + mi) + RangeDecoderBitDecode(probs + mi, rd); #endif } #ifdef _LZMA_LOC_OPT RC_FLUSH_VAR #endif return mi - (1 << numLevels); } int RangeDecoderReverseBitTreeDecode(CProb *probs, int numLevels, CRangeDecoder *rd) { int mi = 1; int i; int symbol = 0; #ifdef _LZMA_LOC_OPT RC_INIT_VAR #endif for(i = 0; i < numLevels; i++) { #ifdef _LZMA_LOC_OPT CProb *prob = probs + mi; RC_GET_BIT2(prob, mi, ; , symbol |= (1 << i)) #else int bit = RangeDecoderBitDecode(probs + mi, rd); mi = mi + mi + bit; symbol |= (bit << i); #endif } #ifdef _LZMA_LOC_OPT RC_FLUSH_VAR #endif return symbol; } Byte LzmaLiteralDecode(CProb *probs, CRangeDecoder *rd) { int symbol = 1; #ifdef _LZMA_LOC_OPT RC_INIT_VAR #endif do { #ifdef _LZMA_LOC_OPT CProb *prob = probs + symbol; RC_GET_BIT(prob, symbol) #else symbol = (symbol + symbol) | RangeDecoderBitDecode(probs + symbol, rd); #endif } while (symbol < 0x100); #ifdef _LZMA_LOC_OPT RC_FLUSH_VAR #endif return symbol; } Byte LzmaLiteralDecodeMatch(CProb *probs, CRangeDecoder *rd, Byte matchByte) { int symbol = 1; #ifdef _LZMA_LOC_OPT RC_INIT_VAR #endif do { int bit; int matchBit = (matchByte >> 7) & 1; matchByte <<= 1; #ifdef _LZMA_LOC_OPT { CProb *prob = probs + 0x100 + (matchBit << 8) + symbol; RC_GET_BIT2(prob, symbol, bit = 0, bit = 1) } #else bit = RangeDecoderBitDecode(probs + 0x100 + (matchBit << 8) + symbol, rd); symbol = (symbol << 1) | bit; #endif if (matchBit != bit) { while (symbol < 0x100) { #ifdef _LZMA_LOC_OPT CProb *prob = probs + symbol; RC_GET_BIT(prob, symbol) #else symbol = (symbol + symbol) | RangeDecoderBitDecode(probs + symbol, rd); #endif } break; } } while (symbol < 0x100); #ifdef _LZMA_LOC_OPT RC_FLUSH_VAR #endif return symbol; } #define kNumPosBitsMax 4 #define kNumPosStatesMax (1 << kNumPosBitsMax) #define kLenNumLowBits 3 #define kLenNumLowSymbols (1 << kLenNumLowBits) #define kLenNumMidBits 3 #define kLenNumMidSymbols (1 << kLenNumMidBits) #define kLenNumHighBits 8 #define kLenNumHighSymbols (1 << kLenNumHighBits) #define LenChoice 0 #define LenChoice2 (LenChoice + 1) #define LenLow (LenChoice2 + 1) #define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits)) #define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits)) #define kNumLenProbs (LenHigh + kLenNumHighSymbols) int LzmaLenDecode(CProb *p, CRangeDecoder *rd, int posState) { if(RangeDecoderBitDecode(p + LenChoice, rd) == 0) return RangeDecoderBitTreeDecode(p + LenLow + (posState << kLenNumLowBits), kLenNumLowBits, rd); if(RangeDecoderBitDecode(p + LenChoice2, rd) == 0) return kLenNumLowSymbols + RangeDecoderBitTreeDecode(p + LenMid + (posState << kLenNumMidBits), kLenNumMidBits, rd); return kLenNumLowSymbols + kLenNumMidSymbols + RangeDecoderBitTreeDecode(p + LenHigh, kLenNumHighBits, rd); } #define kNumStates 12 #define kNumLitStates 7 #define kStartPosModelIndex 4 #define kEndPosModelIndex 14 #define kNumFullDistances (1 << (kEndPosModelIndex >> 1)) #define kNumPosSlotBits 6 #define kNumLenToPosStates 4 #define kNumAlignBits 4 #define kAlignTableSize (1 << kNumAlignBits) #define kMatchMinLen 2 #define IsMatch 0 #define IsRep (IsMatch + (kNumStates << kNumPosBitsMax)) #define IsRepG0 (IsRep + kNumStates) #define IsRepG1 (IsRepG0 + kNumStates) #define IsRepG2 (IsRepG1 + kNumStates) #define IsRep0Long (IsRepG2 + kNumStates) #define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax)) #define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits)) #define Align (SpecPos + kNumFullDistances - kEndPosModelIndex) #define LenCoder (Align + kAlignTableSize) #define RepLenCoder (LenCoder + kNumLenProbs) #define Literal (RepLenCoder + kNumLenProbs) #if Literal != LZMA_BASE_SIZE StopCompilingDueBUG #endif int LzmaDecodeProperties(CLzmaProperties *propsRes, const unsigned char *propsData, int size) { unsigned char prop0; if (size < LZMA_PROPERTIES_SIZE) return LZMA_RESULT_DATA_ERROR; prop0 = propsData[0]; if (prop0 >= (9 * 5 * 5)) return LZMA_RESULT_DATA_ERROR; { for (propsRes->pb = 0; prop0 >= (9 * 5); propsRes->pb++, prop0 -= (9 * 5)); for (propsRes->lp = 0; prop0 >= 9; propsRes->lp++, prop0 -= 9); propsRes->lc = prop0; /* unsigned char remainder = (unsigned char)(prop0 / 9); propsRes->lc = prop0 % 9; propsRes->pb = remainder / 5; propsRes->lp = remainder % 5; */ } #ifdef _LZMA_OUT_READ { int i; propsRes->DictionarySize = 0; for (i = 0; i < 4; i++) propsRes->DictionarySize += (UInt32)(propsData[1 + i]) << (i * 8); if (propsRes->DictionarySize == 0) propsRes->DictionarySize = 1; } #endif return LZMA_RESULT_OK; } #define kLzmaStreamWasFinishedId (-1) int LzmaDecode(CLzmaDecoderState *vs, #ifdef _LZMA_IN_CB ILzmaInCallback *InCallback, #else const unsigned char *inStream, SizeT inSize, SizeT *inSizeProcessed, #endif unsigned char *outStream, SizeT outSize, SizeT *outSizeProcessed) { CProb *p = vs->Probs; SizeT nowPos = 0; Byte previousByte = 0; UInt32 posStateMask = (1 << (vs->Properties.pb)) - 1; UInt32 literalPosMask = (1 << (vs->Properties.lp)) - 1; int lc = vs->Properties.lc; CRangeDecoder rd; #ifdef _LZMA_OUT_READ int state = vs->State; UInt32 rep0 = vs->Reps[0], rep1 = vs->Reps[1], rep2 = vs->Reps[2], rep3 = vs->Reps[3]; int len = vs->RemainLen; UInt32 globalPos = vs->GlobalPos; UInt32 distanceLimit = vs->DistanceLimit; Byte *dictionary = vs->Dictionary; UInt32 dictionarySize = vs->Properties.DictionarySize; UInt32 dictionaryPos = vs->DictionaryPos; Byte tempDictionary[4]; rd.Range = vs->Range; rd.Code = vs->Code; #ifdef _LZMA_IN_CB rd.InCallback = InCallback; rd.Buffer = vs->Buffer; rd.BufferLim = vs->BufferLim; #else rd.Buffer = inStream; rd.BufferLim = inStream + inSize; #endif #ifndef _LZMA_IN_CB *inSizeProcessed = 0; #endif *outSizeProcessed = 0; if (len == kLzmaStreamWasFinishedId) return LZMA_RESULT_OK; if (dictionarySize == 0) { dictionary = tempDictionary; dictionarySize = 1; tempDictionary[0] = vs->TempDictionary[0]; } if (len == kLzmaNeedInitId) { { UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + vs->Properties.lp)); UInt32 i; for (i = 0; i < numProbs; i++) p[i] = kBitModelTotal >> 1; rep0 = rep1 = rep2 = rep3 = 1; state = 0; globalPos = 0; distanceLimit = 0; dictionaryPos = 0; dictionary[dictionarySize - 1] = 0; RangeDecoderInit(&rd #ifndef _LZMA_IN_CB , inStream, inSize #endif ); #ifdef _LZMA_IN_CB if (rd.Result != LZMA_RESULT_OK) return rd.Result; #endif if (rd.ExtraBytes != 0) return LZMA_RESULT_DATA_ERROR; } len = 0; } while(len != 0 && nowPos < outSize) { UInt32 pos = dictionaryPos - rep0; if (pos >= dictionarySize) pos += dictionarySize; outStream[nowPos++] = dictionary[dictionaryPos] = dictionary[pos]; if (++dictionaryPos == dictionarySize) dictionaryPos = 0; len--; } if (dictionaryPos == 0) previousByte = dictionary[dictionarySize - 1]; else previousByte = dictionary[dictionaryPos - 1]; #ifdef _LZMA_IN_CB rd.Result = LZMA_RESULT_OK; #endif rd.ExtraBytes = 0; #else /* if !_LZMA_OUT_READ */ int state = 0; UInt32 rep0 = 1, rep1 = 1, rep2 = 1, rep3 = 1; int len = 0; #ifndef _LZMA_IN_CB *inSizeProcessed = 0; #endif *outSizeProcessed = 0; { UInt32 i; UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + vs->Properties.lp)); for (i = 0; i < numProbs; i++) p[i] = kBitModelTotal >> 1; } #ifdef _LZMA_IN_CB rd.InCallback = InCallback; #endif RangeDecoderInit(&rd #ifndef _LZMA_IN_CB , inStream, inSize #endif ); #ifdef _LZMA_IN_CB if (rd.Result != LZMA_RESULT_OK) return rd.Result; #endif if (rd.ExtraBytes != 0) return LZMA_RESULT_DATA_ERROR; #endif /* _LZMA_OUT_READ */ while(nowPos < outSize) { int posState = (int)( (nowPos #ifdef _LZMA_OUT_READ + globalPos #endif ) & posStateMask); #ifdef _LZMA_IN_CB if (rd.Result != LZMA_RESULT_OK) return rd.Result; #endif if (rd.ExtraBytes != 0) return LZMA_RESULT_DATA_ERROR; if (RangeDecoderBitDecode(p + IsMatch + (state << kNumPosBitsMax) + posState, &rd) == 0) { CProb *probs = p + Literal + (LZMA_LIT_SIZE * ((( (nowPos #ifdef _LZMA_OUT_READ + globalPos #endif ) & literalPosMask) << lc) + (previousByte >> (8 - lc)))); if (state >= kNumLitStates) { Byte matchByte; #ifdef _LZMA_OUT_READ UInt32 pos = dictionaryPos - rep0; if (pos >= dictionarySize) pos += dictionarySize; matchByte = dictionary[pos]; #else matchByte = outStream[nowPos - rep0]; #endif previousByte = LzmaLiteralDecodeMatch(probs, &rd, matchByte); } else previousByte = LzmaLiteralDecode(probs, &rd); outStream[nowPos++] = previousByte; #ifdef _LZMA_OUT_READ if (distanceLimit < dictionarySize) distanceLimit++; dictionary[dictionaryPos] = previousByte; if (++dictionaryPos == dictionarySize) dictionaryPos = 0; #endif if (state < 4) state = 0; else if (state < 10) state -= 3; else state -= 6; } else { if (RangeDecoderBitDecode(p + IsRep + state, &rd) == 1) { if (RangeDecoderBitDecode(p + IsRepG0 + state, &rd) == 0) { if (RangeDecoderBitDecode(p + IsRep0Long + (state << kNumPosBitsMax) + posState, &rd) == 0) { #ifdef _LZMA_OUT_READ UInt32 pos; #endif #ifdef _LZMA_OUT_READ if (distanceLimit == 0) #else if (nowPos == 0) #endif return LZMA_RESULT_DATA_ERROR; state = state < 7 ? 9 : 11; #ifdef _LZMA_OUT_READ pos = dictionaryPos - rep0; if (pos >= dictionarySize) pos += dictionarySize; previousByte = dictionary[pos]; dictionary[dictionaryPos] = previousByte; if (++dictionaryPos == dictionarySize) dictionaryPos = 0; #else previousByte = outStream[nowPos - rep0]; #endif outStream[nowPos++] = previousByte; #ifdef _LZMA_OUT_READ if (distanceLimit < dictionarySize) distanceLimit++; #endif continue; } } else { UInt32 distance; if(RangeDecoderBitDecode(p + IsRepG1 + state, &rd) == 0) distance = rep1; else { if(RangeDecoderBitDecode(p + IsRepG2 + state, &rd) == 0) distance = rep2; else { distance = rep3; rep3 = rep2; } rep2 = rep1; } rep1 = rep0; rep0 = distance; } len = LzmaLenDecode(p + RepLenCoder, &rd, posState); state = state < 7 ? 8 : 11; } else { int posSlot; rep3 = rep2; rep2 = rep1; rep1 = rep0; state = state < 7 ? 7 : 10; len = LzmaLenDecode(p + LenCoder, &rd, posState); posSlot = RangeDecoderBitTreeDecode(p + PosSlot + ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits), kNumPosSlotBits, &rd); if (posSlot >= kStartPosModelIndex) { int numDirectBits = ((posSlot >> 1) - 1); rep0 = ((2 | ((UInt32)posSlot & 1)) << numDirectBits); if (posSlot < kEndPosModelIndex) { rep0 += RangeDecoderReverseBitTreeDecode( p + SpecPos + rep0 - posSlot - 1, numDirectBits, &rd); } else { rep0 += RangeDecoderDecodeDirectBits(&rd, numDirectBits - kNumAlignBits) << kNumAlignBits; rep0 += RangeDecoderReverseBitTreeDecode(p + Align, kNumAlignBits, &rd); } } else rep0 = posSlot; if (++rep0 == (UInt32)(0)) { /* it's for stream version */ len = kLzmaStreamWasFinishedId; break; } } len += kMatchMinLen; #ifdef _LZMA_OUT_READ if (rep0 > distanceLimit) #else if (rep0 > nowPos) #endif return LZMA_RESULT_DATA_ERROR; #ifdef _LZMA_OUT_READ if (dictionarySize - distanceLimit > (UInt32)len) distanceLimit += len; else distanceLimit = dictionarySize; #endif do { #ifdef _LZMA_OUT_READ UInt32 pos = dictionaryPos - rep0; if (pos >= dictionarySize) pos += dictionarySize; previousByte = dictionary[pos]; dictionary[dictionaryPos] = previousByte; if (++dictionaryPos == dictionarySize) dictionaryPos = 0; #else previousByte = outStream[nowPos - rep0]; #endif len--; outStream[nowPos++] = previousByte; } while(len != 0 && nowPos < outSize); } } #ifdef _LZMA_OUT_READ vs->Range = rd.Range; vs->Code = rd.Code; vs->DictionaryPos = dictionaryPos; vs->GlobalPos = globalPos + (UInt32)nowPos; vs->DistanceLimit = distanceLimit; vs->Reps[0] = rep0; vs->Reps[1] = rep1; vs->Reps[2] = rep2; vs->Reps[3] = rep3; vs->State = state; vs->RemainLen = len; vs->TempDictionary[0] = tempDictionary[0]; #endif #ifdef _LZMA_IN_CB vs->Buffer = rd.Buffer; vs->BufferLim = rd.BufferLim; #else *inSizeProcessed = (SizeT)(rd.Buffer - inStream); #endif *outSizeProcessed = nowPos; return LZMA_RESULT_OK; }