/* Unix SMB/CIFS implementation. Samba memory buffer functions Copyright (C) Andrew Tridgell 1992-1997 Copyright (C) Luke Kenneth Casson Leighton 1996-1997 Copyright (C) Jeremy Allison 1999 Copyright (C) Andrew Bartlett 2003. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "includes.h" #undef DBGC_CLASS #define DBGC_CLASS DBGC_RPC_PARSE /** * Dump a prs to a file: from the current location through to the end. **/ void prs_dump(const char *name, int v, prs_struct *ps) { prs_dump_region(name, v, ps, ps->data_offset, ps->buffer_size); } /** * Dump from the start of the prs to the current location. **/ void prs_dump_before(const char *name, int v, prs_struct *ps) { prs_dump_region(name, v, ps, 0, ps->data_offset); } /** * Dump everything from the start of the prs up to the current location. **/ void prs_dump_region(const char *name, int v, prs_struct *ps, int from_off, int to_off) { int fd, i; char *fname = NULL; ssize_t sz; if (DEBUGLEVEL < 50) return; for (i=1;i<100;i++) { if (v != -1) { if (asprintf(&fname,"/tmp/%s_%d.%d.prs", name, v, i) < 0) { return; } } else { if (asprintf(&fname,"/tmp/%s.%d.prs", name, i) < 0) { return; } } fd = open(fname, O_WRONLY|O_CREAT|O_EXCL, 0644); if (fd != -1 || errno != EEXIST) break; } if (fd != -1) { sz = write(fd, ps->data_p + from_off, to_off - from_off); i = close(fd); if ( (sz != to_off-from_off) || (i != 0) ) { DEBUG(0,("Error writing/closing %s: %ld!=%ld %d\n", fname, (unsigned long)sz, (unsigned long)to_off-from_off, i )); } else { DEBUG(0,("created %s\n", fname)); } } SAFE_FREE(fname); } /******************************************************************* Debug output for parsing info XXXX side-effect of this function is to increase the debug depth XXXX. ********************************************************************/ void prs_debug(prs_struct *ps, int depth, const char *desc, const char *fn_name) { DEBUG(5+depth, ("%s%06x %s %s\n", tab_depth(5+depth,depth), ps->data_offset, fn_name, desc)); } /** * Initialise an expandable parse structure. * * @param size Initial buffer size. If >0, a new buffer will be * created with malloc(). * * @return False if allocation fails, otherwise True. **/ bool prs_init(prs_struct *ps, uint32 size, TALLOC_CTX *ctx, bool io) { ZERO_STRUCTP(ps); ps->io = io; ps->bigendian_data = RPC_LITTLE_ENDIAN; ps->align = RPC_PARSE_ALIGN; ps->is_dynamic = False; ps->data_offset = 0; ps->buffer_size = 0; ps->data_p = NULL; ps->mem_ctx = ctx; if (size != 0) { ps->buffer_size = size; if((ps->data_p = (char *)SMB_MALLOC((size_t)size)) == NULL) { DEBUG(0,("prs_init: malloc fail for %u bytes.\n", (unsigned int)size)); return False; } memset(ps->data_p, '\0', (size_t)size); ps->is_dynamic = True; /* We own this memory. */ } else if (MARSHALLING(ps)) { /* If size is zero and we're marshalling we should allocate memory on demand. */ ps->is_dynamic = True; } return True; } /******************************************************************* Delete the memory in a parse structure - if we own it. NOTE: Contrary to the somewhat confusing naming, this function is not intended for freeing memory allocated by prs_alloc_mem(). That memory is attached to the talloc context given by ps->mem_ctx. ********************************************************************/ void prs_mem_free(prs_struct *ps) { if(ps->is_dynamic) SAFE_FREE(ps->data_p); ps->is_dynamic = False; ps->buffer_size = 0; ps->data_offset = 0; } /******************************************************************* Clear the memory in a parse structure. ********************************************************************/ void prs_mem_clear(prs_struct *ps) { if (ps->buffer_size) memset(ps->data_p, '\0', (size_t)ps->buffer_size); } /******************************************************************* Allocate memory when unmarshalling... Always zero clears. ********************************************************************/ #if defined(PARANOID_MALLOC_CHECKER) char *prs_alloc_mem_(prs_struct *ps, size_t size, unsigned int count) #else char *prs_alloc_mem(prs_struct *ps, size_t size, unsigned int count) #endif { char *ret = NULL; if (size && count) { /* We can't call the type-safe version here. */ ret = (char *)_talloc_zero_array(ps->mem_ctx, size, count, "parse_prs"); } return ret; } /******************************************************************* Return the current talloc context we're using. ********************************************************************/ TALLOC_CTX *prs_get_mem_context(prs_struct *ps) { return ps->mem_ctx; } /******************************************************************* Hand some already allocated memory to a prs_struct. ********************************************************************/ void prs_give_memory(prs_struct *ps, char *buf, uint32 size, bool is_dynamic) { ps->is_dynamic = is_dynamic; ps->data_p = buf; ps->buffer_size = size; } /******************************************************************* Take some memory back from a prs_struct. ********************************************************************/ char *prs_take_memory(prs_struct *ps, uint32 *psize) { char *ret = ps->data_p; if(psize) *psize = ps->buffer_size; ps->is_dynamic = False; prs_mem_free(ps); return ret; } /******************************************************************* Set a prs_struct to exactly a given size. Will grow or tuncate if neccessary. ********************************************************************/ bool prs_set_buffer_size(prs_struct *ps, uint32 newsize) { if (newsize > ps->buffer_size) return prs_force_grow(ps, newsize - ps->buffer_size); if (newsize < ps->buffer_size) { ps->buffer_size = newsize; /* newsize == 0 acts as a free and set pointer to NULL */ if (newsize == 0) { SAFE_FREE(ps->data_p); } else { ps->data_p = (char *)SMB_REALLOC(ps->data_p, newsize); if (ps->data_p == NULL) { DEBUG(0,("prs_set_buffer_size: Realloc failure for size %u.\n", (unsigned int)newsize)); DEBUG(0,("prs_set_buffer_size: Reason %s\n",strerror(errno))); return False; } } } return True; } /******************************************************************* Attempt, if needed, to grow a data buffer. Also depends on the data stream mode (io). ********************************************************************/ bool prs_grow(prs_struct *ps, uint32 extra_space) { uint32 new_size; ps->grow_size = MAX(ps->grow_size, ps->data_offset + extra_space); if(ps->data_offset + extra_space <= ps->buffer_size) return True; /* * We cannot grow the buffer if we're not reading * into the prs_struct, or if we don't own the memory. */ if(UNMARSHALLING(ps) || !ps->is_dynamic) { DEBUG(0,("prs_grow: Buffer overflow - unable to expand buffer by %u bytes.\n", (unsigned int)extra_space)); return False; } /* * Decide how much extra space we really need. */ extra_space -= (ps->buffer_size - ps->data_offset); if(ps->buffer_size == 0) { /* * Ensure we have at least a PDU's length, or extra_space, whichever * is greater. */ new_size = MAX(RPC_MAX_PDU_FRAG_LEN,extra_space); if((ps->data_p = (char *)SMB_MALLOC(new_size)) == NULL) { DEBUG(0,("prs_grow: Malloc failure for size %u.\n", (unsigned int)new_size)); return False; } memset(ps->data_p, '\0', (size_t)new_size ); } else { /* * If the current buffer size is bigger than the space needed, just * double it, else add extra_space. */ new_size = MAX(ps->buffer_size*2, ps->buffer_size + extra_space); if ((ps->data_p = (char *)SMB_REALLOC(ps->data_p, new_size)) == NULL) { DEBUG(0,("prs_grow: Realloc failure for size %u.\n", (unsigned int)new_size)); return False; } memset(&ps->data_p[ps->buffer_size], '\0', (size_t)(new_size - ps->buffer_size)); } ps->buffer_size = new_size; return True; } /******************************************************************* Attempt to force a data buffer to grow by len bytes. This is only used when appending more data onto a prs_struct when reading an rpc reply, before unmarshalling it. ********************************************************************/ bool prs_force_grow(prs_struct *ps, uint32 extra_space) { uint32 new_size = ps->buffer_size + extra_space; if(!UNMARSHALLING(ps) || !ps->is_dynamic) { DEBUG(0,("prs_force_grow: Buffer overflow - unable to expand buffer by %u bytes.\n", (unsigned int)extra_space)); return False; } if((ps->data_p = (char *)SMB_REALLOC(ps->data_p, new_size)) == NULL) { DEBUG(0,("prs_force_grow: Realloc failure for size %u.\n", (unsigned int)new_size)); return False; } memset(&ps->data_p[ps->buffer_size], '\0', (size_t)(new_size - ps->buffer_size)); ps->buffer_size = new_size; return True; } /******************************************************************* Get the data pointer (external interface). ********************************************************************/ char *prs_data_p(prs_struct *ps) { return ps->data_p; } /******************************************************************* Get the current data size (external interface). ********************************************************************/ uint32 prs_data_size(prs_struct *ps) { return ps->buffer_size; } /******************************************************************* Fetch the current offset (external interface). ********************************************************************/ uint32 prs_offset(prs_struct *ps) { return ps->data_offset; } /******************************************************************* Set the current offset (external interface). ********************************************************************/ bool prs_set_offset(prs_struct *ps, uint32 offset) { if(offset <= ps->data_offset) { ps->data_offset = offset; return True; } if(!prs_grow(ps, offset - ps->data_offset)) return False; ps->data_offset = offset; return True; } /******************************************************************* Append the data from one parse_struct into another. ********************************************************************/ bool prs_append_prs_data(prs_struct *dst, prs_struct *src) { if (prs_offset(src) == 0) return True; if(!prs_grow(dst, prs_offset(src))) return False; memcpy(&dst->data_p[dst->data_offset], src->data_p, (size_t)prs_offset(src)); dst->data_offset += prs_offset(src); return True; } /******************************************************************* Append some data from one parse_struct into another. ********************************************************************/ bool prs_append_some_prs_data(prs_struct *dst, prs_struct *src, int32 start, uint32 len) { if (len == 0) return True; if(!prs_grow(dst, len)) return False; memcpy(&dst->data_p[dst->data_offset], src->data_p + start, (size_t)len); dst->data_offset += len; return True; } /******************************************************************* Append the data from a buffer into a parse_struct. ********************************************************************/ bool prs_copy_data_in(prs_struct *dst, const char *src, uint32 len) { if (len == 0) return True; if(!prs_grow(dst, len)) return False; memcpy(&dst->data_p[dst->data_offset], src, (size_t)len); dst->data_offset += len; return True; } /******************************************************************* Copy some data from a parse_struct into a buffer. ********************************************************************/ bool prs_copy_data_out(char *dst, prs_struct *src, uint32 len) { if (len == 0) return True; if(!prs_mem_get(src, len)) return False; memcpy(dst, &src->data_p[src->data_offset], (size_t)len); src->data_offset += len; return True; } /******************************************************************* Copy all the data from a parse_struct into a buffer. ********************************************************************/ bool prs_copy_all_data_out(char *dst, prs_struct *src) { uint32 len = prs_offset(src); if (!len) return True; prs_set_offset(src, 0); return prs_copy_data_out(dst, src, len); } /******************************************************************* Set the data as X-endian (external interface). ********************************************************************/ void prs_set_endian_data(prs_struct *ps, bool endian) { ps->bigendian_data = endian; } /******************************************************************* Align a the data_len to a multiple of align bytes - filling with zeros. ********************************************************************/ bool prs_align(prs_struct *ps) { uint32 mod = ps->data_offset & (ps->align-1); if (ps->align != 0 && mod != 0) { uint32 extra_space = (ps->align - mod); if(!prs_grow(ps, extra_space)) return False; memset(&ps->data_p[ps->data_offset], '\0', (size_t)extra_space); ps->data_offset += extra_space; } return True; } /****************************************************************** Align on a 2 byte boundary *****************************************************************/ bool prs_align_uint16(prs_struct *ps) { bool ret; uint8 old_align = ps->align; ps->align = 2; ret = prs_align(ps); ps->align = old_align; return ret; } /****************************************************************** Align on a 8 byte boundary *****************************************************************/ bool prs_align_uint64(prs_struct *ps) { bool ret; uint8 old_align = ps->align; ps->align = 8; ret = prs_align(ps); ps->align = old_align; return ret; } /****************************************************************** Align on a specific byte boundary *****************************************************************/ bool prs_align_custom(prs_struct *ps, uint8 boundary) { bool ret; uint8 old_align = ps->align; ps->align = boundary; ret = prs_align(ps); ps->align = old_align; return ret; } /******************************************************************* Align only if required (for the unistr2 string mainly) ********************************************************************/ bool prs_align_needed(prs_struct *ps, uint32 needed) { if (needed==0) return True; else return prs_align(ps); } /******************************************************************* Ensure we can read/write to a given offset. ********************************************************************/ char *prs_mem_get(prs_struct *ps, uint32 extra_size) { if(UNMARSHALLING(ps)) { /* * If reading, ensure that we can read the requested size item. */ if (ps->data_offset + extra_size > ps->buffer_size) { DEBUG(0,("prs_mem_get: reading data of size %u would overrun " "buffer by %u bytes.\n", (unsigned int)extra_size, (unsigned int)(ps->data_offset + extra_size - ps->buffer_size) )); return NULL; } } else { /* * Writing - grow the buffer if needed. */ if(!prs_grow(ps, extra_size)) return NULL; } return &ps->data_p[ps->data_offset]; } /******************************************************************* Change the struct type. ********************************************************************/ void prs_switch_type(prs_struct *ps, bool io) { if ((ps->io ^ io) == True) ps->io=io; } /******************************************************************* Force a prs_struct to be dynamic even when it's size is 0. ********************************************************************/ void prs_force_dynamic(prs_struct *ps) { ps->is_dynamic=True; } /******************************************************************* Associate a session key with a parse struct. ********************************************************************/ void prs_set_session_key(prs_struct *ps, const char sess_key[16]) { ps->sess_key = sess_key; } /******************************************************************* Stream a uint8. ********************************************************************/ bool prs_uint8(const char *name, prs_struct *ps, int depth, uint8 *data8) { char *q = prs_mem_get(ps, 1); if (q == NULL) return False; if (UNMARSHALLING(ps)) *data8 = CVAL(q,0); else SCVAL(q,0,*data8); DEBUG(5,("%s%04x %s: %02x\n", tab_depth(5,depth), ps->data_offset, name, *data8)); ps->data_offset += 1; return True; } /******************************************************************* Stream a uint16* (allocate memory if unmarshalling) ********************************************************************/ bool prs_pointer( const char *name, prs_struct *ps, int depth, void *dta, size_t data_size, bool (*prs_fn)(const char*, prs_struct*, int, void*) ) { void ** data = (void **)dta; uint32 data_p; /* output f000baaa to stream if the pointer is non-zero. */ data_p = *data ? 0xf000baaa : 0; if ( !prs_uint32("ptr", ps, depth, &data_p )) return False; /* we're done if there is no data */ if ( !data_p ) return True; if (UNMARSHALLING(ps)) { if (data_size) { if ( !(*data = PRS_ALLOC_MEM(ps, char, data_size)) ) return False; } else { *data = NULL; } } return prs_fn(name, ps, depth, *data); } /******************************************************************* Stream a uint16. ********************************************************************/ bool prs_uint16(const char *name, prs_struct *ps, int depth, uint16 *data16) { char *q = prs_mem_get(ps, sizeof(uint16)); if (q == NULL) return False; if (UNMARSHALLING(ps)) { if (ps->bigendian_data) *data16 = RSVAL(q,0); else *data16 = SVAL(q,0); } else { if (ps->bigendian_data) RSSVAL(q,0,*data16); else SSVAL(q,0,*data16); } DEBUG(5,("%s%04x %s: %04x\n", tab_depth(5,depth), ps->data_offset, name, *data16)); ps->data_offset += sizeof(uint16); return True; } /******************************************************************* Stream a uint32. ********************************************************************/ bool prs_uint32(const char *name, prs_struct *ps, int depth, uint32 *data32) { char *q = prs_mem_get(ps, sizeof(uint32)); if (q == NULL) return False; if (UNMARSHALLING(ps)) { if (ps->bigendian_data) *data32 = RIVAL(q,0); else *data32 = IVAL(q,0); } else { if (ps->bigendian_data) RSIVAL(q,0,*data32); else SIVAL(q,0,*data32); } DEBUG(5,("%s%04x %s: %08x\n", tab_depth(5,depth), ps->data_offset, name, *data32)); ps->data_offset += sizeof(uint32); return True; } /******************************************************************* Stream an int32. ********************************************************************/ bool prs_int32(const char *name, prs_struct *ps, int depth, int32 *data32) { char *q = prs_mem_get(ps, sizeof(int32)); if (q == NULL) return False; if (UNMARSHALLING(ps)) { if (ps->bigendian_data) *data32 = RIVALS(q,0); else *data32 = IVALS(q,0); } else { if (ps->bigendian_data) RSIVALS(q,0,*data32); else SIVALS(q,0,*data32); } DEBUG(5,("%s%04x %s: %08x\n", tab_depth(5,depth), ps->data_offset, name, *data32)); ps->data_offset += sizeof(int32); return True; } /******************************************************************* Stream a NTSTATUS ********************************************************************/ bool prs_ntstatus(const char *name, prs_struct *ps, int depth, NTSTATUS *status) { char *q = prs_mem_get(ps, sizeof(uint32)); if (q == NULL) return False; if (UNMARSHALLING(ps)) { if (ps->bigendian_data) *status = NT_STATUS(RIVAL(q,0)); else *status = NT_STATUS(IVAL(q,0)); } else { if (ps->bigendian_data) RSIVAL(q,0,NT_STATUS_V(*status)); else SIVAL(q,0,NT_STATUS_V(*status)); } DEBUG(5,("%s%04x %s: %s\n", tab_depth(5,depth), ps->data_offset, name, nt_errstr(*status))); ps->data_offset += sizeof(uint32); return True; } /******************************************************************* Stream a DCE error code ********************************************************************/ bool prs_dcerpc_status(const char *name, prs_struct *ps, int depth, NTSTATUS *status) { char *q = prs_mem_get(ps, sizeof(uint32)); if (q == NULL) return False; if (UNMARSHALLING(ps)) { if (ps->bigendian_data) *status = NT_STATUS(RIVAL(q,0)); else *status = NT_STATUS(IVAL(q,0)); } else { if (ps->bigendian_data) RSIVAL(q,0,NT_STATUS_V(*status)); else SIVAL(q,0,NT_STATUS_V(*status)); } #ifdef AVM_VERY_SMALL AVM_VERY_SMALL_LOG #else DEBUG(5,("%s%04x %s: %s\n", tab_depth(5,depth), ps->data_offset, name, dcerpc_errstr(NT_STATUS_V(*status)))); #endif ps->data_offset += sizeof(uint32); return True; } /******************************************************************* Stream a WERROR ********************************************************************/ bool prs_werror(const char *name, prs_struct *ps, int depth, WERROR *status) { char *q = prs_mem_get(ps, sizeof(uint32)); if (q == NULL) return False; if (UNMARSHALLING(ps)) { if (ps->bigendian_data) *status = W_ERROR(RIVAL(q,0)); else *status = W_ERROR(IVAL(q,0)); } else { if (ps->bigendian_data) RSIVAL(q,0,W_ERROR_V(*status)); else SIVAL(q,0,W_ERROR_V(*status)); } DEBUG(5,("%s%04x %s: %s\n", tab_depth(5,depth), ps->data_offset, name, dos_errstr(*status))); ps->data_offset += sizeof(uint32); return True; } /****************************************************************** Stream an array of uint8s. Length is number of uint8s. ********************************************************************/ bool prs_uint8s(bool charmode, const char *name, prs_struct *ps, int depth, uint8 *data8s, int len) { int i; char *q = prs_mem_get(ps, len); if (q == NULL) return False; if (UNMARSHALLING(ps)) { for (i = 0; i < len; i++) data8s[i] = CVAL(q,i); } else { for (i = 0; i < len; i++) SCVAL(q, i, data8s[i]); } DEBUG(5,("%s%04x %s: ", tab_depth(5,depth), ps->data_offset ,name)); if (charmode) print_asc(5, (unsigned char*)data8s, len); else { for (i = 0; i < len; i++) DEBUG(5,("%02x ", data8s[i])); } DEBUG(5,("\n")); ps->data_offset += len; return True; } /****************************************************************** Stream an array of uint16s. Length is number of uint16s. ********************************************************************/ bool prs_uint16s(bool charmode, const char *name, prs_struct *ps, int depth, uint16 *data16s, int len) { int i; char *q = prs_mem_get(ps, len * sizeof(uint16)); if (q == NULL) return False; if (UNMARSHALLING(ps)) { if (ps->bigendian_data) { for (i = 0; i < len; i++) data16s[i] = RSVAL(q, 2*i); } else { for (i = 0; i < len; i++) data16s[i] = SVAL(q, 2*i); } } else { if (ps->bigendian_data) { for (i = 0; i < len; i++) RSSVAL(q, 2*i, data16s[i]); } else { for (i = 0; i < len; i++) SSVAL(q, 2*i, data16s[i]); } } DEBUG(5,("%s%04x %s: ", tab_depth(5,depth), ps->data_offset, name)); if (charmode) print_asc(5, (unsigned char*)data16s, 2*len); else { for (i = 0; i < len; i++) DEBUG(5,("%04x ", data16s[i])); } DEBUG(5,("\n")); ps->data_offset += (len * sizeof(uint16)); return True; } /****************************************************************** Start using a function for streaming unicode chars. If unmarshalling, output must be little-endian, if marshalling, input must be little-endian. ********************************************************************/ static void dbg_rw_punival(bool charmode, const char *name, int depth, prs_struct *ps, char *in_buf, char *out_buf, int len) { int i; if (UNMARSHALLING(ps)) { if (ps->bigendian_data) { for (i = 0; i < len; i++) SSVAL(out_buf,2*i,RSVAL(in_buf, 2*i)); } else { for (i = 0; i < len; i++) SSVAL(out_buf, 2*i, SVAL(in_buf, 2*i)); } } else { if (ps->bigendian_data) { for (i = 0; i < len; i++) RSSVAL(in_buf, 2*i, SVAL(out_buf,2*i)); } else { for (i = 0; i < len; i++) SSVAL(in_buf, 2*i, SVAL(out_buf,2*i)); } } DEBUG(5,("%s%04x %s: ", tab_depth(5,depth), ps->data_offset, name)); if (charmode) print_asc(5, (unsigned char*)out_buf, 2*len); else { for (i = 0; i < len; i++) DEBUG(5,("%04x ", out_buf[i])); } DEBUG(5,("\n")); } /****************************************************************** Stream a unistr. Always little endian. ********************************************************************/ bool prs_uint16uni(bool charmode, const char *name, prs_struct *ps, int depth, uint16 *data16s, int len) { char *q = prs_mem_get(ps, len * sizeof(uint16)); if (q == NULL) return False; dbg_rw_punival(charmode, name, depth, ps, q, (char *)data16s, len); ps->data_offset += (len * sizeof(uint16)); return True; } /****************************************************************** Stream an array of uint32s. Length is number of uint32s. ********************************************************************/ bool prs_uint32s(bool charmode, const char *name, prs_struct *ps, int depth, uint32 *data32s, int len) { int i; char *q = prs_mem_get(ps, len * sizeof(uint32)); if (q == NULL) return False; if (UNMARSHALLING(ps)) { if (ps->bigendian_data) { for (i = 0; i < len; i++) data32s[i] = RIVAL(q, 4*i); } else { for (i = 0; i < len; i++) data32s[i] = IVAL(q, 4*i); } } else { if (ps->bigendian_data) { for (i = 0; i < len; i++) RSIVAL(q, 4*i, data32s[i]); } else { for (i = 0; i < len; i++) SIVAL(q, 4*i, data32s[i]); } } DEBUG(5,("%s%04x %s: ", tab_depth(5,depth), ps->data_offset, name)); if (charmode) print_asc(5, (unsigned char*)data32s, 4*len); else { for (i = 0; i < len; i++) DEBUG(5,("%08x ", data32s[i])); } DEBUG(5,("\n")); ps->data_offset += (len * sizeof(uint32)); return True; } /****************************************************************** Stream an array of unicode string, length/buffer specified separately, in uint16 chars. The unicode string is already in little-endian format. ********************************************************************/ bool prs_buffer5(bool charmode, const char *name, prs_struct *ps, int depth, BUFFER5 *str) { char *p; char *q = prs_mem_get(ps, str->buf_len * sizeof(uint16)); if (q == NULL) return False; /* If the string is empty, we don't have anything to stream */ if (str->buf_len==0) return True; if (UNMARSHALLING(ps)) { str->buffer = PRS_ALLOC_MEM(ps,uint16,str->buf_len); if (str->buffer == NULL) return False; } p = (char *)str->buffer; dbg_rw_punival(charmode, name, depth, ps, q, p, str->buf_len); ps->data_offset += (str->buf_len * sizeof(uint16)); return True; } /****************************************************************** Stream a "not" unicode string, length/buffer specified separately, in byte chars. String is in little-endian format. ********************************************************************/ bool prs_regval_buffer(bool charmode, const char *name, prs_struct *ps, int depth, REGVAL_BUFFER *buf) { char *p; char *q = prs_mem_get(ps, buf->buf_len); if (q == NULL) return False; if (UNMARSHALLING(ps)) { if (buf->buf_len > buf->buf_max_len) { return False; } if ( buf->buf_max_len ) { buf->buffer = PRS_ALLOC_MEM(ps, uint16, buf->buf_max_len); if ( buf->buffer == NULL ) return False; } else { buf->buffer = NULL; } } p = (char *)buf->buffer; dbg_rw_punival(charmode, name, depth, ps, q, p, buf->buf_len/2); ps->data_offset += buf->buf_len; return True; } /****************************************************************** Stream a string, length/buffer specified separately, in uint8 chars. ********************************************************************/ bool prs_string2(bool charmode, const char *name, prs_struct *ps, int depth, STRING2 *str) { unsigned int i; char *q = prs_mem_get(ps, str->str_str_len); if (q == NULL) return False; if (UNMARSHALLING(ps)) { if (str->str_str_len > str->str_max_len) { return False; } if (str->str_max_len) { str->buffer = PRS_ALLOC_MEM(ps,unsigned char, str->str_max_len); if (str->buffer == NULL) return False; } else { str->buffer = NULL; /* Return early to ensure Coverity isn't confused. */ DEBUG(5,("%s%04x %s: \n", tab_depth(5,depth), ps->data_offset, name)); return True; } } if (UNMARSHALLING(ps)) { for (i = 0; i < str->str_str_len; i++) str->buffer[i] = CVAL(q,i); } else { for (i = 0; i < str->str_str_len; i++) SCVAL(q, i, str->buffer[i]); } DEBUG(5,("%s%04x %s: ", tab_depth(5,depth), ps->data_offset, name)); if (charmode) print_asc(5, (unsigned char*)str->buffer, str->str_str_len); else { for (i = 0; i < str->str_str_len; i++) DEBUG(5,("%02x ", str->buffer[i])); } DEBUG(5,("\n")); ps->data_offset += str->str_str_len; return True; } /****************************************************************** Stream a unicode string, length/buffer specified separately, in uint16 chars. The unicode string is already in little-endian format. ********************************************************************/ bool prs_unistr2(bool charmode, const char *name, prs_struct *ps, int depth, UNISTR2 *str) { char *p; char *q = prs_mem_get(ps, str->uni_str_len * sizeof(uint16)); if (q == NULL) return False; /* If the string is empty, we don't have anything to stream */ if (str->uni_str_len==0) return True; if (UNMARSHALLING(ps)) { if (str->uni_str_len > str->uni_max_len) { return False; } if (str->uni_max_len) { str->buffer = PRS_ALLOC_MEM(ps,uint16,str->uni_max_len); if (str->buffer == NULL) return False; } else { str->buffer = NULL; } } p = (char *)str->buffer; dbg_rw_punival(charmode, name, depth, ps, q, p, str->uni_str_len); ps->data_offset += (str->uni_str_len * sizeof(uint16)); return True; } /****************************************************************** Stream a unicode string, length/buffer specified separately, in uint16 chars. The unicode string is already in little-endian format. ********************************************************************/ bool prs_unistr3(bool charmode, const char *name, UNISTR3 *str, prs_struct *ps, int depth) { char *p; char *q = prs_mem_get(ps, str->uni_str_len * sizeof(uint16)); if (q == NULL) return False; if (UNMARSHALLING(ps)) { if (str->uni_str_len) { str->str.buffer = PRS_ALLOC_MEM(ps,uint16,str->uni_str_len); if (str->str.buffer == NULL) return False; } else { str->str.buffer = NULL; } } p = (char *)str->str.buffer; dbg_rw_punival(charmode, name, depth, ps, q, p, str->uni_str_len); ps->data_offset += (str->uni_str_len * sizeof(uint16)); return True; } /******************************************************************* Stream a unicode null-terminated string. As the string is already in little-endian format then do it as a stream of bytes. ********************************************************************/ bool prs_unistr(const char *name, prs_struct *ps, int depth, UNISTR *str) { unsigned int len = 0; unsigned char *p = (unsigned char *)str->buffer; uint8 *start; char *q; uint32 max_len; uint16* ptr; if (MARSHALLING(ps)) { for(len = 0; str->buffer[len] != 0; len++) ; q = prs_mem_get(ps, (len+1)*2); if (q == NULL) return False; start = (uint8*)q; for(len = 0; str->buffer[len] != 0; len++) { if(ps->bigendian_data) { /* swap bytes - p is little endian, q is big endian. */ q[0] = (char)p[1]; q[1] = (char)p[0]; p += 2; q += 2; } else { q[0] = (char)p[0]; q[1] = (char)p[1]; p += 2; q += 2; } } /* * even if the string is 'empty' (only an \0 char) * at this point the leading \0 hasn't been parsed. * so parse it now */ q[0] = 0; q[1] = 0; q += 2; len++; DEBUG(5,("%s%04x %s: ", tab_depth(5,depth), ps->data_offset, name)); print_asc(5, (unsigned char*)start, 2*len); DEBUG(5, ("\n")); } else { /* unmarshalling */ uint32 alloc_len = 0; q = ps->data_p + prs_offset(ps); /* * Work out how much space we need and talloc it. */ max_len = (ps->buffer_size - ps->data_offset)/sizeof(uint16); /* the test of the value of *ptr helps to catch the circumstance where we have an emtpty (non-existent) string in the buffer */ for ( ptr = (uint16 *)q; *ptr++ && (alloc_len <= max_len); alloc_len++) /* do nothing */ ; if (alloc_len < max_len) alloc_len += 1; /* should we allocate anything at all? */ str->buffer = PRS_ALLOC_MEM(ps,uint16,alloc_len); if ((str->buffer == NULL) && (alloc_len > 0)) return False; p = (unsigned char *)str->buffer; len = 0; /* the (len < alloc_len) test is to prevent us from overwriting memory that is not ours...if we get that far, we have a non-null terminated string in the buffer and have messed up somewhere */ while ((len < alloc_len) && (*(uint16 *)q != 0)) { if(ps->bigendian_data) { /* swap bytes - q is big endian, p is little endian. */ p[0] = (unsigned char)q[1]; p[1] = (unsigned char)q[0]; p += 2; q += 2; } else { p[0] = (unsigned char)q[0]; p[1] = (unsigned char)q[1]; p += 2; q += 2; } len++; } if (len < alloc_len) { /* NULL terminate the UNISTR */ str->buffer[len++] = '\0'; } DEBUG(5,("%s%04x %s: ", tab_depth(5,depth), ps->data_offset, name)); print_asc(5, (unsigned char*)str->buffer, 2*len); DEBUG(5, ("\n")); } /* set the offset in the prs_struct; 'len' points to the terminiating NULL in the UNISTR so we need to go one more uint16 */ ps->data_offset += (len)*2; return True; } /******************************************************************* Stream a null-terminated string. len is strlen, and therefore does not include the null-termination character. ********************************************************************/ bool prs_string(const char *name, prs_struct *ps, int depth, char *str, int max_buf_size) { char *q; int i; int len; if (UNMARSHALLING(ps)) len = strlen(&ps->data_p[ps->data_offset]); else len = strlen(str); len = MIN(len, (max_buf_size-1)); q = prs_mem_get(ps, len+1); if (q == NULL) return False; for(i = 0; i < len; i++) { if (UNMARSHALLING(ps)) str[i] = q[i]; else q[i] = str[i]; } /* The terminating null. */ str[i] = '\0'; if (MARSHALLING(ps)) { q[i] = '\0'; } ps->data_offset += len+1; dump_data(5+depth, (uint8 *)q, len); return True; } bool prs_string_alloc(const char *name, prs_struct *ps, int depth, const char **str) { size_t len; char *tmp_str; if (UNMARSHALLING(ps)) { len = strlen(&ps->data_p[ps->data_offset]); } else { len = strlen(*str); } tmp_str = PRS_ALLOC_MEM(ps, char, len+1); if (tmp_str == NULL) { return False; } if (MARSHALLING(ps)) { strncpy(tmp_str, *str, len); } if (!prs_string(name, ps, depth, tmp_str, len+1)) { return False; } *str = tmp_str; return True; } /******************************************************************* prs_uint16 wrapper. Call this and it sets up a pointer to where the uint16 should be stored, or gets the size if reading. ********************************************************************/ bool prs_uint16_pre(const char *name, prs_struct *ps, int depth, uint16 *data16, uint32 *offset) { *offset = ps->data_offset; if (UNMARSHALLING(ps)) { /* reading. */ return prs_uint16(name, ps, depth, data16); } else { char *q = prs_mem_get(ps, sizeof(uint16)); if(q ==NULL) return False; ps->data_offset += sizeof(uint16); } return True; } /******************************************************************* prs_uint16 wrapper. call this and it retrospectively stores the size. does nothing on reading, as that is already handled by ...._pre() ********************************************************************/ bool prs_uint16_post(const char *name, prs_struct *ps, int depth, uint16 *data16, uint32 ptr_uint16, uint32 start_offset) { if (MARSHALLING(ps)) { /* * Writing - temporarily move the offset pointer. */ uint16 data_size = ps->data_offset - start_offset; uint32 old_offset = ps->data_offset; ps->data_offset = ptr_uint16; if(!prs_uint16(name, ps, depth, &data_size)) { ps->data_offset = old_offset; return False; } ps->data_offset = old_offset; } else { ps->data_offset = start_offset + (uint32)(*data16); } return True; } /******************************************************************* prs_uint32 wrapper. Call this and it sets up a pointer to where the uint32 should be stored, or gets the size if reading. ********************************************************************/ bool prs_uint32_pre(const char *name, prs_struct *ps, int depth, uint32 *data32, uint32 *offset) { *offset = ps->data_offset; if (UNMARSHALLING(ps) && (data32 != NULL)) { /* reading. */ return prs_uint32(name, ps, depth, data32); } else { ps->data_offset += sizeof(uint32); } return True; } /******************************************************************* prs_uint32 wrapper. call this and it retrospectively stores the size. does nothing on reading, as that is already handled by ...._pre() ********************************************************************/ bool prs_uint32_post(const char *name, prs_struct *ps, int depth, uint32 *data32, uint32 ptr_uint32, uint32 data_size) { if (MARSHALLING(ps)) { /* * Writing - temporarily move the offset pointer. */ uint32 old_offset = ps->data_offset; ps->data_offset = ptr_uint32; if(!prs_uint32(name, ps, depth, &data_size)) { ps->data_offset = old_offset; return False; } ps->data_offset = old_offset; } return True; } /* useful function to store a structure in rpc wire format */ int tdb_prs_store(TDB_CONTEXT *tdb, TDB_DATA kbuf, prs_struct *ps) { TDB_DATA dbuf; dbuf.dptr = (uint8 *)ps->data_p; dbuf.dsize = prs_offset(ps); return tdb_trans_store(tdb, kbuf, dbuf, TDB_REPLACE); } /* useful function to fetch a structure into rpc wire format */ int tdb_prs_fetch(TDB_CONTEXT *tdb, TDB_DATA kbuf, prs_struct *ps, TALLOC_CTX *mem_ctx) { TDB_DATA dbuf; prs_init_empty(ps, mem_ctx, UNMARSHALL); dbuf = tdb_fetch(tdb, kbuf); if (!dbuf.dptr) return -1; prs_give_memory(ps, (char *)dbuf.dptr, dbuf.dsize, True); return 0; } /******************************************************************* hash a stream. ********************************************************************/ bool prs_hash1(prs_struct *ps, uint32 offset, int len) { char *q; q = ps->data_p; q = &q[offset]; #ifdef DEBUG_PASSWORD DEBUG(100, ("prs_hash1\n")); dump_data(100, (uint8 *)ps->sess_key, 16); dump_data(100, (uint8 *)q, len); #endif SamOEMhash((uchar *) q, (const unsigned char *)ps->sess_key, len); #ifdef DEBUG_PASSWORD dump_data(100, (uint8 *)q, len); #endif return True; } /******************************************************************* Create a digest over the entire packet (including the data), and MD5 it with the session key. ********************************************************************/ #ifndef AVM_VERY_SMALL static void schannel_digest(struct schannel_auth_struct *a, enum pipe_auth_level auth_level, RPC_AUTH_SCHANNEL_CHK * verf, char *data, size_t data_len, uchar digest_final[16]) { uchar whole_packet_digest[16]; uchar zeros[4]; struct MD5Context ctx3; ZERO_STRUCT(zeros); /* verfiy the signature on the packet by MD5 over various bits */ MD5Init(&ctx3); /* use our sequence number, which ensures the packet is not out of order */ MD5Update(&ctx3, zeros, sizeof(zeros)); MD5Update(&ctx3, verf->sig, sizeof(verf->sig)); if (auth_level == PIPE_AUTH_LEVEL_PRIVACY) { MD5Update(&ctx3, verf->confounder, sizeof(verf->confounder)); } MD5Update(&ctx3, (const unsigned char *)data, data_len); MD5Final(whole_packet_digest, &ctx3); dump_data_pw("whole_packet_digest:\n", whole_packet_digest, sizeof(whole_packet_digest)); /* MD5 this result and the session key, to prove that only a valid client could had produced this */ hmac_md5(a->sess_key, whole_packet_digest, sizeof(whole_packet_digest), digest_final); } /******************************************************************* Calculate the key with which to encode the data payload ********************************************************************/ static void schannel_get_sealing_key(struct schannel_auth_struct *a, RPC_AUTH_SCHANNEL_CHK *verf, uchar sealing_key[16]) { uchar zeros[4]; uchar digest2[16]; uchar sess_kf0[16]; int i; ZERO_STRUCT(zeros); for (i = 0; i < sizeof(sess_kf0); i++) { sess_kf0[i] = a->sess_key[i] ^ 0xf0; } dump_data_pw("sess_kf0:\n", sess_kf0, sizeof(sess_kf0)); /* MD5 of sess_kf0 and 4 zero bytes */ hmac_md5(sess_kf0, zeros, 0x4, digest2); dump_data_pw("digest2:\n", digest2, sizeof(digest2)); /* MD5 of the above result, plus 8 bytes of sequence number */ hmac_md5(digest2, verf->seq_num, sizeof(verf->seq_num), sealing_key); dump_data_pw("sealing_key:\n", sealing_key, 16); } /******************************************************************* Encode or Decode the sequence number (which is symmetric) ********************************************************************/ static void schannel_deal_with_seq_num(struct schannel_auth_struct *a, RPC_AUTH_SCHANNEL_CHK *verf) { uchar zeros[4]; uchar sequence_key[16]; uchar digest1[16]; ZERO_STRUCT(zeros); hmac_md5(a->sess_key, zeros, sizeof(zeros), digest1); dump_data_pw("(sequence key) digest1:\n", digest1, sizeof(digest1)); hmac_md5(digest1, verf->packet_digest, 8, sequence_key); dump_data_pw("sequence_key:\n", sequence_key, sizeof(sequence_key)); dump_data_pw("seq_num (before):\n", verf->seq_num, sizeof(verf->seq_num)); SamOEMhash(verf->seq_num, sequence_key, 8); dump_data_pw("seq_num (after):\n", verf->seq_num, sizeof(verf->seq_num)); } #endif /******************************************************************* creates an RPC_AUTH_SCHANNEL_CHK structure. ********************************************************************/ static bool init_rpc_auth_schannel_chk(RPC_AUTH_SCHANNEL_CHK * chk, const uchar sig[8], const uchar packet_digest[8], const uchar seq_num[8], const uchar confounder[8]) { if (chk == NULL) return False; memcpy(chk->sig, sig, sizeof(chk->sig)); memcpy(chk->packet_digest, packet_digest, sizeof(chk->packet_digest)); memcpy(chk->seq_num, seq_num, sizeof(chk->seq_num)); memcpy(chk->confounder, confounder, sizeof(chk->confounder)); return True; } /******************************************************************* Encode a blob of data using the schannel alogrithm, also produceing a checksum over the original data. We currently only support signing and sealing togeather - the signing-only code is close, but not quite compatible with what MS does. ********************************************************************/ #ifndef AVM_VERY_SMALL void schannel_encode(struct schannel_auth_struct *a, enum pipe_auth_level auth_level, enum schannel_direction direction, RPC_AUTH_SCHANNEL_CHK * verf, char *data, size_t data_len) { uchar digest_final[16]; uchar confounder[8]; uchar seq_num[8]; static const uchar nullbytes[8] = { 0, }; static const uchar schannel_seal_sig[8] = SCHANNEL_SEAL_SIGNATURE; static const uchar schannel_sign_sig[8] = SCHANNEL_SIGN_SIGNATURE; const uchar *schannel_sig = NULL; DEBUG(10,("SCHANNEL: schannel_encode seq_num=%d data_len=%lu\n", a->seq_num, (unsigned long)data_len)); if (auth_level == PIPE_AUTH_LEVEL_PRIVACY) { schannel_sig = schannel_seal_sig; } else { schannel_sig = schannel_sign_sig; } /* fill the 'confounder' with random data */ generate_random_buffer(confounder, sizeof(confounder)); dump_data_pw("a->sess_key:\n", a->sess_key, sizeof(a->sess_key)); RSIVAL(seq_num, 0, a->seq_num); switch (direction) { case SENDER_IS_INITIATOR: SIVAL(seq_num, 4, 0x80); break; case SENDER_IS_ACCEPTOR: SIVAL(seq_num, 4, 0x0); break; } dump_data_pw("verf->seq_num:\n", seq_num, sizeof(verf->seq_num)); init_rpc_auth_schannel_chk(verf, schannel_sig, nullbytes, seq_num, confounder); /* produce a digest of the packet to prove it's legit (before we seal it) */ schannel_digest(a, auth_level, verf, data, data_len, digest_final); memcpy(verf->packet_digest, digest_final, sizeof(verf->packet_digest)); if (auth_level == PIPE_AUTH_LEVEL_PRIVACY) { uchar sealing_key[16]; /* get the key to encode the data with */ schannel_get_sealing_key(a, verf, sealing_key); /* encode the verification data */ dump_data_pw("verf->confounder:\n", verf->confounder, sizeof(verf->confounder)); SamOEMhash(verf->confounder, sealing_key, 8); dump_data_pw("verf->confounder_enc:\n", verf->confounder, sizeof(verf->confounder)); /* encode the packet payload */ dump_data_pw("data:\n", (const unsigned char *)data, data_len); SamOEMhash((unsigned char *)data, sealing_key, data_len); dump_data_pw("data_enc:\n", (const unsigned char *)data, data_len); } /* encode the sequence number (key based on packet digest) */ /* needs to be done after the sealing, as the original version is used in the sealing stuff... */ schannel_deal_with_seq_num(a, verf); return; } /******************************************************************* Decode a blob of data using the schannel alogrithm, also verifiying a checksum over the original data. We currently can verify signed messages, as well as decode sealed messages ********************************************************************/ bool schannel_decode(struct schannel_auth_struct *a, enum pipe_auth_level auth_level, enum schannel_direction direction, RPC_AUTH_SCHANNEL_CHK * verf, char *data, size_t data_len) { uchar digest_final[16]; static const uchar schannel_seal_sig[8] = SCHANNEL_SEAL_SIGNATURE; static const uchar schannel_sign_sig[8] = SCHANNEL_SIGN_SIGNATURE; const uchar *schannel_sig = NULL; uchar seq_num[8]; DEBUG(10,("SCHANNEL: schannel_decode seq_num=%d data_len=%lu\n", a->seq_num, (unsigned long)data_len)); if (auth_level == PIPE_AUTH_LEVEL_PRIVACY) { schannel_sig = schannel_seal_sig; } else { schannel_sig = schannel_sign_sig; } /* Create the expected sequence number for comparison */ RSIVAL(seq_num, 0, a->seq_num); switch (direction) { case SENDER_IS_INITIATOR: SIVAL(seq_num, 4, 0x80); break; case SENDER_IS_ACCEPTOR: SIVAL(seq_num, 4, 0x0); break; } DEBUG(10,("SCHANNEL: schannel_decode seq_num=%d data_len=%lu\n", a->seq_num, (unsigned long)data_len)); dump_data_pw("a->sess_key:\n", a->sess_key, sizeof(a->sess_key)); dump_data_pw("seq_num:\n", seq_num, sizeof(seq_num)); /* extract the sequence number (key based on supplied packet digest) */ /* needs to be done before the sealing, as the original version is used in the sealing stuff... */ schannel_deal_with_seq_num(a, verf); if (memcmp(verf->seq_num, seq_num, sizeof(seq_num))) { /* don't even bother with the below if the sequence number is out */ /* The sequence number is MD5'ed with a key based on the whole-packet digest, as supplied by the client. We check that it's a valid checksum after the decode, below */ DEBUG(2, ("schannel_decode: FAILED: packet sequence number:\n")); dump_data(2, verf->seq_num, sizeof(verf->seq_num)); DEBUG(2, ("should be:\n")); dump_data(2, seq_num, sizeof(seq_num)); return False; } if (memcmp(verf->sig, schannel_sig, sizeof(verf->sig))) { /* Validate that the other end sent the expected header */ DEBUG(2, ("schannel_decode: FAILED: packet header:\n")); dump_data(2, verf->sig, sizeof(verf->sig)); DEBUG(2, ("should be:\n")); dump_data(2, schannel_sig, sizeof(schannel_sig)); return False; } if (auth_level == PIPE_AUTH_LEVEL_PRIVACY) { uchar sealing_key[16]; /* get the key to extract the data with */ schannel_get_sealing_key(a, verf, sealing_key); /* extract the verification data */ dump_data_pw("verf->confounder:\n", verf->confounder, sizeof(verf->confounder)); SamOEMhash(verf->confounder, sealing_key, 8); dump_data_pw("verf->confounder_dec:\n", verf->confounder, sizeof(verf->confounder)); /* extract the packet payload */ dump_data_pw("data :\n", (const unsigned char *)data, data_len); SamOEMhash((unsigned char *)data, sealing_key, data_len); dump_data_pw("datadec:\n", (const unsigned char *)data, data_len); } /* digest includes 'data' after unsealing */ schannel_digest(a, auth_level, verf, data, data_len, digest_final); dump_data_pw("Calculated digest:\n", digest_final, sizeof(digest_final)); dump_data_pw("verf->packet_digest:\n", verf->packet_digest, sizeof(verf->packet_digest)); /* compare - if the client got the same result as us, then it must know the session key */ return (memcmp(digest_final, verf->packet_digest, sizeof(verf->packet_digest)) == 0); } #endif /******************************************************************* creates a new prs_struct containing a DATA_BLOB ********************************************************************/ bool prs_init_data_blob(prs_struct *prs, DATA_BLOB *blob, TALLOC_CTX *mem_ctx) { if (!prs_init( prs, RPC_MAX_PDU_FRAG_LEN, mem_ctx, MARSHALL )) return False; if (!prs_copy_data_in(prs, (char *)blob->data, blob->length)) return False; return True; } /******************************************************************* return the contents of a prs_struct in a DATA_BLOB ********************************************************************/ bool prs_data_blob(prs_struct *prs, DATA_BLOB *blob, TALLOC_CTX *mem_ctx) { blob->length = prs_data_size(prs); blob->data = (uint8 *)TALLOC_ZERO_SIZE(mem_ctx, blob->length); /* set the pointer at the end of the buffer */ prs_set_offset( prs, prs_data_size(prs) ); if (!prs_copy_all_data_out((char *)blob->data, prs)) return False; return True; }