/* Socket handling routines Copyright (C) 1998-2008, Joe Orton Copyright (C) 1999-2000 Tommi Komulainen Copyright (C) 2004 Aleix Conchillo Flaque This library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ /* portions were originally under GPL in Mutt, http://www.mutt.org/ Relicensed under LGPL for neon, http://www.webdav.org/neon/ */ #include "config.h" #include #ifdef HAVE_SYS_TIME_H #include #endif #include #ifdef HAVE_SYS_SOCKET_H #include #endif #ifdef NE_USE_POLL #include #elif defined(HAVE_SYS_SELECT_H) #include #endif #ifdef HAVE_NETINET_IN_H #include #endif #ifdef HAVE_NETINET_TCP_H #include #endif #ifdef HAVE_ARPA_INET_H #include #endif #ifdef HAVE_NETDB_H #include #endif #ifdef WIN32 #include #include #ifdef USE_GETADDRINFO #include #endif #endif #if defined(HAVE_OPENSSL) && defined(HAVE_LIMITS_H) #include /* for INT_MAX */ #endif #ifdef HAVE_STRING_H #include #endif #ifdef HAVE_STRINGS_H #include #endif #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_SIGNAL_H #include #endif #ifdef HAVE_ERRNO_H #include #endif #ifdef HAVE_STDLIB_H #include #endif #ifdef HAVE_FCNTL_H #include #endif #ifdef HAVE_SOCKS_H #include #endif #ifdef HAVE_OPENSSL #include #include #include /* for PKCS12_PBE_add */ #include #include /* for OPENSSL_VERSION_NUMBER */ #endif #ifdef HAVE_GNUTLS #include #endif #include #include #define NE_INET_ADDR_DEFINED /* A slightly ugly hack: change the ne_inet_addr definition to be the * real address type used. The API only exposes ne_inet_addr as a * pointer to an opaque object, so this should be well-defined * behaviour. It avoids the hassle of a real wrapper ne_inet_addr * structure, or losing type-safety by using void *. */ #ifdef USE_GETADDRINFO typedef struct addrinfo ne_inet_addr; #else typedef struct in_addr ne_inet_addr; #endif #ifdef NE_HAVE_SSL #include "ne_privssl.h" /* MUST come after ne_inet_addr is defined */ #endif /* To avoid doing AAAA queries unless absolutely necessary, either use * AI_ADDRCONFIG where available, or a run-time check for working IPv6 * support; the latter is only known to work on Linux. */ #if defined(USE_GETADDRINFO) && !defined(USE_GAI_ADDRCONFIG) && defined(__linux__) #define USE_CHECK_IPV6 #endif /* "Be Conservative In What You Build". */ #if defined(HAVE_FCNTL) && defined(O_NONBLOCK) && defined(F_SETFL) \ && defined(HAVE_GETSOCKOPT) && defined(SO_ERROR) \ && defined(HAVE_SOCKLEN_T) && defined(SOL_SOCKET) \ && defined(EINPROGRESS) #define USE_NONBLOCKING_CONNECT #endif #include "ne_internal.h" #include "ne_utils.h" #include "ne_string.h" #include "ne_socket.h" #include "ne_alloc.h" #include "ne_sspi.h" #if defined(__BEOS__) && !defined(BONE_VERSION) /* pre-BONE */ #define ne_close(s) closesocket(s) #define ne_errno errno #elif defined(WIN32) #define ne_close(s) closesocket(s) #define ne_errno WSAGetLastError() #else /* really Unix! */ #define ne_close(s) close(s) #define ne_errno errno #endif #ifdef WIN32 #define NE_ISRESET(e) ((e) == WSAECONNABORTED || (e) == WSAETIMEDOUT || \ (e) == WSAECONNRESET || (e) == WSAENETRESET) #define NE_ISCLOSED(e) ((e) == WSAESHUTDOWN || (e) == WSAENOTCONN) #define NE_ISINTR(e) (0) #define NE_ISINPROGRESS(e) ((e) == WSAEWOULDBLOCK) /* says MSDN */ #else /* Unix */ /* Also treat ECONNABORTED and ENOTCONN as "connection reset" errors; * both can be returned by Winsock-based sockets layers e.g. CygWin */ #ifndef ECONNABORTED #define ECONNABORTED ECONNRESET #endif #ifndef ENOTCONN #define ENOTCONN ECONNRESET #endif #define NE_ISRESET(e) ((e) == ECONNRESET || (e) == ECONNABORTED || (e) == ENOTCONN) #define NE_ISCLOSED(e) ((e) == EPIPE) #define NE_ISINTR(e) ((e) == EINTR) #define NE_ISINPROGRESS(e) ((e) == EINPROGRESS) #endif /* Socket read timeout */ #define SOCKET_READ_TIMEOUT 120 #define SOCKET_CON_TIMEOUT 30 /* AVM: new TLS cipher list */ #define NEW_CIPHERS "DHE-RSA-AES256-SHA:DHE-DSS-AES256-SHA:AES256-SHA:DHE-RSA-AES128-SHA:DHE-DSS-AES128-SHA" /* Critical I/O functions on a socket: useful abstraction for easily * handling SSL I/O alongside raw socket I/O. */ struct iofns { /* Read up to 'len' bytes into 'buf' from socket. Return <0 on * error or EOF, or >0; number of bytes read. */ ssize_t (*sread)(ne_socket *s, char *buf, size_t len); /* Write up to 'len' bytes from 'buf' to socket. Return number of * bytes written on success, or <0 on error. */ ssize_t (*swrite)(ne_socket *s, const char *buf, size_t len); /* Wait up to 'n' seconds for socket to become readable. Returns * 0 when readable, otherwise NE_SOCK_TIMEOUT or NE_SOCK_ERROR. */ int (*readable)(ne_socket *s, int n); }; static const ne_inet_addr dummy_laddr; struct ne_socket_s { int fd; unsigned int lport; const ne_inet_addr *laddr; void *progress_ud; int rdtimeout, cotimeout; /* timeouts */ const struct iofns *ops; #ifdef NE_HAVE_SSL ne_ssl_socket ssl; #endif /* The read buffer: ->buffer stores byte which have been read; as * these are consumed and passed back to the caller, bufpos * advances through ->buffer. ->bufavail gives the number of * bytes which remain to be consumed in ->buffer (from ->bufpos), * and is hence always <= RDBUFSIZ. */ char *bufpos; size_t bufavail; #define RDBUFSIZ 32768 /*4096*/ char buffer[RDBUFSIZ]; /* Error string. */ char error[192]; }; /* ne_sock_addr represents an Internet address. */ struct ne_sock_addr_s { #ifdef USE_GETADDRINFO struct addrinfo *result, *cursor; #else struct in_addr *addrs; size_t cursor, count; #endif int errnum; }; /* set_error: set socket error string to 'str'. */ #define set_error(s, str) ne_strnzcpy((s)->error, (str), sizeof (s)->error) /* set_strerror: set socket error to system error string for 'errnum' */ #ifdef WIN32 /* Print system error message to given buffer. */ static void print_error(int errnum, char *buffer, size_t buflen) { if (FormatMessage (FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, (DWORD) errnum, 0, buffer, buflen, NULL) == 0) ne_snprintf(buffer, buflen, "Socket error %d", errnum); } #define set_strerror(s, e) print_error((e), (s)->error, sizeof (s)->error) #else /* not WIN32 */ #define set_strerror(s, e) ne_strerror((e), (s)->error, sizeof (s)->error) #endif #ifdef HAVE_OPENSSL /* Seed the SSL PRNG, if necessary; returns non-zero on failure. */ static int seed_ssl_prng(void) { /* Check whether the PRNG has already been seeded. */ if (RAND_status() == 1) return 0; #if defined(EGD_PATH) NE_DEBUG(NE_DBG_SOCKET, "Seeding PRNG from " EGD_PATH "...\n"); if (RAND_egd(EGD_PATH) != -1) return 0; #elif defined(ENABLE_EGD) { static const char *paths[] = { "/var/run/egd-pool", "/dev/egd-pool", "/etc/egd-pool", "/etc/entropy" }; size_t n; for (n = 0; n < sizeof(paths) / sizeof(char *); n++) { NE_DEBUG(NE_DBG_SOCKET, "Seeding PRNG from %s...\n", paths[n]); if (RAND_egd(paths[n]) != -1) return 0; } } #endif /* EGD_PATH */ NE_DEBUG(NE_DBG_SOCKET, "No entropy source found; could not seed PRNG.\n"); return -1; } #endif /* HAVE_OPENSSL */ #ifdef USE_CHECK_IPV6 static int ipv6_disabled = 0; /* On Linux kernels, IPv6 is typically built as a loadable module, and * socket(AF_INET6, ...) will fail if this module is not loaded, so * the slow AAAA lookups can be avoided for this common case. */ static void init_ipv6(void) { int fd = socket(AF_INET6, SOCK_STREAM, 0); if (fd < 0) ipv6_disabled = 1; else close(fd); } #elif defined(AF_INET6) #define ipv6_disabled (0) #else #define ipv6_disabled (1) #endif /* If init_state is N where > 0, ne_sock_init has been called N times; * if == 0, library is not initialized; if < 0, library initialization * has failed. */ static int init_state = 0; int ne_sock_init(void) { #ifdef WIN32 WORD wVersionRequested; WSADATA wsaData; int err; #endif if (init_state > 0) { init_state++; return 0; } else if (init_state < 0) { return -1; } #ifdef WIN32 wVersionRequested = MAKEWORD(2, 2); err = WSAStartup(wVersionRequested, &wsaData); if (err != 0) { return init_state = -1; } #ifdef HAVE_SSPI if (ne_sspi_init() < 0) { return init_state = -1; } #endif #endif #ifdef NE_HAVE_SOCKS SOCKSinit("neon"); #endif #if defined(HAVE_SIGNAL) && defined(SIGPIPE) (void) signal(SIGPIPE, SIG_IGN); #endif #ifdef USE_CHECK_IPV6 init_ipv6(); #endif #ifdef NE_HAVE_SSL if (ne__ssl_init()) { return init_state = -1; } #endif init_state = 1; return 0; } void ne_sock_exit(void) { if (init_state > 0 && --init_state == 0) { #ifdef WIN32 WSACleanup(); #endif #ifdef NE_HAVE_SSL ne__ssl_exit(); #endif #ifdef HAVE_SSPI ne_sspi_deinit(); #endif } } /* Await readability (rdwr = 0) or writability (rdwr != 0) for socket * fd for secs seconds. Returns <0 on error, zero on timeout, >0 if * data is available. */ static int raw_poll(int fdno, int rdwr, int secs) { int ret; #ifdef NE_USE_POLL struct pollfd fds; int timeout = secs > 0 ? secs * 1000 : -1; fds.fd = fdno; fds.events = rdwr == 0 ? POLLIN : POLLOUT; fds.revents = 0; do { ret = poll(&fds, 1, timeout); } while (ret < 0 && NE_ISINTR(ne_errno)); #else fd_set rdfds, wrfds; struct timeval timeout, *tvp = (secs >= 0 ? &timeout : NULL); /* Init the fd set */ FD_ZERO(&rdfds); FD_ZERO(&wrfds); /* Note that (amazingly) the FD_SET macro does not expand * correctly on Netware if not inside a compound statement * block. */ if (rdwr == 0) { FD_SET(fdno, &rdfds); } else { FD_SET(fdno, &wrfds); } if (tvp) { tvp->tv_sec = secs; tvp->tv_usec = 0; } do { ret = select(fdno + 1, &rdfds, &wrfds, NULL, tvp); } while (ret < 0 && NE_ISINTR(ne_errno)); #endif return ret; } int ne_sock_block(ne_socket *sock, int n) { if (sock->bufavail) return 0; return sock->ops->readable(sock, n); } /* Cast address object AD to type 'sockaddr_TY' */ #define SACAST(ty, ad) ((struct sockaddr_##ty *)(ad)) ssize_t ne_sock_read(ne_socket *sock, char *buffer, size_t buflen) { ssize_t bytes; #if 0 NE_DEBUG(NE_DBG_SOCKET, "buf: at %d, %d avail [%s]\n", sock->bufpos - sock->buffer, sock->bufavail, sock->bufpos); #endif if (sock->bufavail > 0) { /* Deliver buffered data. */ if (buflen > sock->bufavail) buflen = sock->bufavail; memcpy(buffer, sock->bufpos, buflen); sock->bufpos += buflen; sock->bufavail -= buflen; return buflen; } else if (buflen >= sizeof sock->buffer) { /* No need for read buffer. */ return sock->ops->sread(sock, buffer, buflen); } else { /* Fill read buffer. */ bytes = sock->ops->sread(sock, sock->buffer, sizeof sock->buffer); if (bytes <= 0) return bytes; if (buflen > (size_t)bytes) buflen = bytes; memcpy(buffer, sock->buffer, buflen); sock->bufpos = sock->buffer + buflen; sock->bufavail = bytes - buflen; return buflen; } } ssize_t ne_sock_peek(ne_socket *sock, char *buffer, size_t buflen) { ssize_t bytes; if (sock->bufavail) { /* just return buffered data. */ bytes = sock->bufavail; } else { /* fill the buffer. */ bytes = sock->ops->sread(sock, sock->buffer, sizeof sock->buffer); if (bytes <= 0) return bytes; sock->bufpos = sock->buffer; sock->bufavail = bytes; } if (buflen > (size_t)bytes) buflen = bytes; memcpy(buffer, sock->bufpos, buflen); return buflen; } /* Await data on raw fd in socket. */ static int readable_raw(ne_socket *sock, int secs) { int ret = raw_poll(sock->fd, 0, secs); if (ret < 0) { set_strerror(sock, ne_errno); return NE_SOCK_ERROR; } return (ret == 0) ? NE_SOCK_TIMEOUT : 0; } static ssize_t read_raw(ne_socket *sock, char *buffer, size_t len) { ssize_t ret; ret = readable_raw(sock, sock->rdtimeout); if (ret) return ret; do { ret = recv(sock->fd, buffer, len, 0); } while (ret == -1 && NE_ISINTR(ne_errno)); if (ret == 0) { set_error(sock, _("Connection closed")); ret = NE_SOCK_CLOSED; } else if (ret < 0) { int errnum = ne_errno; ret = NE_ISRESET(errnum) ? NE_SOCK_RESET : NE_SOCK_ERROR; set_strerror(sock, errnum); } return ret; } #define MAP_ERR(e) (NE_ISCLOSED(e) ? NE_SOCK_CLOSED : \ (NE_ISRESET(e) ? NE_SOCK_RESET : NE_SOCK_ERROR)) static ssize_t write_raw(ne_socket *sock, const char *data, size_t length) { ssize_t ret; #ifdef __QNX__ /* Test failures seen on QNX over loopback, if passing large * buffer lengths to send(). */ if (length > 8192) length = 8192; #endif do { ret = send(sock->fd, data, length, 0); } while (ret == -1 && NE_ISINTR(ne_errno)); if (ret < 0) { int errnum = ne_errno; set_strerror(sock, errnum); return MAP_ERR(errnum); } return ret; } static const struct iofns iofns_raw = { read_raw, write_raw, readable_raw }; #ifdef HAVE_OPENSSL /* OpenSSL I/O function implementations. */ static int readable_ossl(ne_socket *sock, int secs) { if (SSL_pending(sock->ssl)) return 0; return readable_raw(sock, secs); } /* SSL error handling, according to SSL_get_error(3). */ static int error_ossl(ne_socket *sock, int sret) { int errnum = SSL_get_error(sock->ssl, sret); unsigned long err; if (errnum == SSL_ERROR_ZERO_RETURN) { set_error(sock, _("Connection closed")); return NE_SOCK_CLOSED; } /* for all other errors, look at the OpenSSL error stack */ err = ERR_get_error(); if (err == 0) { /* Empty error stack, presume this is a system call error: */ if (sret == 0) { /* EOF without close_notify, possible truncation */ set_error(sock, _("Secure connection truncated")); return NE_SOCK_TRUNC; } else { /* Other socket error. */ errnum = ne_errno; set_strerror(sock, errnum); return MAP_ERR(errnum); } } if (ERR_reason_error_string(err)) { ne_snprintf(sock->error, sizeof sock->error, _("SSL error: %s"), ERR_reason_error_string(err)); } else { ne_snprintf(sock->error, sizeof sock->error, _("SSL error code %d/%d/%lu"), sret, errnum, err); } /* make sure the error stack is now empty. */ ERR_clear_error(); return NE_SOCK_ERROR; } /* Work around OpenSSL's use of 'int' rather than 'size_t', to prevent * accidentally passing a negative number, etc. */ #define CAST2INT(n) (((n) > INT_MAX) ? INT_MAX : (n)) static ssize_t read_ossl(ne_socket *sock, char *buffer, size_t len) { int ret; ret = readable_ossl(sock, sock->rdtimeout); if (ret) return ret; ret = SSL_read(sock->ssl, buffer, CAST2INT(len)); if (ret <= 0) ret = error_ossl(sock, ret); return ret; } static ssize_t write_ossl(ne_socket *sock, const char *data, size_t len) { int ret, ilen = CAST2INT(len); ret = SSL_write(sock->ssl, data, ilen); /* ssl.h says SSL_MODE_ENABLE_PARTIAL_WRITE must be enabled to * have SSL_write return < length... so, SSL_write should never * return < length. */ if (ret != ilen) return error_ossl(sock, ret); return ret; } static const struct iofns iofns_ssl = { read_ossl, write_ossl, readable_ossl }; #elif defined(HAVE_GNUTLS) /* Return zero if an alert value can be ignored. */ static int check_alert(ne_socket *sock, ssize_t ret) { const char *alert; if (ret == GNUTLS_E_WARNING_ALERT_RECEIVED) { alert = gnutls_alert_get_name(gnutls_alert_get(sock->ssl)); NE_DEBUG(NE_DBG_SOCKET, "TLS warning alert: %s\n", alert); return 0; } else if (ret == GNUTLS_E_FATAL_ALERT_RECEIVED) { alert = gnutls_alert_get_name(gnutls_alert_get(sock->ssl)); NE_DEBUG(NE_DBG_SOCKET, "TLS fatal alert: %s\n", alert); return -1; } return ret; } static int readable_gnutls(ne_socket *sock, int secs) { if (gnutls_record_check_pending(sock->ssl)) { return 0; } return readable_raw(sock, secs); } static ssize_t error_gnutls(ne_socket *sock, ssize_t sret) { ssize_t ret; switch (sret) { case 0: ret = NE_SOCK_CLOSED; set_error(sock, _("Connection closed")); break; case GNUTLS_E_FATAL_ALERT_RECEIVED: ret = NE_SOCK_ERROR; ne_snprintf(sock->error, sizeof sock->error, _("SSL alert received: %s"), gnutls_alert_get_name(gnutls_alert_get(sock->ssl))); break; case GNUTLS_E_UNEXPECTED_PACKET_LENGTH: /* It's not exactly an API guarantee but this error will * always mean a premature EOF. */ ret = NE_SOCK_TRUNC; set_error(sock, _("Secure connection truncated")); break; case GNUTLS_E_PUSH_ERROR: ret = NE_SOCK_RESET; set_error(sock, ("SSL socket write failed")); break; case GNUTLS_E_PULL_ERROR: ret = NE_SOCK_RESET; set_error(sock, _("SSL socket read failed")); break; default: ret = NE_SOCK_ERROR; ne_snprintf(sock->error, sizeof sock->error, _("SSL error: %s"), gnutls_strerror(sret)); } return ret; } #define RETRY_GNUTLS(sock, ret) ((ret < 0) \ && (ret == GNUTLS_E_INTERRUPTED || ret == GNUTLS_E_AGAIN \ || check_alert(sock, ret) == 0)) static ssize_t read_gnutls(ne_socket *sock, char *buffer, size_t len) { ssize_t ret; ret = readable_gnutls(sock, sock->rdtimeout); if (ret) return ret; do { ret = gnutls_record_recv(sock->ssl, buffer, len); } while (RETRY_GNUTLS(sock, ret)); if (ret <= 0) ret = error_gnutls(sock, ret); return ret; } static ssize_t write_gnutls(ne_socket *sock, const char *data, size_t len) { ssize_t ret; do { ret = gnutls_record_send(sock->ssl, data, len); } while (RETRY_GNUTLS(sock, ret)); if (ret < 0) return error_gnutls(sock, ret); return ret; } static const struct iofns iofns_ssl = { read_gnutls, write_gnutls, readable_gnutls }; #endif int ne_sock_fullwrite(ne_socket *sock, const char *data, size_t len) { ssize_t ret; do { ret = sock->ops->swrite(sock, data, len); if (ret > 0) { data += ret; len -= ret; } } while (ret > 0 && len > 0); return ret < 0 ? ret : 0; } ssize_t ne_sock_readline(ne_socket *sock, char *buf, size_t buflen) { char *lf; size_t len; if ((lf = memchr(sock->bufpos, '\n', sock->bufavail)) == NULL && sock->bufavail < RDBUFSIZ) { /* The buffered data does not contain a complete line: move it * to the beginning of the buffer. */ if (sock->bufavail) memmove(sock->buffer, sock->bufpos, sock->bufavail); sock->bufpos = sock->buffer; /* Loop filling the buffer whilst no newline is found in the data * buffered so far, and there is still buffer space available */ do { /* Read more data onto end of buffer. */ ssize_t ret = sock->ops->sread(sock, sock->buffer + sock->bufavail, RDBUFSIZ - sock->bufavail); if (ret < 0) return ret; sock->bufavail += ret; } while ((lf = memchr(sock->buffer, '\n', sock->bufavail)) == NULL && sock->bufavail < RDBUFSIZ); } if (lf) len = lf - sock->bufpos + 1; else len = buflen; /* fall into "line too long" error... */ if ((len + 1) > buflen) { set_error(sock, _("Line too long")); return NE_SOCK_ERROR; } memcpy(buf, sock->bufpos, len); buf[len] = '\0'; /* consume the line from buffer: */ sock->bufavail -= len; sock->bufpos += len; return len; } ssize_t ne_sock_fullread(ne_socket *sock, char *buffer, size_t buflen) { ssize_t len; while (buflen > 0) { len = ne_sock_read(sock, buffer, buflen); if (len < 0) return len; buflen -= len; buffer += len; } return 0; } #ifndef INADDR_NONE #define INADDR_NONE ((in_addr_t) -1) #endif #if !defined(USE_GETADDRINFO) && !defined(WIN32) && !HAVE_DECL_H_ERRNO /* Ancient versions of netdb.h don't export h_errno. */ extern int h_errno; #endif /* This implemementation does not attempt to support IPv6 using * gethostbyname2 et al. */ ne_sock_addr *ne_addr_resolve(const char *hostname, int flags) { ne_sock_addr *addr = ne_calloc(sizeof *addr); #ifdef USE_GETADDRINFO struct addrinfo hints = {0}; char *pnt; hints.ai_socktype = SOCK_STREAM; #ifdef AF_INET6 if (hostname[0] == '[' && ((pnt = strchr(hostname, ']')) != NULL)) { char *hn = ne_strdup(hostname + 1); hn[pnt - hostname - 1] = '\0'; #ifdef AI_NUMERICHOST /* added in the RFC2553 API */ hints.ai_flags = AI_NUMERICHOST; #endif hints.ai_family = AF_INET6; addr->errnum = getaddrinfo(hn, NULL, &hints, &addr->result); ne_free(hn); } else #endif /* AF_INET6 */ { #ifdef USE_GAI_ADDRCONFIG /* added in the RFC3493 API */ hints.ai_flags = AI_ADDRCONFIG; hints.ai_family = AF_UNSPEC; addr->errnum = getaddrinfo(hostname, NULL, &hints, &addr->result); #else hints.ai_family = ipv6_disabled ? AF_INET : AF_UNSPEC; addr->errnum = getaddrinfo(hostname, NULL, &hints, &addr->result); #endif } #else /* Use gethostbyname() */ in_addr_t laddr; struct hostent *hp; laddr = inet_addr(hostname); if (laddr == INADDR_NONE) { hp = gethostbyname(hostname); if (hp == NULL) { #ifdef WIN32 addr->errnum = WSAGetLastError(); #else addr->errnum = h_errno; #endif } else if (hp->h_length != sizeof(struct in_addr)) { /* fail gracefully if somebody set RES_USE_INET6 */ addr->errnum = NO_RECOVERY; } else { size_t n; /* count addresses */ for (n = 0; hp->h_addr_list[n] != NULL; n++) /* noop */; addr->count = n; addr->addrs = ne_malloc(n * sizeof *addr->addrs); for (n = 0; n < addr->count; n++) memcpy(&addr->addrs[n], hp->h_addr_list[n], hp->h_length); } } else { addr->addrs = ne_malloc(sizeof *addr->addrs); addr->count = 1; memcpy(addr->addrs, &laddr, sizeof *addr->addrs); } #endif return addr; } int ne_addr_result(const ne_sock_addr *addr) { return addr->errnum; } const ne_inet_addr *ne_addr_first(ne_sock_addr *addr) { #ifdef USE_GETADDRINFO addr->cursor = addr->result->ai_next; return addr->result; #else addr->cursor = 0; return &addr->addrs[0]; #endif } const ne_inet_addr *ne_addr_next(ne_sock_addr *addr) { #ifdef USE_GETADDRINFO struct addrinfo *ret = addr->cursor; if (addr->cursor) addr->cursor = addr->cursor->ai_next; #else struct in_addr *ret; if (++addr->cursor < addr->count) ret = &addr->addrs[addr->cursor]; else ret = NULL; #endif return ret; } char *ne_addr_error(const ne_sock_addr *addr, char *buf, size_t bufsiz) { #ifdef WIN32 print_error(addr->errnum, buf, bufsiz); #else const char *err; #ifdef USE_GETADDRINFO /* override horrible generic "Name or service not known" error. */ if (addr->errnum == EAI_NONAME) err = _("Host not found"); else err = gai_strerror(addr->errnum); #elif defined(HAVE_HSTRERROR) err = hstrerror(addr->errnum); #else err = _("Host not found"); #endif ne_strnzcpy(buf, err, bufsiz); #endif /* WIN32 */ return buf; } char *ne_iaddr_print(const ne_inet_addr *ia, char *buf, size_t bufsiz) { #if defined(USE_GETADDRINFO) && defined(HAVE_INET_NTOP) const char *ret; #ifdef AF_INET6 if (ia->ai_family == AF_INET6) { struct sockaddr_in6 *in6 = SACAST(in6, ia->ai_addr); ret = inet_ntop(AF_INET6, &in6->sin6_addr, buf, bufsiz); } else #endif if (ia->ai_family == AF_INET) { struct sockaddr_in *in = SACAST(in, ia->ai_addr); ret = inet_ntop(AF_INET, &in->sin_addr, buf, bufsiz); } else ret = NULL; if (ret == NULL) ne_strnzcpy(buf, "[IP address]", bufsiz); #elif defined(USE_GETADDRINFO) && defined(NI_NUMERICHOST) /* use getnameinfo instead for Win32, which lacks inet_ntop: */ if (getnameinfo(ia->ai_addr, ia->ai_addrlen, buf, bufsiz, NULL, 0, NI_NUMERICHOST)) ne_strnzcpy(buf, "[IP address]", bufsiz); #else /* USE_GETADDRINFO */ ne_strnzcpy(buf, inet_ntoa(*ia), bufsiz); #endif return buf; } int ne_iaddr_reverse(const ne_inet_addr *ia, char *buf, size_t bufsiz) { #ifdef USE_GETADDRINFO return getnameinfo(ia->ai_addr, ia->ai_addrlen, buf, bufsiz, NULL, 0, 0); #else struct hostent *hp; hp = gethostbyaddr(ia, sizeof *ia, AF_INET); if (hp && hp->h_name) { ne_strnzcpy(buf, hp->h_name, bufsiz); return 0; } return -1; #endif } void ne_addr_destroy(ne_sock_addr *addr) { #ifdef USE_GETADDRINFO if (addr->result) freeaddrinfo(addr->result); #else if (addr->addrs) ne_free(addr->addrs); #endif ne_free(addr); } /* Perform a connect() for fd to address sa of length salen, with a * timeout if supported on this platform. Returns zero on success or * NE_SOCK_* on failure, with sock->error set appropriately. */ static int timed_connect(ne_socket *sock, int fd, const struct sockaddr *sa, size_t salen) { int ret; #ifdef USE_NONBLOCKING_CONNECT if (sock->cotimeout) { int errnum, flags; /* Get flags and then set O_NONBLOCK. */ flags = fcntl(fd, F_GETFL); if (fcntl(fd, F_SETFL, flags | O_NONBLOCK) == -1) { set_strerror(sock, errno); return NE_SOCK_ERROR; } ret = connect(fd, sa, salen); if (ret == -1) { errnum = ne_errno; if (NE_ISINPROGRESS(errnum)) { ret = raw_poll(fd, 1, sock->cotimeout); if (ret > 0) { /* poll got data */ socklen_t len = sizeof(errnum); /* Check whether there is a pending error for the * socket. Per Stevens UNPv1§15.4, Solaris will * return a pending error via errno by failing the * getsockopt() call. */ errnum = 0; if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &errnum, &len)) errnum = errno; if (errnum == 0) { ret = 0; } else { set_strerror(sock, errnum); ret = NE_SOCK_ERROR; } } else if (ret == 0) { /* poll timed out */ set_error(sock, _("Connection timed out (timed_connect)")); ret = NE_SOCK_TIMEOUT; } else /* poll failed */ { set_strerror(sock, errno); ret = NE_SOCK_ERROR; } } else /* non-EINPROGRESS error from connect() */ { set_strerror(sock, errnum); ret = NE_SOCK_ERROR; } } /* Reset to old flags: */ if (fcntl(fd, F_SETFL, flags) == -1) { set_strerror(sock, errno); ret = NE_SOCK_ERROR; } } else #endif /* USE_NONBLOCKING_CONNECT */ { ret = connect(fd, sa, salen); if (ret < 0) { set_strerror(sock, errno); ret = NE_SOCK_ERROR; } } return ret; } /* Connect socket to address 'addr' on given 'port'. Returns zero on * success or NE_SOCK_* on failure with sock->error set * appropriately. */ static int connect_socket(ne_socket *sock, int fd, const ne_inet_addr *addr, unsigned int port) { #ifdef USE_GETADDRINFO #ifdef AF_INET6 /* fill in the _family field for AIX 4.3, which forgets to do so. */ if (addr->ai_family == AF_INET6) { struct sockaddr_in6 in6; memcpy(&in6, addr->ai_addr, sizeof in6); in6.sin6_port = port; in6.sin6_family = AF_INET6; return timed_connect(sock, fd, (struct sockaddr *)&in6, sizeof in6); } else #endif if (addr->ai_family == AF_INET) { struct sockaddr_in in; memcpy(&in, addr->ai_addr, sizeof in); in.sin_port = port; in.sin_family = AF_INET; return timed_connect(sock, fd, (struct sockaddr *)&in, sizeof in); } else { set_strerror(sock, EINVAL); return NE_SOCK_ERROR; } #else struct sockaddr_in sa = {0}; sa.sin_family = AF_INET; sa.sin_port = port; sa.sin_addr = *addr; return timed_connect(sock, fd, (struct sockaddr *)&sa, sizeof sa); #endif } ne_socket *ne_sock_create(void) { ne_socket *sock = ne_calloc(sizeof *sock); sock->rdtimeout = SOCKET_READ_TIMEOUT; sock->cotimeout = SOCKET_CON_TIMEOUT; sock->bufpos = sock->buffer; sock->ops = &iofns_raw; sock->fd = -1; return sock; } #ifdef USE_GETADDRINFO #define ia_family(a) ((a)->ai_family) #define ia_proto(a) ((a)->ai_protocol) #else #define ia_family(a) AF_INET #define ia_proto(a) 0 #endif void ne_sock_prebind(ne_socket *sock, const ne_inet_addr *addr, unsigned int port) { sock->lport = port; sock->laddr = addr ? addr : &dummy_laddr; } /* Bind socket 'fd' to address/port 'addr' and 'port', for subsequent * connect() to address of family 'peer_family'. */ static int do_bind(int fd, int peer_family, const ne_inet_addr *addr, unsigned int port) { #if defined(HAVE_SETSOCKOPT) && defined(SO_REUSEADDR) && defined(SOL_SOCKET) { int flag = 1; (void) setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &flag, sizeof flag); /* An error here is not fatal, so ignore it. */ } #endif #if defined(USE_GETADDRINFO) && defined(AF_INET6) /* Use a sockaddr_in6 if an AF_INET6 local address is specifed, or * if no address is specified and the peer address is AF_INET6: */ if ((addr != &dummy_laddr && addr->ai_family == AF_INET6) || (addr == &dummy_laddr && peer_family == AF_INET6)) { struct sockaddr_in6 in6; if (addr == &dummy_laddr) memset(&in6, 0, sizeof in6); else memcpy(&in6, addr->ai_addr, sizeof in6); in6.sin6_port = htons(port); /* fill in the _family field for AIX 4.3, which forgets to do so. */ in6.sin6_family = AF_INET6; return bind(fd, (struct sockaddr *)&in6, sizeof in6); } else #endif { struct sockaddr_in in; if (addr == &dummy_laddr) memset(&in, 0, sizeof in); else { #ifdef USE_GETADDRINFO memcpy(&in, addr->ai_addr, sizeof in); #else in.sin_addr = *addr; #endif } in.sin_port = htons(port); in.sin_family = AF_INET; return bind(fd, (struct sockaddr *)&in, sizeof in); } } int ne_sock_connect(ne_socket *sock, const ne_inet_addr *addr, unsigned int port) { int fd, ret; /* use SOCK_STREAM rather than ai_socktype: some getaddrinfo * implementations do not set ai_socktype, e.g. RHL6.2. */ fd = socket(ia_family(addr), SOCK_STREAM, ia_proto(addr)); if (fd < 0) { set_strerror(sock, ne_errno); return -1; } #if !defined(NE_USE_POLL) && !defined(WIN32) if (fd > FD_SETSIZE) { ne_close(fd); set_error(sock, _("Socket descriptor number exceeds FD_SETSIZE")); return NE_SOCK_ERROR; } #endif #if defined(HAVE_FCNTL) && defined(F_GETFD) && defined(F_SETFD) \ && defined(FD_CLOEXEC) /* Set the FD_CLOEXEC bit for the new fd. */ if ((ret = fcntl(fd, F_GETFD)) >= 0) { fcntl(fd, F_SETFD, ret | FD_CLOEXEC); /* ignore failure; not a critical error. */ } #endif if (sock->laddr && (sock->laddr == &dummy_laddr || ia_family(sock->laddr) == ia_family(addr))) { ret = do_bind(fd, ia_family(addr), sock->laddr, sock->lport); if (ret < 0) { int errnum = errno; ne_close(fd); set_strerror(sock, errnum); return NE_SOCK_ERROR; } } #if defined(HAVE_SETSOCKOPT) && (defined(TCP_NODELAY) || defined(WIN32)) { /* Disable the Nagle algorithm. */ int flag = 1; setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, &flag, sizeof flag); } #endif ret = connect_socket(sock, fd, addr, htons(port)); if (ret == 0){ sock->fd = fd; #ifdef SIOCSET_TC_INDEX //AVM unsigned long tc_index = 20; if (ioctl(sock->fd, SIOCSET_TC_INDEX, &tc_index) != 0) { NE_DEBUG(NE_DBG_AVM, "SIOCSET_TC_INDEX failed"); } #endif } else ne_close(fd); return ret; } ne_inet_addr *ne_sock_peer(ne_socket *sock, unsigned int *port) { union saun { struct sockaddr_in sin; #if defined(USE_GETADDRINFO) && defined(AF_INET6) struct sockaddr_in6 sin6; #endif } saun; socklen_t len = sizeof saun; ne_inet_addr *ia; struct sockaddr *sad = (struct sockaddr *)&saun; if (getpeername(sock->fd, sad, &len) != 0) { set_strerror(sock, errno); return NULL; } #if !defined(USE_GETADDRINFO) || !defined(AF_INET6) if (sad->sa_family != AF_INET) { set_error(sock, _("Socket family not supported")); return NULL; } #endif ia = ne_calloc(sizeof *ia); #ifdef USE_GETADDRINFO ia->ai_addr = ne_malloc(sizeof *ia); ia->ai_addrlen = len; memcpy(ia->ai_addr, sad, len); ia->ai_family = sad->sa_family; #else memcpy(ia, &saun.sin.sin_addr.s_addr, sizeof *ia); #endif #if defined(USE_GETADDRINFO) && defined(AF_INET6) *port = ntohs(sad->sa_family == AF_INET ? saun.sin.sin_port : saun.sin6.sin6_port); #else *port = ntohs(saun.sin.sin_port); #endif return ia; } ne_inet_addr *ne_iaddr_make(ne_iaddr_type type, const unsigned char *raw) { ne_inet_addr *ia; #if !defined(AF_INET6) || !defined(USE_GETADDRINFO) /* fail if IPv6 address is given if IPv6 is not supported. */ if (type == ne_iaddr_ipv6) return NULL; #endif ia = ne_calloc(sizeof *ia); #ifdef USE_GETADDRINFO /* ai_protocol and ai_socktype aren't used by connect_socket() so * ignore them here. (for now) */ if (type == ne_iaddr_ipv4) { struct sockaddr_in *in4 = ne_calloc(sizeof *in4); ia->ai_family = AF_INET; ia->ai_addr = (struct sockaddr *)in4; ia->ai_addrlen = sizeof *in4; in4->sin_family = AF_INET; memcpy(&in4->sin_addr.s_addr, raw, sizeof in4->sin_addr.s_addr); } #ifdef AF_INET6 else { struct sockaddr_in6 *in6 = ne_calloc(sizeof *in6); ia->ai_family = AF_INET6; ia->ai_addr = (struct sockaddr *)in6; ia->ai_addrlen = sizeof *in6; in6->sin6_family = AF_INET6; memcpy(&in6->sin6_addr, raw, sizeof in6->sin6_addr.s6_addr); } #endif #else /* !USE_GETADDRINFO */ memcpy(&ia->s_addr, raw, sizeof ia->s_addr); #endif return ia; } ne_iaddr_type ne_iaddr_typeof(const ne_inet_addr *ia) { #if defined(USE_GETADDRINFO) && defined(AF_INET6) return ia->ai_family == AF_INET6 ? ne_iaddr_ipv6 : ne_iaddr_ipv4; #else return ne_iaddr_ipv4; #endif } int ne_iaddr_cmp(const ne_inet_addr *i1, const ne_inet_addr *i2) { #ifdef USE_GETADDRINFO if (i1->ai_family != i2->ai_family) return i2->ai_family - i1->ai_family; if (i1->ai_family == AF_INET) { struct sockaddr_in *in1 = SACAST(in, i1->ai_addr), *in2 = SACAST(in, i2->ai_addr); return memcmp(&in1->sin_addr.s_addr, &in2->sin_addr.s_addr, sizeof in1->sin_addr.s_addr); } #ifdef AF_INET6 else if (i1->ai_family == AF_INET6) { struct sockaddr_in6 *in1 = SACAST(in6, i1->ai_addr), *in2 = SACAST(in6, i2->ai_addr); return memcmp(in1->sin6_addr.s6_addr, in2->sin6_addr.s6_addr, sizeof in1->sin6_addr.s6_addr); } #endif /* AF_INET6 */ else return -1; #else return memcmp(&i1->s_addr, &i2->s_addr, sizeof i1->s_addr); #endif /* USE_GETADDRINFO */ } void ne_iaddr_free(ne_inet_addr *addr) { #ifdef USE_GETADDRINFO ne_free(addr->ai_addr); #endif ne_free(addr); } int ne_sock_accept(ne_socket *sock, int listener) { int fd = accept(listener, NULL, NULL); if (fd < 0) return -1; sock->fd = fd; return 0; } int ne_sock_fd(const ne_socket *sock) { return sock->fd; } void ne_sock_read_timeout(ne_socket *sock, int timeout) { sock->rdtimeout = timeout; } void ne_sock_connect_timeout(ne_socket *sock, int timeout) { sock->cotimeout = timeout; } #ifdef NE_HAVE_SSL #ifdef HAVE_GNUTLS /* Dumb server session cache implementation for GNUTLS; holds a single * session. */ /* Copy datum 'src' to 'dest'. */ static void copy_datum(gnutls_datum *dest, gnutls_datum *src) { dest->size = src->size; dest->data = memcpy(gnutls_malloc(src->size), src->data, src->size); } /* Callback to store a session 'data' with id 'key'. */ static int store_sess(void *userdata, gnutls_datum key, gnutls_datum data) { ne_ssl_context *ctx = userdata; if (ctx->cache.server.key.data) { gnutls_free(ctx->cache.server.key.data); gnutls_free(ctx->cache.server.data.data); } copy_datum(&ctx->cache.server.key, &key); copy_datum(&ctx->cache.server.data, &data); return 0; } /* Returns non-zero if d1 and d2 are the same datum. */ static int match_datum(gnutls_datum *d1, gnutls_datum *d2) { return d1->size == d2->size && memcmp(d1->data, d2->data, d1->size) == 0; } /* Callback to retrieve a session of id 'key'. */ static gnutls_datum retrieve_sess(void *userdata, gnutls_datum key) { ne_ssl_context *ctx = userdata; gnutls_datum ret = { NULL, 0 }; if (match_datum(&ctx->cache.server.key, &key)) { copy_datum(&ret, &ctx->cache.server.data); } return ret; } /* Callback to remove a session of id 'key'; stub needed but * implementation seems unnecessary. */ static int remove_sess(void *userdata, gnutls_datum key) { return -1; } #endif int ne_sock_accept_ssl(ne_socket *sock, ne_ssl_context *ctx) { int ret; ne_ssl_socket ssl; #if defined(HAVE_OPENSSL) ssl = SSL_new(ctx->ctx); SSL_set_fd(ssl, sock->fd); sock->ssl = ssl; ret = SSL_accept(ssl); if (ret != 1) { return error_ossl(sock, ret); } #elif defined(HAVE_GNUTLS) gnutls_init(&ssl, GNUTLS_SERVER); gnutls_credentials_set(ssl, GNUTLS_CRD_CERTIFICATE, ctx->cred); gnutls_set_default_priority(ssl); /* Set up dummy session cache. */ gnutls_db_set_store_function(ssl, store_sess); gnutls_db_set_retrieve_function(ssl, retrieve_sess); gnutls_db_set_remove_function(ssl, remove_sess); gnutls_db_set_ptr(ssl, ctx); if (ctx->verify) gnutls_certificate_server_set_request(ssl, GNUTLS_CERT_REQUEST); sock->ssl = ssl; gnutls_transport_set_ptr(sock->ssl, (gnutls_transport_ptr)(long)sock->fd); ret = gnutls_handshake(ssl); if (ret < 0) { return error_gnutls(sock, ret); } if (ctx->verify && gnutls_certificate_verify_peers(ssl)) { set_error(sock, _("Client certificate verification failed")); return NE_SOCK_ERROR; } #endif sock->ops = &iofns_ssl; return 0; } int ne_sock_connect_ssl(ne_socket *sock, ne_ssl_context *ctx, void *userdata) { int ret; #if defined(HAVE_OPENSSL) SSL *ssl; if (seed_ssl_prng()) { set_error(sock, _("SSL disabled due to lack of entropy")); return NE_SOCK_ERROR; } /* If runtime library version differs from compile-time version * number in major/minor/fix level, abort soon. */ if ((SSLeay() ^ OPENSSL_VERSION_NUMBER) & 0xFFFFF000) { set_error(sock, _("SSL disabled due to library version mismatch")); return NE_SOCK_ERROR; } sock->ssl = ssl = SSL_new(ctx->ctx); if (!ssl) { set_error(sock, _("Could not create SSL structure")); return NE_SOCK_ERROR; } SSL_set_app_data(ssl, userdata); SSL_set_mode(ssl, SSL_MODE_AUTO_RETRY); SSL_set_fd(ssl, sock->fd); sock->ops = &iofns_ssl; // AVM: set new TLS cipher list, Cloudsafe don´t like some of the old defaults if (SSL_set_cipher_list(ssl, NEW_CIPHERS)) { NE_DEBUG(NE_DBG_AVM, "SSL_set_cipher_list ok "); } else { NE_DEBUG(NE_DBG_AVM, "SSL_set_cipher_list failed "); } #ifdef SSL_set_tlsext_host_name if (ctx->hostname) { /* Try to enable SNI, but ignore failure (should only fail for * >255 char hostnames, which are probably not legal * anyway). */ if (SSL_set_tlsext_host_name(ssl, ctx->hostname) != 1) { ERR_clear_error(); } } #endif if (ctx->sess) SSL_set_session(ssl, ctx->sess); ret = SSL_connect(ssl); if (ret != 1) { error_ossl(sock, ret); SSL_free(ssl); sock->ssl = NULL; return NE_SOCK_ERROR; } #elif defined(HAVE_GNUTLS) /* DH and RSA params are set in ne_ssl_context_create */ gnutls_init(&sock->ssl, GNUTLS_CLIENT); gnutls_set_default_priority(sock->ssl); gnutls_session_set_ptr(sock->ssl, userdata); gnutls_credentials_set(sock->ssl, GNUTLS_CRD_CERTIFICATE, ctx->cred); #ifdef HAVE_GNUTLS_SIGN_CALLBACK_SET if (ctx->sign_func) gnutls_sign_callback_set(sock->ssl, ctx->sign_func, ctx->sign_data); #endif if (ctx->hostname) { gnutls_server_name_set(sock->ssl, GNUTLS_NAME_DNS, ctx->hostname, strlen(ctx->hostname)); } gnutls_transport_set_ptr(sock->ssl, (gnutls_transport_ptr)(long)sock->fd); if (ctx->cache.client.data) { #if defined(HAVE_GNUTLS_SESSION_GET_DATA2) gnutls_session_set_data(sock->ssl, ctx->cache.client.data, ctx->cache.client.size); #else gnutls_session_set_data(sock->ssl, ctx->cache.client.data, ctx->cache.client.len); #endif } sock->ops = &iofns_ssl; ret = gnutls_handshake(sock->ssl); if (ret < 0) { error_gnutls(sock, ret); return NE_SOCK_ERROR; } if (!gnutls_session_is_resumed(sock->ssl)) { /* New session. The old method of using the _get_data * function seems to be broken with 1.3.0 and later*/ #if defined(HAVE_GNUTLS_SESSION_GET_DATA2) gnutls_session_get_data2(sock->ssl, &ctx->cache.client); #else ctx->cache.client.len = 0; if (gnutls_session_get_data(sock->ssl, NULL, &ctx->cache.client.len) == 0) { ctx->cache.client.data = ne_malloc(ctx->cache.client.len); gnutls_session_get_data(sock->ssl, ctx->cache.client.data, &ctx->cache.client.len); } #endif } #endif return 0; } ne_ssl_socket ne__sock_sslsock(ne_socket *sock) { return sock->ssl; } #endif int ne_sock_sessid(ne_socket *sock, unsigned char *buf, size_t *buflen) { #ifdef NE_HAVE_SSL #ifdef HAVE_GNUTLS if (sock->ssl) { return gnutls_session_get_id(sock->ssl, buf, buflen); } else { return -1; } #else SSL_SESSION *sess; if (!sock->ssl) { return -1; } sess = SSL_get0_session(sock->ssl); if (!buf) { *buflen = sess->session_id_length; return 0; } if (*buflen < sess->session_id_length) { return -1; } *buflen = sess->session_id_length; memcpy(buf, sess->session_id, *buflen); return 0; #endif #else return -1; #endif } char *ne_sock_cipher(ne_socket *sock) { #ifdef NE_HAVE_SSL if (sock->ssl) { #ifdef HAVE_OPENSSL const char *name = SSL_get_cipher(sock->ssl); return ne_strdup(name); #elif defined(HAVE_GNUTLS) const char *name = gnutls_cipher_get_name(gnutls_cipher_get(sock->ssl)); return ne_strdup(name); #endif } else #endif /* NE_HAVE_SSL */ { return NULL; } } const char *ne_sock_error(const ne_socket *sock) { return sock->error; } /* Closes given ne_socket */ int ne_sock_close(ne_socket *sock) { int ret; #if defined(HAVE_OPENSSL) if (sock->ssl) { SSL_shutdown(sock->ssl); SSL_free(sock->ssl); } #elif defined(HAVE_GNUTLS) if (sock->ssl) { do { ret = gnutls_bye(sock->ssl, GNUTLS_SHUT_RDWR); } while (ret < 0 && (ret == GNUTLS_E_INTERRUPTED || ret == GNUTLS_E_AGAIN)); } #endif if (sock->fd < 0) ret = 0; else ret = ne_close(sock->fd); ne_free(sock); return ret; }