/* * AD7150 capacitive sensor driver supporting AD7150/1/6 * * Copyright 2010 Analog Devices Inc. * * Licensed under the GPL-2 or later. */ #include #include #include #include #include #include #include #include #include #include #include "../iio.h" #include "../sysfs.h" /* * AD7150 registers definition */ #define AD7150_STATUS 0 #define AD7150_STATUS_OUT1 (1 << 3) #define AD7150_STATUS_OUT2 (1 << 5) #define AD7150_CH1_DATA_HIGH 1 #define AD7150_CH1_DATA_LOW 2 #define AD7150_CH2_DATA_HIGH 3 #define AD7150_CH2_DATA_LOW 4 #define AD7150_CH1_AVG_HIGH 5 #define AD7150_CH1_AVG_LOW 6 #define AD7150_CH2_AVG_HIGH 7 #define AD7150_CH2_AVG_LOW 8 #define AD7150_CH1_SENSITIVITY 9 #define AD7150_CH1_THR_HOLD_H 9 #define AD7150_CH1_TIMEOUT 10 #define AD7150_CH1_THR_HOLD_L 10 #define AD7150_CH1_SETUP 11 #define AD7150_CH2_SENSITIVITY 12 #define AD7150_CH2_THR_HOLD_H 12 #define AD7150_CH2_TIMEOUT 13 #define AD7150_CH2_THR_HOLD_L 13 #define AD7150_CH2_SETUP 14 #define AD7150_CFG 15 #define AD7150_CFG_FIX (1 << 7) #define AD7150_PD_TIMER 16 #define AD7150_CH1_CAPDAC 17 #define AD7150_CH2_CAPDAC 18 #define AD7150_SN3 19 #define AD7150_SN2 20 #define AD7150_SN1 21 #define AD7150_SN0 22 #define AD7150_ID 23 #define AD7150_MAX_CONV_MODE 4 /* * struct ad7150_chip_info - chip specifc information */ struct ad7150_chip_info { const char *name; struct i2c_client *client; struct iio_dev *indio_dev; struct work_struct thresh_work; bool inter; s64 last_timestamp; u16 ch1_threshold; /* Ch1 Threshold (in fixed threshold mode) */ u8 ch1_sensitivity; /* Ch1 Sensitivity (in adaptive threshold mode) */ u8 ch1_timeout; /* Ch1 Timeout (in adaptive threshold mode) */ u8 ch1_setup; u16 ch2_threshold; /* Ch2 Threshold (in fixed threshold mode) */ u8 ch2_sensitivity; /* Ch1 Sensitivity (in adaptive threshold mode) */ u8 ch2_timeout; /* Ch1 Timeout (in adaptive threshold mode) */ u8 ch2_setup; u8 powerdown_timer; char threshold_mode[10]; /* adaptive/fixed threshold mode */ int old_state; char *conversion_mode; }; struct ad7150_conversion_mode { char *name; u8 reg_cfg; }; struct ad7150_conversion_mode ad7150_conv_mode_table[AD7150_MAX_CONV_MODE] = { { "idle", 0 }, { "continuous-conversion", 1 }, { "single-conversion", 2 }, { "power-down", 3 }, }; /* * ad7150 register access by I2C */ static int ad7150_i2c_read(struct ad7150_chip_info *chip, u8 reg, u8 *data, int len) { struct i2c_client *client = chip->client; int ret = 0; ret = i2c_master_send(client, ®, 1); if (ret < 0) { dev_err(&client->dev, "I2C write error\n"); return ret; } ret = i2c_master_recv(client, data, len); if (ret < 0) { dev_err(&client->dev, "I2C read error\n"); return ret; } return ret; } static int ad7150_i2c_write(struct ad7150_chip_info *chip, u8 reg, u8 data) { struct i2c_client *client = chip->client; int ret = 0; u8 tx[2] = { reg, data, }; ret = i2c_master_send(client, tx, 2); if (ret < 0) dev_err(&client->dev, "I2C write error\n"); return ret; } /* * sysfs nodes */ #define IIO_DEV_ATTR_AVAIL_CONVERSION_MODES(_show) \ IIO_DEVICE_ATTR(available_conversion_modes, S_IRUGO, _show, NULL, 0) #define IIO_DEV_ATTR_CONVERSION_MODE(_mode, _show, _store) \ IIO_DEVICE_ATTR(conversion_mode, _mode, _show, _store, 0) #define IIO_DEV_ATTR_AVAIL_THRESHOLD_MODES(_show) \ IIO_DEVICE_ATTR(available_threshold_modes, S_IRUGO, _show, NULL, 0) #define IIO_DEV_ATTR_THRESHOLD_MODE(_mode, _show, _store) \ IIO_DEVICE_ATTR(threshold_mode, _mode, _show, _store, 0) #define IIO_DEV_ATTR_CH1_THRESHOLD(_mode, _show, _store) \ IIO_DEVICE_ATTR(ch1_threshold, _mode, _show, _store, 0) #define IIO_DEV_ATTR_CH2_THRESHOLD(_mode, _show, _store) \ IIO_DEVICE_ATTR(ch2_threshold, _mode, _show, _store, 0) #define IIO_DEV_ATTR_CH1_SENSITIVITY(_mode, _show, _store) \ IIO_DEVICE_ATTR(ch1_sensitivity, _mode, _show, _store, 0) #define IIO_DEV_ATTR_CH2_SENSITIVITY(_mode, _show, _store) \ IIO_DEVICE_ATTR(ch2_sensitivity, _mode, _show, _store, 0) #define IIO_DEV_ATTR_CH1_TIMEOUT(_mode, _show, _store) \ IIO_DEVICE_ATTR(ch1_timeout, _mode, _show, _store, 0) #define IIO_DEV_ATTR_CH2_TIMEOUT(_mode, _show, _store) \ IIO_DEVICE_ATTR(ch2_timeout, _mode, _show, _store, 0) #define IIO_DEV_ATTR_CH1_VALUE(_show) \ IIO_DEVICE_ATTR(ch1_value, S_IRUGO, _show, NULL, 0) #define IIO_DEV_ATTR_CH2_VALUE(_show) \ IIO_DEVICE_ATTR(ch2_value, S_IRUGO, _show, NULL, 0) #define IIO_DEV_ATTR_CH1_SETUP(_mode, _show, _store) \ IIO_DEVICE_ATTR(ch1_setup, _mode, _show, _store, 0) #define IIO_DEV_ATTR_CH2_SETUP(_mode, _show, _store) \ IIO_DEVICE_ATTR(ch2_setup, _mode, _show, _store, 0) #define IIO_DEV_ATTR_POWERDOWN_TIMER(_mode, _show, _store) \ IIO_DEVICE_ATTR(powerdown_timer, _mode, _show, _store, 0) static ssize_t ad7150_show_conversion_modes(struct device *dev, struct device_attribute *attr, char *buf) { int i; int len = 0; for (i = 0; i < AD7150_MAX_CONV_MODE; i++) len += sprintf(buf + len, "%s\n", ad7150_conv_mode_table[i].name); return len; } static IIO_DEV_ATTR_AVAIL_CONVERSION_MODES(ad7150_show_conversion_modes); static ssize_t ad7150_show_conversion_mode(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; return sprintf(buf, "%s\n", chip->conversion_mode); } static ssize_t ad7150_store_conversion_mode(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; u8 cfg; int i; ad7150_i2c_read(chip, AD7150_CFG, &cfg, 1); for (i = 0; i < AD7150_MAX_CONV_MODE; i++) { if (strncmp(buf, ad7150_conv_mode_table[i].name, strlen(ad7150_conv_mode_table[i].name) - 1) == 0) { chip->conversion_mode = ad7150_conv_mode_table[i].name; cfg |= 0x18 | ad7150_conv_mode_table[i].reg_cfg; ad7150_i2c_write(chip, AD7150_CFG, cfg); return len; } } dev_err(dev, "not supported conversion mode\n"); return -EINVAL; } static IIO_DEV_ATTR_CONVERSION_MODE(S_IRUGO | S_IWUSR, ad7150_show_conversion_mode, ad7150_store_conversion_mode); static ssize_t ad7150_show_threshold_modes(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "adaptive\nfixed\n"); } static IIO_DEV_ATTR_AVAIL_THRESHOLD_MODES(ad7150_show_threshold_modes); static ssize_t ad7150_show_ch1_value(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; u8 data[2]; ad7150_i2c_read(chip, AD7150_CH1_DATA_HIGH, data, 2); return sprintf(buf, "%d\n", ((int) data[0] << 8) | data[1]); } static IIO_DEV_ATTR_CH1_VALUE(ad7150_show_ch1_value); static ssize_t ad7150_show_ch2_value(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; u8 data[2]; ad7150_i2c_read(chip, AD7150_CH2_DATA_HIGH, data, 2); return sprintf(buf, "%d\n", ((int) data[0] << 8) | data[1]); } static IIO_DEV_ATTR_CH2_VALUE(ad7150_show_ch2_value); static ssize_t ad7150_show_threshold_mode(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; return sprintf(buf, "%s\n", chip->threshold_mode); } static ssize_t ad7150_store_threshold_mode(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; u8 cfg; ad7150_i2c_read(chip, AD7150_CFG, &cfg, 1); if (strncmp(buf, "fixed", 5) == 0) { strcpy(chip->threshold_mode, "fixed"); cfg |= AD7150_CFG_FIX; ad7150_i2c_write(chip, AD7150_CFG, cfg); return len; } else if (strncmp(buf, "adaptive", 8) == 0) { strcpy(chip->threshold_mode, "adaptive"); cfg &= ~AD7150_CFG_FIX; ad7150_i2c_write(chip, AD7150_CFG, cfg); return len; } dev_err(dev, "not supported threshold mode\n"); return -EINVAL; } static IIO_DEV_ATTR_THRESHOLD_MODE(S_IRUGO | S_IWUSR, ad7150_show_threshold_mode, ad7150_store_threshold_mode); static ssize_t ad7150_show_ch1_threshold(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; return sprintf(buf, "%d\n", chip->ch1_threshold); } static ssize_t ad7150_store_ch1_threshold(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; unsigned long data; int ret; ret = strict_strtoul(buf, 10, &data); if ((!ret) && (data < 0x10000)) { ad7150_i2c_write(chip, AD7150_CH1_THR_HOLD_H, data >> 8); ad7150_i2c_write(chip, AD7150_CH1_THR_HOLD_L, data); chip->ch1_threshold = data; return len; } return -EINVAL; } static IIO_DEV_ATTR_CH1_THRESHOLD(S_IRUGO | S_IWUSR, ad7150_show_ch1_threshold, ad7150_store_ch1_threshold); static ssize_t ad7150_show_ch2_threshold(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; return sprintf(buf, "%d\n", chip->ch2_threshold); } static ssize_t ad7150_store_ch2_threshold(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; unsigned long data; int ret; ret = strict_strtoul(buf, 10, &data); if ((!ret) && (data < 0x10000)) { ad7150_i2c_write(chip, AD7150_CH2_THR_HOLD_H, data >> 8); ad7150_i2c_write(chip, AD7150_CH2_THR_HOLD_L, data); chip->ch2_threshold = data; return len; } return -EINVAL; } static IIO_DEV_ATTR_CH2_THRESHOLD(S_IRUGO | S_IWUSR, ad7150_show_ch2_threshold, ad7150_store_ch2_threshold); static ssize_t ad7150_show_ch1_sensitivity(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; return sprintf(buf, "%d\n", chip->ch1_sensitivity); } static ssize_t ad7150_store_ch1_sensitivity(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; unsigned long data; int ret; ret = strict_strtoul(buf, 10, &data); if ((!ret) && (data < 0x100)) { ad7150_i2c_write(chip, AD7150_CH1_SENSITIVITY, data); chip->ch1_sensitivity = data; return len; } return -EINVAL; } static IIO_DEV_ATTR_CH1_SENSITIVITY(S_IRUGO | S_IWUSR, ad7150_show_ch1_sensitivity, ad7150_store_ch1_sensitivity); static ssize_t ad7150_show_ch2_sensitivity(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; return sprintf(buf, "%d\n", chip->ch2_sensitivity); } static ssize_t ad7150_store_ch2_sensitivity(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; unsigned long data; int ret; ret = strict_strtoul(buf, 10, &data); if ((!ret) && (data < 0x100)) { ad7150_i2c_write(chip, AD7150_CH2_SENSITIVITY, data); chip->ch2_sensitivity = data; return len; } return -EINVAL; } static IIO_DEV_ATTR_CH2_SENSITIVITY(S_IRUGO | S_IWUSR, ad7150_show_ch2_sensitivity, ad7150_store_ch2_sensitivity); static ssize_t ad7150_show_ch1_timeout(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; return sprintf(buf, "%d\n", chip->ch1_timeout); } static ssize_t ad7150_store_ch1_timeout(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; unsigned long data; int ret; ret = strict_strtoul(buf, 10, &data); if ((!ret) && (data < 0x100)) { ad7150_i2c_write(chip, AD7150_CH1_TIMEOUT, data); chip->ch1_timeout = data; return len; } return -EINVAL; } static IIO_DEV_ATTR_CH1_TIMEOUT(S_IRUGO | S_IWUSR, ad7150_show_ch1_timeout, ad7150_store_ch1_timeout); static ssize_t ad7150_show_ch2_timeout(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; return sprintf(buf, "%d\n", chip->ch2_timeout); } static ssize_t ad7150_store_ch2_timeout(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; unsigned long data; int ret; ret = strict_strtoul(buf, 10, &data); if ((!ret) && (data < 0x100)) { ad7150_i2c_write(chip, AD7150_CH2_TIMEOUT, data); chip->ch2_timeout = data; return len; } return -EINVAL; } static IIO_DEV_ATTR_CH2_TIMEOUT(S_IRUGO | S_IWUSR, ad7150_show_ch2_timeout, ad7150_store_ch2_timeout); static ssize_t ad7150_show_ch1_setup(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; return sprintf(buf, "0x%02x\n", chip->ch1_setup); } static ssize_t ad7150_store_ch1_setup(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; unsigned long data; int ret; ret = strict_strtoul(buf, 10, &data); if ((!ret) && (data < 0x100)) { ad7150_i2c_write(chip, AD7150_CH1_SETUP, data); chip->ch1_setup = data; return len; } return -EINVAL; } static IIO_DEV_ATTR_CH1_SETUP(S_IRUGO | S_IWUSR, ad7150_show_ch1_setup, ad7150_store_ch1_setup); static ssize_t ad7150_show_ch2_setup(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; return sprintf(buf, "0x%02x\n", chip->ch2_setup); } static ssize_t ad7150_store_ch2_setup(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; unsigned long data; int ret; ret = strict_strtoul(buf, 10, &data); if ((!ret) && (data < 0x100)) { ad7150_i2c_write(chip, AD7150_CH2_SETUP, data); chip->ch2_setup = data; return len; } return -EINVAL; } static IIO_DEV_ATTR_CH2_SETUP(S_IRUGO | S_IWUSR, ad7150_show_ch2_setup, ad7150_store_ch2_setup); static ssize_t ad7150_show_name(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; return sprintf(buf, "%s\n", chip->name); } static IIO_DEVICE_ATTR(name, S_IRUGO, ad7150_show_name, NULL, 0); static ssize_t ad7150_show_powerdown_timer(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; return sprintf(buf, "0x%02x\n", chip->powerdown_timer); } static ssize_t ad7150_store_powerdown_timer(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *dev_info = dev_get_drvdata(dev); struct ad7150_chip_info *chip = dev_info->dev_data; unsigned long data; int ret; ret = strict_strtoul(buf, 10, &data); if ((!ret) && (data < 0x40)) { chip->powerdown_timer = data; return len; } return -EINVAL; } static IIO_DEV_ATTR_POWERDOWN_TIMER(S_IRUGO | S_IWUSR, ad7150_show_powerdown_timer, ad7150_store_powerdown_timer); static struct attribute *ad7150_attributes[] = { &iio_dev_attr_available_threshold_modes.dev_attr.attr, &iio_dev_attr_threshold_mode.dev_attr.attr, &iio_dev_attr_ch1_threshold.dev_attr.attr, &iio_dev_attr_ch2_threshold.dev_attr.attr, &iio_dev_attr_ch1_timeout.dev_attr.attr, &iio_dev_attr_ch2_timeout.dev_attr.attr, &iio_dev_attr_ch1_setup.dev_attr.attr, &iio_dev_attr_ch2_setup.dev_attr.attr, &iio_dev_attr_ch1_sensitivity.dev_attr.attr, &iio_dev_attr_ch2_sensitivity.dev_attr.attr, &iio_dev_attr_powerdown_timer.dev_attr.attr, &iio_dev_attr_ch1_value.dev_attr.attr, &iio_dev_attr_ch2_value.dev_attr.attr, &iio_dev_attr_name.dev_attr.attr, NULL, }; static const struct attribute_group ad7150_attribute_group = { .attrs = ad7150_attributes, }; /* * threshold events */ #define IIO_EVENT_CODE_CH1_HIGH IIO_BUFFER_EVENT_CODE(0) #define IIO_EVENT_CODE_CH1_LOW IIO_BUFFER_EVENT_CODE(1) #define IIO_EVENT_CODE_CH2_HIGH IIO_BUFFER_EVENT_CODE(2) #define IIO_EVENT_CODE_CH2_LOW IIO_BUFFER_EVENT_CODE(3) #define IIO_EVENT_ATTR_CH1_HIGH_SH(_evlist, _show, _store, _mask) \ IIO_EVENT_ATTR_SH(ch1_high, _evlist, _show, _store, _mask) #define IIO_EVENT_ATTR_CH2_HIGH_SH(_evlist, _show, _store, _mask) \ IIO_EVENT_ATTR_SH(ch2_high, _evlist, _show, _store, _mask) #define IIO_EVENT_ATTR_CH1_LOW_SH(_evlist, _show, _store, _mask) \ IIO_EVENT_ATTR_SH(ch1_low, _evlist, _show, _store, _mask) #define IIO_EVENT_ATTR_CH2_LOW_SH(_evlist, _show, _store, _mask) \ IIO_EVENT_ATTR_SH(ch2_low, _evlist, _show, _store, _mask) static void ad7150_interrupt_handler_bh(struct work_struct *work_s) { struct ad7150_chip_info *chip = container_of(work_s, struct ad7150_chip_info, thresh_work); u8 int_status; enable_irq(chip->client->irq); ad7150_i2c_read(chip, AD7150_STATUS, &int_status, 1); if ((int_status & AD7150_STATUS_OUT1) && !(chip->old_state & AD7150_STATUS_OUT1)) iio_push_event(chip->indio_dev, 0, IIO_EVENT_CODE_CH1_HIGH, chip->last_timestamp); else if ((!(int_status & AD7150_STATUS_OUT1)) && (chip->old_state & AD7150_STATUS_OUT1)) iio_push_event(chip->indio_dev, 0, IIO_EVENT_CODE_CH1_LOW, chip->last_timestamp); if ((int_status & AD7150_STATUS_OUT2) && !(chip->old_state & AD7150_STATUS_OUT2)) iio_push_event(chip->indio_dev, 0, IIO_EVENT_CODE_CH2_HIGH, chip->last_timestamp); else if ((!(int_status & AD7150_STATUS_OUT2)) && (chip->old_state & AD7150_STATUS_OUT2)) iio_push_event(chip->indio_dev, 0, IIO_EVENT_CODE_CH2_LOW, chip->last_timestamp); } static int ad7150_interrupt_handler_th(struct iio_dev *dev_info, int index, s64 timestamp, int no_test) { struct ad7150_chip_info *chip = dev_info->dev_data; chip->last_timestamp = timestamp; schedule_work(&chip->thresh_work); return 0; } IIO_EVENT_SH(threshold, &ad7150_interrupt_handler_th); static ssize_t ad7150_query_out_mode(struct device *dev, struct device_attribute *attr, char *buf) { /* * AD7150 provides two logic output channels, which can be used as interrupt * but the pins are not configurable */ return sprintf(buf, "1\n"); } static ssize_t ad7150_set_out_mode(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { return len; } IIO_EVENT_ATTR_CH1_HIGH_SH(iio_event_threshold, ad7150_query_out_mode, ad7150_set_out_mode, 0); IIO_EVENT_ATTR_CH2_HIGH_SH(iio_event_threshold, ad7150_query_out_mode, ad7150_set_out_mode, 0); IIO_EVENT_ATTR_CH1_LOW_SH(iio_event_threshold, ad7150_query_out_mode, ad7150_set_out_mode, 0); IIO_EVENT_ATTR_CH2_LOW_SH(iio_event_threshold, ad7150_query_out_mode, ad7150_set_out_mode, 0); static struct attribute *ad7150_event_attributes[] = { &iio_event_attr_ch1_high.dev_attr.attr, &iio_event_attr_ch2_high.dev_attr.attr, &iio_event_attr_ch1_low.dev_attr.attr, &iio_event_attr_ch2_low.dev_attr.attr, NULL, }; static struct attribute_group ad7150_event_attribute_group = { .attrs = ad7150_event_attributes, }; /* * device probe and remove */ static int __devinit ad7150_probe(struct i2c_client *client, const struct i2c_device_id *id) { int ret = 0, regdone = 0; struct ad7150_chip_info *chip = kzalloc(sizeof(*chip), GFP_KERNEL); if (chip == NULL) { ret = -ENOMEM; goto error_ret; } /* this is only used for device removal purposes */ i2c_set_clientdata(client, chip); chip->client = client; chip->name = id->name; chip->indio_dev = iio_allocate_device(); if (chip->indio_dev == NULL) { ret = -ENOMEM; goto error_free_chip; } /* Echipabilish that the iio_dev is a child of the i2c device */ chip->indio_dev->dev.parent = &client->dev; chip->indio_dev->attrs = &ad7150_attribute_group; chip->indio_dev->event_attrs = &ad7150_event_attribute_group; chip->indio_dev->dev_data = (void *)(chip); chip->indio_dev->driver_module = THIS_MODULE; chip->indio_dev->num_interrupt_lines = 1; chip->indio_dev->modes = INDIO_DIRECT_MODE; ret = iio_device_register(chip->indio_dev); if (ret) goto error_free_dev; regdone = 1; if (client->irq && gpio_is_valid(irq_to_gpio(client->irq)) > 0) { ret = iio_register_interrupt_line(client->irq, chip->indio_dev, 0, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, "ad7150"); if (ret) goto error_free_dev; iio_add_event_to_list(iio_event_attr_ch2_low.listel, &chip->indio_dev->interrupts[0]->ev_list); INIT_WORK(&chip->thresh_work, ad7150_interrupt_handler_bh); } dev_err(&client->dev, "%s capacitive sensor registered, irq: %d\n", id->name, client->irq); return 0; error_free_dev: if (regdone) iio_device_unregister(chip->indio_dev); else iio_free_device(chip->indio_dev); error_free_chip: kfree(chip); error_ret: return ret; } static int __devexit ad7150_remove(struct i2c_client *client) { struct ad7150_chip_info *chip = i2c_get_clientdata(client); struct iio_dev *indio_dev = chip->indio_dev; if (client->irq && gpio_is_valid(irq_to_gpio(client->irq)) > 0) iio_unregister_interrupt_line(indio_dev, 0); iio_device_unregister(indio_dev); kfree(chip); return 0; } static const struct i2c_device_id ad7150_id[] = { { "ad7150", 0 }, { "ad7151", 0 }, { "ad7156", 0 }, {} }; MODULE_DEVICE_TABLE(i2c, ad7150_id); static struct i2c_driver ad7150_driver = { .driver = { .name = "ad7150", }, .probe = ad7150_probe, .remove = __devexit_p(ad7150_remove), .id_table = ad7150_id, }; static __init int ad7150_init(void) { return i2c_add_driver(&ad7150_driver); } static __exit void ad7150_exit(void) { i2c_del_driver(&ad7150_driver); } MODULE_AUTHOR("Barry Song <21cnbao@gmail.com>"); MODULE_DESCRIPTION("Analog Devices ad7150/1/6 capacitive sensor driver"); MODULE_LICENSE("GPL v2"); module_init(ad7150_init); module_exit(ad7150_exit);