/* * q_tbf.c TBF. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Authors: Alexey Kuznetsov, * */ #include #include #include #include #include #include #include #include #include #include "utils.h" #include "tc_util.h" static void explain(void) { fprintf(stderr, "Usage: ... tbf limit BYTES burst BYTES[/BYTES] rate KBPS [ mtu BYTES[/BYTES] ]\n"); fprintf(stderr, " [ peakrate KBPS ] [ latency TIME ]\n"); } static void explain1(char *arg) { fprintf(stderr, "Illegal \"%s\"\n", arg); } #define usage() return(-1) static int tbf_parse_opt(struct qdisc_util *qu, int argc, char **argv, struct nlmsghdr *n) { int ok=0; struct tc_tbf_qopt opt; __u32 rtab[256]; __u32 ptab[256]; unsigned buffer=0, mtu=0, mpu=0, latency=0, cell_overhead = 0, packet_overhead = 0; int Rcell_log=-1, Pcell_log = -1; struct rtattr *tail; memset(&opt, 0, sizeof(opt)); while (argc > 0) { if (matches(*argv, "limit") == 0) { NEXT_ARG(); if (opt.limit || latency) { fprintf(stderr, "Double \"limit/latency\" spec\n"); return -1; } if (get_size(&opt.limit, *argv)) { explain1("limit"); return -1; } ok++; } else if (matches(*argv, "latency") == 0) { NEXT_ARG(); if (opt.limit || latency) { fprintf(stderr, "Double \"limit/latency\" spec\n"); return -1; } if (get_usecs(&latency, *argv)) { explain1("latency"); return -1; } ok++; } else if (matches(*argv, "burst") == 0 || strcmp(*argv, "buffer") == 0 || strcmp(*argv, "maxburst") == 0) { NEXT_ARG(); if (buffer) { fprintf(stderr, "Double \"buffer/burst\" spec\n"); return -1; } if (get_size_and_cell(&buffer, &Rcell_log, *argv) < 0) { explain1("buffer"); return -1; } if (Rcell_log != -1 && (Rcell_log%8) != 0) { explain1("buffer, Celllog must be a multiple of 8"); return -1; } ok++; } else if (strcmp(*argv, "mtu") == 0 || strcmp(*argv, "minburst") == 0) { NEXT_ARG(); if (mtu) { fprintf(stderr, "Double \"mtu/minburst\" spec\n"); return -1; } if (get_size_and_cell(&mtu, &Pcell_log, *argv) < 0) { explain1("mtu"); return -1; } ok++; } else if (matches(*argv, "cell_overhead") == 0) { NEXT_ARG(); if (cell_overhead) { fprintf(stderr, "Double celloverhead spec\n"); return -1; } if (get_size(&cell_overhead, *argv)) { explain1("cell_overhead"); return -1; } ok++; } else if (matches(*argv, "packet_overhead") == 0) { NEXT_ARG(); if (packet_overhead) { fprintf(stderr, "Double overhead spec\n"); return -1; } if (get_size(&packet_overhead, *argv)) { explain1("packet_overhead"); return -1; } ok++; } else if (strcmp(*argv, "mpu") == 0) { NEXT_ARG(); if (mpu) { fprintf(stderr, "Double \"mpu\" spec\n"); return -1; } if (get_size(&mpu, *argv)) { explain1("mpu"); return -1; } ok++; } else if (strcmp(*argv, "rate") == 0) { NEXT_ARG(); if (opt.rate.rate) { fprintf(stderr, "Double \"rate\" spec\n"); return -1; } if (get_rate(&opt.rate.rate, *argv)) { explain1("rate"); return -1; } ok++; } else if (matches(*argv, "peakrate") == 0) { NEXT_ARG(); if (opt.peakrate.rate) { fprintf(stderr, "Double \"peakrate\" spec\n"); return -1; } if (get_rate(&opt.peakrate.rate, *argv)) { explain1("peakrate"); return -1; } ok++; } else if (strcmp(*argv, "help") == 0) { explain(); return -1; } else { fprintf(stderr, "What is \"%s\"?\n", *argv); explain(); return -1; } argc--; argv++; } if (!ok) return 0; if (opt.rate.rate == 0 || !buffer) { fprintf(stderr, "Both \"rate\" and \"burst\" are required.\n"); return -1; } if (opt.peakrate.rate) { if (!mtu) { fprintf(stderr, "\"mtu\" is required, if \"peakrate\" is requested.\n"); return -1; } } if (opt.limit == 0 && latency == 0) { fprintf(stderr, "Either \"limit\" or \"latency\" are required.\n"); return -1; } if (opt.limit == 0) { double lim = opt.rate.rate*(double)latency/1000000 + buffer; if (opt.peakrate.rate) { double lim2 = opt.peakrate.rate*(double)latency/1000000 + mtu; if (lim2 < lim) lim = lim2; } opt.limit = lim; } if (!mtu) mtu = 2047; if (Rcell_log != -1 && Rcell_log > mtu) { fprintf(stderr, "TBF: Error: Rcell_log(%d) > mtu(%d).\n", Rcell_log, mtu); return -1; } if (Pcell_log != -1 && Pcell_log > mtu) { fprintf(stderr, "TBF: Error: Pcell_log(%d) > mtu(%d).\n", Pcell_log, mtu); return -1; } if ((Rcell_log = tc_calc_rtable(opt.rate.rate, rtab, Rcell_log, cell_overhead, packet_overhead, mtu, mpu)) < 0) { fprintf(stderr, "TBF: failed to calculate rate table.\n"); return -1; } opt.buffer = tc_calc_xmittime(opt.rate.rate, buffer); opt.rate.cell_log = Rcell_log; opt.rate.mpu = mpu; if (opt.peakrate.rate) { if ((Pcell_log = tc_calc_rtable(opt.peakrate.rate, ptab, Pcell_log, cell_overhead, packet_overhead, mtu, mpu)) < 0) { fprintf(stderr, "TBF: failed to calculate peak rate table.\n"); return -1; } opt.mtu = tc_calc_xmittime(opt.peakrate.rate, mtu); opt.peakrate.cell_log = Pcell_log; opt.peakrate.mpu = mpu; } tail = NLMSG_TAIL(n); addattr_l(n, 1024, TCA_OPTIONS, NULL, 0); addattr_l(n, 2024, TCA_TBF_PARMS, &opt, sizeof(opt)); addattr_l(n, 3024, TCA_TBF_RTAB, rtab, 1024); if (opt.peakrate.rate) addattr_l(n, 4096, TCA_TBF_PTAB, ptab, 1024); tail->rta_len = (void *) NLMSG_TAIL(n) - (void *) tail; return 0; } static int tbf_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt) { struct rtattr *tb[TCA_TBF_PTAB+1]; struct tc_tbf_qopt *qopt; double buffer, mtu; double latency; SPRINT_BUF(b1); SPRINT_BUF(b2); if (opt == NULL) return 0; parse_rtattr_nested(tb, TCA_TBF_PTAB, opt); if (tb[TCA_TBF_PARMS] == NULL) return -1; qopt = RTA_DATA(tb[TCA_TBF_PARMS]); if (RTA_PAYLOAD(tb[TCA_TBF_PARMS]) < sizeof(*qopt)) return -1; fprintf(f, "rate %s ", sprint_rate(qopt->rate.rate, b1)); buffer = ((double)qopt->rate.rate*tc_core_tick2usec(qopt->buffer))/1000000; if (show_details) { fprintf(f, "burst %s/%u mpu %s ", sprint_size(buffer, b1), 1<rate.cell_log, sprint_size(qopt->rate.mpu, b2)); } else { fprintf(f, "burst %s ", sprint_size(buffer, b1)); } if (show_raw) fprintf(f, "[%08x] ", qopt->buffer); if (qopt->peakrate.rate) { fprintf(f, "peakrate %s ", sprint_rate(qopt->peakrate.rate, b1)); if (qopt->mtu || qopt->peakrate.mpu) { mtu = ((double)qopt->peakrate.rate*tc_core_tick2usec(qopt->mtu))/1000000; if (show_details) { fprintf(f, "mtu %s/%u mpu %s ", sprint_size(mtu, b1), 1<peakrate.cell_log, sprint_size(qopt->peakrate.mpu, b2)); } else { fprintf(f, "minburst %s ", sprint_size(mtu, b1)); } if (show_raw) fprintf(f, "[%08x] ", qopt->mtu); } } if (show_raw) fprintf(f, "limit %s ", sprint_size(qopt->limit, b1)); latency = 1000000*(qopt->limit/(double)qopt->rate.rate) - tc_core_tick2usec(qopt->buffer); if (qopt->peakrate.rate) { double lat2 = 1000000*(qopt->limit/(double)qopt->peakrate.rate) - tc_core_tick2usec(qopt->mtu); if (lat2 > latency) latency = lat2; } fprintf(f, "lat %s ", sprint_usecs(tc_core_tick2usec(latency), b1)); return 0; } struct qdisc_util tbf_qdisc_util = { .id = "tbf", .parse_qopt = tbf_parse_opt, .print_qopt = tbf_print_opt, };