/* * Copyright (c) 2009, Microsoft Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 Temple * Place - Suite 330, Boston, MA 02111-1307 USA. * * Authors: * Haiyang Zhang <haiyangz@microsoft.com> * Hank Janssen <hjanssen@microsoft.com> * K. Y. Srinivasan <kys@microsoft.com> * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/init.h> #include <linux/module.h> #include <linux/device.h> #include <linux/interrupt.h> #include <linux/sysctl.h> #include <linux/slab.h> #include <linux/acpi.h> #include <linux/completion.h> #include <linux/hyperv.h> #include <linux/kernel_stat.h> #include <linux/clockchips.h> #include <linux/cpu.h> #include <asm/hyperv.h> #include <asm/hypervisor.h> #include <asm/mshyperv.h> #include <linux/notifier.h> #include <linux/ptrace.h> #include <linux/screen_info.h> #include <linux/kdebug.h> #include <linux/efi.h> #include <linux/random.h> #include "hyperv_vmbus.h" static struct acpi_device *hv_acpi_dev; static struct completion probe_event; static void hyperv_report_panic(struct pt_regs *regs) { static bool panic_reported; /* * We prefer to report panic on 'die' chain as we have proper * registers to report, but if we miss it (e.g. on BUG()) we need * to report it on 'panic'. */ if (panic_reported) return; panic_reported = true; wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip); wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax); wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx); wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx); wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx); /* * Let Hyper-V know there is crash data available */ wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY); } static int hyperv_panic_event(struct notifier_block *nb, unsigned long val, void *args) { struct pt_regs *regs; regs = current_pt_regs(); hyperv_report_panic(regs); return NOTIFY_DONE; } static int hyperv_die_event(struct notifier_block *nb, unsigned long val, void *args) { struct die_args *die = (struct die_args *)args; struct pt_regs *regs = die->regs; hyperv_report_panic(regs); return NOTIFY_DONE; } static struct notifier_block hyperv_die_block = { .notifier_call = hyperv_die_event, }; static struct notifier_block hyperv_panic_block = { .notifier_call = hyperv_panic_event, }; static const char *fb_mmio_name = "fb_range"; static struct resource *fb_mmio; static struct resource *hyperv_mmio; static DEFINE_SEMAPHORE(hyperv_mmio_lock); static int vmbus_exists(void) { if (hv_acpi_dev == NULL) return -ENODEV; return 0; } #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2) static void print_alias_name(struct hv_device *hv_dev, char *alias_name) { int i; for (i = 0; i < VMBUS_ALIAS_LEN; i += 2) sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]); } static u8 channel_monitor_group(struct vmbus_channel *channel) { return (u8)channel->offermsg.monitorid / 32; } static u8 channel_monitor_offset(struct vmbus_channel *channel) { return (u8)channel->offermsg.monitorid % 32; } static u32 channel_pending(struct vmbus_channel *channel, struct hv_monitor_page *monitor_page) { u8 monitor_group = channel_monitor_group(channel); return monitor_page->trigger_group[monitor_group].pending; } static u32 channel_latency(struct vmbus_channel *channel, struct hv_monitor_page *monitor_page) { u8 monitor_group = channel_monitor_group(channel); u8 monitor_offset = channel_monitor_offset(channel); return monitor_page->latency[monitor_group][monitor_offset]; } static u32 channel_conn_id(struct vmbus_channel *channel, struct hv_monitor_page *monitor_page) { u8 monitor_group = channel_monitor_group(channel); u8 monitor_offset = channel_monitor_offset(channel); return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; } static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); if (!hv_dev->channel) return -ENODEV; return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); } static DEVICE_ATTR_RO(id); static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); if (!hv_dev->channel) return -ENODEV; return sprintf(buf, "%d\n", hv_dev->channel->state); } static DEVICE_ATTR_RO(state); static ssize_t monitor_id_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); if (!hv_dev->channel) return -ENODEV; return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); } static DEVICE_ATTR_RO(monitor_id); static ssize_t class_id_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); if (!hv_dev->channel) return -ENODEV; return sprintf(buf, "{%pUl}\n", hv_dev->channel->offermsg.offer.if_type.b); } static DEVICE_ATTR_RO(class_id); static ssize_t device_id_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); if (!hv_dev->channel) return -ENODEV; return sprintf(buf, "{%pUl}\n", hv_dev->channel->offermsg.offer.if_instance.b); } static DEVICE_ATTR_RO(device_id); static ssize_t modalias_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); char alias_name[VMBUS_ALIAS_LEN + 1]; print_alias_name(hv_dev, alias_name); return sprintf(buf, "vmbus:%s\n", alias_name); } static DEVICE_ATTR_RO(modalias); static ssize_t server_monitor_pending_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); if (!hv_dev->channel) return -ENODEV; return sprintf(buf, "%d\n", channel_pending(hv_dev->channel, vmbus_connection.monitor_pages[1])); } static DEVICE_ATTR_RO(server_monitor_pending); static ssize_t client_monitor_pending_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); if (!hv_dev->channel) return -ENODEV; return sprintf(buf, "%d\n", channel_pending(hv_dev->channel, vmbus_connection.monitor_pages[1])); } static DEVICE_ATTR_RO(client_monitor_pending); static ssize_t server_monitor_latency_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); if (!hv_dev->channel) return -ENODEV; return sprintf(buf, "%d\n", channel_latency(hv_dev->channel, vmbus_connection.monitor_pages[0])); } static DEVICE_ATTR_RO(server_monitor_latency); static ssize_t client_monitor_latency_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); if (!hv_dev->channel) return -ENODEV; return sprintf(buf, "%d\n", channel_latency(hv_dev->channel, vmbus_connection.monitor_pages[1])); } static DEVICE_ATTR_RO(client_monitor_latency); static ssize_t server_monitor_conn_id_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); if (!hv_dev->channel) return -ENODEV; return sprintf(buf, "%d\n", channel_conn_id(hv_dev->channel, vmbus_connection.monitor_pages[0])); } static DEVICE_ATTR_RO(server_monitor_conn_id); static ssize_t client_monitor_conn_id_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); if (!hv_dev->channel) return -ENODEV; return sprintf(buf, "%d\n", channel_conn_id(hv_dev->channel, vmbus_connection.monitor_pages[1])); } static DEVICE_ATTR_RO(client_monitor_conn_id); static ssize_t out_intr_mask_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); struct hv_ring_buffer_debug_info outbound; if (!hv_dev->channel) return -ENODEV; if (hv_dev->channel->state != CHANNEL_OPENED_STATE) return -EINVAL; hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); return sprintf(buf, "%d\n", outbound.current_interrupt_mask); } static DEVICE_ATTR_RO(out_intr_mask); static ssize_t out_read_index_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); struct hv_ring_buffer_debug_info outbound; if (!hv_dev->channel) return -ENODEV; if (hv_dev->channel->state != CHANNEL_OPENED_STATE) return -EINVAL; hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); return sprintf(buf, "%d\n", outbound.current_read_index); } static DEVICE_ATTR_RO(out_read_index); static ssize_t out_write_index_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); struct hv_ring_buffer_debug_info outbound; if (!hv_dev->channel) return -ENODEV; if (hv_dev->channel->state != CHANNEL_OPENED_STATE) return -EINVAL; hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); return sprintf(buf, "%d\n", outbound.current_write_index); } static DEVICE_ATTR_RO(out_write_index); static ssize_t out_read_bytes_avail_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); struct hv_ring_buffer_debug_info outbound; if (!hv_dev->channel) return -ENODEV; if (hv_dev->channel->state != CHANNEL_OPENED_STATE) return -EINVAL; hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); return sprintf(buf, "%d\n", outbound.bytes_avail_toread); } static DEVICE_ATTR_RO(out_read_bytes_avail); static ssize_t out_write_bytes_avail_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); struct hv_ring_buffer_debug_info outbound; if (!hv_dev->channel) return -ENODEV; if (hv_dev->channel->state != CHANNEL_OPENED_STATE) return -EINVAL; hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); } static DEVICE_ATTR_RO(out_write_bytes_avail); static ssize_t in_intr_mask_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); struct hv_ring_buffer_debug_info inbound; if (!hv_dev->channel) return -ENODEV; if (hv_dev->channel->state != CHANNEL_OPENED_STATE) return -EINVAL; hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); return sprintf(buf, "%d\n", inbound.current_interrupt_mask); } static DEVICE_ATTR_RO(in_intr_mask); static ssize_t in_read_index_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); struct hv_ring_buffer_debug_info inbound; if (!hv_dev->channel) return -ENODEV; if (hv_dev->channel->state != CHANNEL_OPENED_STATE) return -EINVAL; hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); return sprintf(buf, "%d\n", inbound.current_read_index); } static DEVICE_ATTR_RO(in_read_index); static ssize_t in_write_index_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); struct hv_ring_buffer_debug_info inbound; if (!hv_dev->channel) return -ENODEV; if (hv_dev->channel->state != CHANNEL_OPENED_STATE) return -EINVAL; hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); return sprintf(buf, "%d\n", inbound.current_write_index); } static DEVICE_ATTR_RO(in_write_index); static ssize_t in_read_bytes_avail_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); struct hv_ring_buffer_debug_info inbound; if (!hv_dev->channel) return -ENODEV; if (hv_dev->channel->state != CHANNEL_OPENED_STATE) return -EINVAL; hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); return sprintf(buf, "%d\n", inbound.bytes_avail_toread); } static DEVICE_ATTR_RO(in_read_bytes_avail); static ssize_t in_write_bytes_avail_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); struct hv_ring_buffer_debug_info inbound; if (!hv_dev->channel) return -ENODEV; if (hv_dev->channel->state != CHANNEL_OPENED_STATE) return -EINVAL; hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); } static DEVICE_ATTR_RO(in_write_bytes_avail); static ssize_t channel_vp_mapping_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); struct vmbus_channel *channel = hv_dev->channel, *cur_sc; unsigned long flags; int buf_size = PAGE_SIZE, n_written, tot_written; struct list_head *cur; if (!channel) return -ENODEV; tot_written = snprintf(buf, buf_size, "%u:%u\n", channel->offermsg.child_relid, channel->target_cpu); spin_lock_irqsave(&channel->lock, flags); list_for_each(cur, &channel->sc_list) { if (tot_written >= buf_size - 1) break; cur_sc = list_entry(cur, struct vmbus_channel, sc_list); n_written = scnprintf(buf + tot_written, buf_size - tot_written, "%u:%u\n", cur_sc->offermsg.child_relid, cur_sc->target_cpu); tot_written += n_written; } spin_unlock_irqrestore(&channel->lock, flags); return tot_written; } static DEVICE_ATTR_RO(channel_vp_mapping); static ssize_t vendor_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); return sprintf(buf, "0x%x\n", hv_dev->vendor_id); } static DEVICE_ATTR_RO(vendor); static ssize_t device_show(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct hv_device *hv_dev = device_to_hv_device(dev); return sprintf(buf, "0x%x\n", hv_dev->device_id); } static DEVICE_ATTR_RO(device); /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ static struct attribute *vmbus_attrs[] = { &dev_attr_id.attr, &dev_attr_state.attr, &dev_attr_monitor_id.attr, &dev_attr_class_id.attr, &dev_attr_device_id.attr, &dev_attr_modalias.attr, &dev_attr_server_monitor_pending.attr, &dev_attr_client_monitor_pending.attr, &dev_attr_server_monitor_latency.attr, &dev_attr_client_monitor_latency.attr, &dev_attr_server_monitor_conn_id.attr, &dev_attr_client_monitor_conn_id.attr, &dev_attr_out_intr_mask.attr, &dev_attr_out_read_index.attr, &dev_attr_out_write_index.attr, &dev_attr_out_read_bytes_avail.attr, &dev_attr_out_write_bytes_avail.attr, &dev_attr_in_intr_mask.attr, &dev_attr_in_read_index.attr, &dev_attr_in_write_index.attr, &dev_attr_in_read_bytes_avail.attr, &dev_attr_in_write_bytes_avail.attr, &dev_attr_channel_vp_mapping.attr, &dev_attr_vendor.attr, &dev_attr_device.attr, NULL, }; ATTRIBUTE_GROUPS(vmbus); /* * vmbus_uevent - add uevent for our device * * This routine is invoked when a device is added or removed on the vmbus to * generate a uevent to udev in the userspace. The udev will then look at its * rule and the uevent generated here to load the appropriate driver * * The alias string will be of the form vmbus:guid where guid is the string * representation of the device guid (each byte of the guid will be * represented with two hex characters. */ static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) { struct hv_device *dev = device_to_hv_device(device); int ret; char alias_name[VMBUS_ALIAS_LEN + 1]; print_alias_name(dev, alias_name); ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name); return ret; } static const uuid_le null_guid; static inline bool is_null_guid(const uuid_le *guid) { if (uuid_le_cmp(*guid, null_guid)) return false; return true; } /* * Return a matching hv_vmbus_device_id pointer. * If there is no match, return NULL. */ static const struct hv_vmbus_device_id *hv_vmbus_get_id( const struct hv_vmbus_device_id *id, const uuid_le *guid) { for (; !is_null_guid(&id->guid); id++) if (!uuid_le_cmp(id->guid, *guid)) return id; return NULL; } /* * vmbus_match - Attempt to match the specified device to the specified driver */ static int vmbus_match(struct device *device, struct device_driver *driver) { struct hv_driver *drv = drv_to_hv_drv(driver); struct hv_device *hv_dev = device_to_hv_device(device); /* The hv_sock driver handles all hv_sock offers. */ if (is_hvsock_channel(hv_dev->channel)) return drv->hvsock; if (hv_vmbus_get_id(drv->id_table, &hv_dev->dev_type)) return 1; return 0; } /* * vmbus_probe - Add the new vmbus's child device */ static int vmbus_probe(struct device *child_device) { int ret = 0; struct hv_driver *drv = drv_to_hv_drv(child_device->driver); struct hv_device *dev = device_to_hv_device(child_device); const struct hv_vmbus_device_id *dev_id; dev_id = hv_vmbus_get_id(drv->id_table, &dev->dev_type); if (drv->probe) { ret = drv->probe(dev, dev_id); if (ret != 0) pr_err("probe failed for device %s (%d)\n", dev_name(child_device), ret); } else { pr_err("probe not set for driver %s\n", dev_name(child_device)); ret = -ENODEV; } return ret; } /* * vmbus_remove - Remove a vmbus device */ static int vmbus_remove(struct device *child_device) { struct hv_driver *drv; struct hv_device *dev = device_to_hv_device(child_device); if (child_device->driver) { drv = drv_to_hv_drv(child_device->driver); if (drv->remove) drv->remove(dev); } return 0; } /* * vmbus_shutdown - Shutdown a vmbus device */ static void vmbus_shutdown(struct device *child_device) { struct hv_driver *drv; struct hv_device *dev = device_to_hv_device(child_device); /* The device may not be attached yet */ if (!child_device->driver) return; drv = drv_to_hv_drv(child_device->driver); if (drv->shutdown) drv->shutdown(dev); return; } /* * vmbus_device_release - Final callback release of the vmbus child device */ static void vmbus_device_release(struct device *device) { struct hv_device *hv_dev = device_to_hv_device(device); struct vmbus_channel *channel = hv_dev->channel; hv_process_channel_removal(channel, channel->offermsg.child_relid); kfree(hv_dev); } /* The one and only one */ static struct bus_type hv_bus = { .name = "vmbus", .match = vmbus_match, .shutdown = vmbus_shutdown, .remove = vmbus_remove, .probe = vmbus_probe, .uevent = vmbus_uevent, .dev_groups = vmbus_groups, }; struct onmessage_work_context { struct work_struct work; struct hv_message msg; }; static void vmbus_onmessage_work(struct work_struct *work) { struct onmessage_work_context *ctx; /* Do not process messages if we're in DISCONNECTED state */ if (vmbus_connection.conn_state == DISCONNECTED) return; ctx = container_of(work, struct onmessage_work_context, work); vmbus_onmessage(&ctx->msg); kfree(ctx); } static void hv_process_timer_expiration(struct hv_message *msg, int cpu) { struct clock_event_device *dev = hv_context.clk_evt[cpu]; if (dev->event_handler) dev->event_handler(dev); vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); } void vmbus_on_msg_dpc(unsigned long data) { int cpu = smp_processor_id(); void *page_addr = hv_context.synic_message_page[cpu]; struct hv_message *msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; struct vmbus_channel_message_header *hdr; struct vmbus_channel_message_table_entry *entry; struct onmessage_work_context *ctx; u32 message_type = msg->header.message_type; if (message_type == HVMSG_NONE) /* no msg */ return; hdr = (struct vmbus_channel_message_header *)msg->u.payload; if (hdr->msgtype >= CHANNELMSG_COUNT) { WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype); goto msg_handled; } entry = &channel_message_table[hdr->msgtype]; if (entry->handler_type == VMHT_BLOCKING) { ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); if (ctx == NULL) return; INIT_WORK(&ctx->work, vmbus_onmessage_work); memcpy(&ctx->msg, msg, sizeof(*msg)); queue_work(vmbus_connection.work_queue, &ctx->work); } else entry->message_handler(hdr); msg_handled: vmbus_signal_eom(msg, message_type); } static void vmbus_isr(void) { int cpu = smp_processor_id(); void *page_addr; struct hv_message *msg; union hv_synic_event_flags *event; bool handled = false; page_addr = hv_context.synic_event_page[cpu]; if (page_addr == NULL) return; event = (union hv_synic_event_flags *)page_addr + VMBUS_MESSAGE_SINT; /* * Check for events before checking for messages. This is the order * in which events and messages are checked in Windows guests on * Hyper-V, and the Windows team suggested we do the same. */ if ((vmbus_proto_version == VERSION_WS2008) || (vmbus_proto_version == VERSION_WIN7)) { /* Since we are a child, we only need to check bit 0 */ if (sync_test_and_clear_bit(0, (unsigned long *) &event->flags32[0])) { handled = true; } } else { /* * Our host is win8 or above. The signaling mechanism * has changed and we can directly look at the event page. * If bit n is set then we have an interrup on the channel * whose id is n. */ handled = true; } if (handled) tasklet_schedule(hv_context.event_dpc[cpu]); page_addr = hv_context.synic_message_page[cpu]; msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; /* Check if there are actual msgs to be processed */ if (msg->header.message_type != HVMSG_NONE) { if (msg->header.message_type == HVMSG_TIMER_EXPIRED) hv_process_timer_expiration(msg, cpu); else tasklet_schedule(hv_context.msg_dpc[cpu]); } add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0); } /* * vmbus_bus_init -Main vmbus driver initialization routine. * * Here, we * - initialize the vmbus driver context * - invoke the vmbus hv main init routine * - retrieve the channel offers */ static int vmbus_bus_init(void) { int ret; /* Hypervisor initialization...setup hypercall page..etc */ ret = hv_init(); if (ret != 0) { pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); return ret; } ret = bus_register(&hv_bus); if (ret) goto err_cleanup; hv_setup_vmbus_irq(vmbus_isr); ret = hv_synic_alloc(); if (ret) goto err_alloc; /* * Initialize the per-cpu interrupt state and * connect to the host. */ on_each_cpu(hv_synic_init, NULL, 1); ret = vmbus_connect(); if (ret) goto err_connect; if (vmbus_proto_version > VERSION_WIN7) cpu_hotplug_disable(); /* * Only register if the crash MSRs are available */ if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { register_die_notifier(&hyperv_die_block); atomic_notifier_chain_register(&panic_notifier_list, &hyperv_panic_block); } vmbus_request_offers(); return 0; err_connect: on_each_cpu(hv_synic_cleanup, NULL, 1); err_alloc: hv_synic_free(); hv_remove_vmbus_irq(); bus_unregister(&hv_bus); err_cleanup: hv_cleanup(false); return ret; } /** * __vmbus_child_driver_register() - Register a vmbus's driver * @hv_driver: Pointer to driver structure you want to register * @owner: owner module of the drv * @mod_name: module name string * * Registers the given driver with Linux through the 'driver_register()' call * and sets up the hyper-v vmbus handling for this driver. * It will return the state of the 'driver_register()' call. * */ int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) { int ret; pr_info("registering driver %s\n", hv_driver->name); ret = vmbus_exists(); if (ret < 0) return ret; hv_driver->driver.name = hv_driver->name; hv_driver->driver.owner = owner; hv_driver->driver.mod_name = mod_name; hv_driver->driver.bus = &hv_bus; ret = driver_register(&hv_driver->driver); return ret; } EXPORT_SYMBOL_GPL(__vmbus_driver_register); /** * vmbus_driver_unregister() - Unregister a vmbus's driver * @hv_driver: Pointer to driver structure you want to * un-register * * Un-register the given driver that was previous registered with a call to * vmbus_driver_register() */ void vmbus_driver_unregister(struct hv_driver *hv_driver) { pr_info("unregistering driver %s\n", hv_driver->name); if (!vmbus_exists()) driver_unregister(&hv_driver->driver); } EXPORT_SYMBOL_GPL(vmbus_driver_unregister); /* * vmbus_device_create - Creates and registers a new child device * on the vmbus. */ struct hv_device *vmbus_device_create(const uuid_le *type, const uuid_le *instance, struct vmbus_channel *channel) { struct hv_device *child_device_obj; child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); if (!child_device_obj) { pr_err("Unable to allocate device object for child device\n"); return NULL; } child_device_obj->channel = channel; memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le)); memcpy(&child_device_obj->dev_instance, instance, sizeof(uuid_le)); child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */ return child_device_obj; } /* * vmbus_device_register - Register the child device */ int vmbus_device_register(struct hv_device *child_device_obj) { int ret = 0; dev_set_name(&child_device_obj->device, "%pUl", child_device_obj->channel->offermsg.offer.if_instance.b); child_device_obj->device.bus = &hv_bus; child_device_obj->device.parent = &hv_acpi_dev->dev; child_device_obj->device.release = vmbus_device_release; /* * Register with the LDM. This will kick off the driver/device * binding...which will eventually call vmbus_match() and vmbus_probe() */ ret = device_register(&child_device_obj->device); if (ret) pr_err("Unable to register child device\n"); else pr_debug("child device %s registered\n", dev_name(&child_device_obj->device)); return ret; } /* * vmbus_device_unregister - Remove the specified child device * from the vmbus. */ void vmbus_device_unregister(struct hv_device *device_obj) { pr_debug("child device %s unregistered\n", dev_name(&device_obj->device)); /* * Kick off the process of unregistering the device. * This will call vmbus_remove() and eventually vmbus_device_release() */ device_unregister(&device_obj->device); } /* * VMBUS is an acpi enumerated device. Get the information we * need from DSDT. */ #define VTPM_BASE_ADDRESS 0xfed40000 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) { resource_size_t start = 0; resource_size_t end = 0; struct resource *new_res; struct resource **old_res = &hyperv_mmio; struct resource **prev_res = NULL; switch (res->type) { /* * "Address" descriptors are for bus windows. Ignore * "memory" descriptors, which are for registers on * devices. */ case ACPI_RESOURCE_TYPE_ADDRESS32: start = res->data.address32.address.minimum; end = res->data.address32.address.maximum; break; case ACPI_RESOURCE_TYPE_ADDRESS64: start = res->data.address64.address.minimum; end = res->data.address64.address.maximum; break; default: /* Unused resource type */ return AE_OK; } /* * Ignore ranges that are below 1MB, as they're not * necessary or useful here. */ if (end < 0x100000) return AE_OK; new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); if (!new_res) return AE_NO_MEMORY; /* If this range overlaps the virtual TPM, truncate it. */ if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) end = VTPM_BASE_ADDRESS; new_res->name = "hyperv mmio"; new_res->flags = IORESOURCE_MEM; new_res->start = start; new_res->end = end; /* * If two ranges are adjacent, merge them. */ do { if (!*old_res) { *old_res = new_res; break; } if (((*old_res)->end + 1) == new_res->start) { (*old_res)->end = new_res->end; kfree(new_res); break; } if ((*old_res)->start == new_res->end + 1) { (*old_res)->start = new_res->start; kfree(new_res); break; } if ((*old_res)->start > new_res->end) { new_res->sibling = *old_res; if (prev_res) (*prev_res)->sibling = new_res; *old_res = new_res; break; } prev_res = old_res; old_res = &(*old_res)->sibling; } while (1); return AE_OK; } static int vmbus_acpi_remove(struct acpi_device *device) { struct resource *cur_res; struct resource *next_res; if (hyperv_mmio) { if (fb_mmio) { __release_region(hyperv_mmio, fb_mmio->start, resource_size(fb_mmio)); fb_mmio = NULL; } for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { next_res = cur_res->sibling; kfree(cur_res); } } return 0; } static void vmbus_reserve_fb(void) { int size; /* * Make a claim for the frame buffer in the resource tree under the * first node, which will be the one below 4GB. The length seems to * be underreported, particularly in a Generation 1 VM. So start out * reserving a larger area and make it smaller until it succeeds. */ if (screen_info.lfb_base) { if (efi_enabled(EFI_BOOT)) size = max_t(__u32, screen_info.lfb_size, 0x800000); else size = max_t(__u32, screen_info.lfb_size, 0x4000000); for (; !fb_mmio && (size >= 0x100000); size >>= 1) { fb_mmio = __request_region(hyperv_mmio, screen_info.lfb_base, size, fb_mmio_name, 0); } } } /** * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. * @new: If successful, supplied a pointer to the * allocated MMIO space. * @device_obj: Identifies the caller * @min: Minimum guest physical address of the * allocation * @max: Maximum guest physical address * @size: Size of the range to be allocated * @align: Alignment of the range to be allocated * @fb_overlap_ok: Whether this allocation can be allowed * to overlap the video frame buffer. * * This function walks the resources granted to VMBus by the * _CRS object in the ACPI namespace underneath the parent * "bridge" whether that's a root PCI bus in the Generation 1 * case or a Module Device in the Generation 2 case. It then * attempts to allocate from the global MMIO pool in a way that * matches the constraints supplied in these parameters and by * that _CRS. * * Return: 0 on success, -errno on failure */ int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, resource_size_t min, resource_size_t max, resource_size_t size, resource_size_t align, bool fb_overlap_ok) { struct resource *iter, *shadow; resource_size_t range_min, range_max, start; const char *dev_n = dev_name(&device_obj->device); int retval; retval = -ENXIO; down(&hyperv_mmio_lock); /* * If overlaps with frame buffers are allowed, then first attempt to * make the allocation from within the reserved region. Because it * is already reserved, no shadow allocation is necessary. */ if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && !(max < fb_mmio->start)) { range_min = fb_mmio->start; range_max = fb_mmio->end; start = (range_min + align - 1) & ~(align - 1); for (; start + size - 1 <= range_max; start += align) { *new = request_mem_region_exclusive(start, size, dev_n); if (*new) { retval = 0; goto exit; } } } for (iter = hyperv_mmio; iter; iter = iter->sibling) { if ((iter->start >= max) || (iter->end <= min)) continue; range_min = iter->start; range_max = iter->end; start = (range_min + align - 1) & ~(align - 1); for (; start + size - 1 <= range_max; start += align) { shadow = __request_region(iter, start, size, NULL, IORESOURCE_BUSY); if (!shadow) continue; *new = request_mem_region_exclusive(start, size, dev_n); if (*new) { shadow->name = (char *)*new; retval = 0; goto exit; } __release_region(iter, start, size); } } exit: up(&hyperv_mmio_lock); return retval; } EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); /** * vmbus_free_mmio() - Free a memory-mapped I/O range. * @start: Base address of region to release. * @size: Size of the range to be allocated * * This function releases anything requested by * vmbus_mmio_allocate(). */ void vmbus_free_mmio(resource_size_t start, resource_size_t size) { struct resource *iter; down(&hyperv_mmio_lock); for (iter = hyperv_mmio; iter; iter = iter->sibling) { if ((iter->start >= start + size) || (iter->end <= start)) continue; __release_region(iter, start, size); } release_mem_region(start, size); up(&hyperv_mmio_lock); } EXPORT_SYMBOL_GPL(vmbus_free_mmio); /** * vmbus_cpu_number_to_vp_number() - Map CPU to VP. * @cpu_number: CPU number in Linux terms * * This function returns the mapping between the Linux processor * number and the hypervisor's virtual processor number, useful * in making hypercalls and such that talk about specific * processors. * * Return: Virtual processor number in Hyper-V terms */ int vmbus_cpu_number_to_vp_number(int cpu_number) { return hv_context.vp_index[cpu_number]; } EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number); static int vmbus_acpi_add(struct acpi_device *device) { acpi_status result; int ret_val = -ENODEV; struct acpi_device *ancestor; hv_acpi_dev = device; result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, vmbus_walk_resources, NULL); if (ACPI_FAILURE(result)) goto acpi_walk_err; /* * Some ancestor of the vmbus acpi device (Gen1 or Gen2 * firmware) is the VMOD that has the mmio ranges. Get that. */ for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) { result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, vmbus_walk_resources, NULL); if (ACPI_FAILURE(result)) continue; if (hyperv_mmio) { vmbus_reserve_fb(); break; } } ret_val = 0; acpi_walk_err: complete(&probe_event); if (ret_val) vmbus_acpi_remove(device); return ret_val; } static const struct acpi_device_id vmbus_acpi_device_ids[] = { {"VMBUS", 0}, {"VMBus", 0}, {"", 0}, }; MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); static struct acpi_driver vmbus_acpi_driver = { .name = "vmbus", .ids = vmbus_acpi_device_ids, .ops = { .add = vmbus_acpi_add, .remove = vmbus_acpi_remove, }, }; static void hv_kexec_handler(void) { int cpu; hv_synic_clockevents_cleanup(); vmbus_initiate_unload(false); for_each_online_cpu(cpu) smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1); hv_cleanup(false); }; static void hv_crash_handler(struct pt_regs *regs) { vmbus_initiate_unload(true); /* * In crash handler we can't schedule synic cleanup for all CPUs, * doing the cleanup for current CPU only. This should be sufficient * for kdump. */ hv_synic_cleanup(NULL); hv_cleanup(true); }; static int __init hv_acpi_init(void) { int ret, t; if (x86_hyper != &x86_hyper_ms_hyperv) return -ENODEV; init_completion(&probe_event); /* * Get ACPI resources first. */ ret = acpi_bus_register_driver(&vmbus_acpi_driver); if (ret) return ret; t = wait_for_completion_timeout(&probe_event, 5*HZ); if (t == 0) { ret = -ETIMEDOUT; goto cleanup; } ret = vmbus_bus_init(); if (ret) goto cleanup; hv_setup_kexec_handler(hv_kexec_handler); hv_setup_crash_handler(hv_crash_handler); return 0; cleanup: acpi_bus_unregister_driver(&vmbus_acpi_driver); hv_acpi_dev = NULL; return ret; } static void __exit vmbus_exit(void) { int cpu; hv_remove_kexec_handler(); hv_remove_crash_handler(); vmbus_connection.conn_state = DISCONNECTED; hv_synic_clockevents_cleanup(); vmbus_disconnect(); hv_remove_vmbus_irq(); for_each_online_cpu(cpu) tasklet_kill(hv_context.msg_dpc[cpu]); vmbus_free_channels(); if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { unregister_die_notifier(&hyperv_die_block); atomic_notifier_chain_unregister(&panic_notifier_list, &hyperv_panic_block); } bus_unregister(&hv_bus); hv_cleanup(false); for_each_online_cpu(cpu) { tasklet_kill(hv_context.event_dpc[cpu]); smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1); } hv_synic_free(); acpi_bus_unregister_driver(&vmbus_acpi_driver); if (vmbus_proto_version > VERSION_WIN7) cpu_hotplug_enable(); } MODULE_LICENSE("GPL"); subsys_initcall(hv_acpi_init); module_exit(vmbus_exit);