/* * B53 switch driver main logic * * Copyright (C) 2011-2013 Jonas Gorski * Copyright (C) 2016 Florian Fainelli * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include "b53_regs.h" #include "b53_priv.h" struct b53_mib_desc { u8 size; u8 offset; const char *name; }; /* BCM5365 MIB counters */ static const struct b53_mib_desc b53_mibs_65[] = { { 8, 0x00, "TxOctets" }, { 4, 0x08, "TxDropPkts" }, { 4, 0x10, "TxBroadcastPkts" }, { 4, 0x14, "TxMulticastPkts" }, { 4, 0x18, "TxUnicastPkts" }, { 4, 0x1c, "TxCollisions" }, { 4, 0x20, "TxSingleCollision" }, { 4, 0x24, "TxMultipleCollision" }, { 4, 0x28, "TxDeferredTransmit" }, { 4, 0x2c, "TxLateCollision" }, { 4, 0x30, "TxExcessiveCollision" }, { 4, 0x38, "TxPausePkts" }, { 8, 0x44, "RxOctets" }, { 4, 0x4c, "RxUndersizePkts" }, { 4, 0x50, "RxPausePkts" }, { 4, 0x54, "Pkts64Octets" }, { 4, 0x58, "Pkts65to127Octets" }, { 4, 0x5c, "Pkts128to255Octets" }, { 4, 0x60, "Pkts256to511Octets" }, { 4, 0x64, "Pkts512to1023Octets" }, { 4, 0x68, "Pkts1024to1522Octets" }, { 4, 0x6c, "RxOversizePkts" }, { 4, 0x70, "RxJabbers" }, { 4, 0x74, "RxAlignmentErrors" }, { 4, 0x78, "RxFCSErrors" }, { 8, 0x7c, "RxGoodOctets" }, { 4, 0x84, "RxDropPkts" }, { 4, 0x88, "RxUnicastPkts" }, { 4, 0x8c, "RxMulticastPkts" }, { 4, 0x90, "RxBroadcastPkts" }, { 4, 0x94, "RxSAChanges" }, { 4, 0x98, "RxFragments" }, }; #define B53_MIBS_65_SIZE ARRAY_SIZE(b53_mibs_65) /* BCM63xx MIB counters */ static const struct b53_mib_desc b53_mibs_63xx[] = { { 8, 0x00, "TxOctets" }, { 4, 0x08, "TxDropPkts" }, { 4, 0x0c, "TxQoSPkts" }, { 4, 0x10, "TxBroadcastPkts" }, { 4, 0x14, "TxMulticastPkts" }, { 4, 0x18, "TxUnicastPkts" }, { 4, 0x1c, "TxCollisions" }, { 4, 0x20, "TxSingleCollision" }, { 4, 0x24, "TxMultipleCollision" }, { 4, 0x28, "TxDeferredTransmit" }, { 4, 0x2c, "TxLateCollision" }, { 4, 0x30, "TxExcessiveCollision" }, { 4, 0x38, "TxPausePkts" }, { 8, 0x3c, "TxQoSOctets" }, { 8, 0x44, "RxOctets" }, { 4, 0x4c, "RxUndersizePkts" }, { 4, 0x50, "RxPausePkts" }, { 4, 0x54, "Pkts64Octets" }, { 4, 0x58, "Pkts65to127Octets" }, { 4, 0x5c, "Pkts128to255Octets" }, { 4, 0x60, "Pkts256to511Octets" }, { 4, 0x64, "Pkts512to1023Octets" }, { 4, 0x68, "Pkts1024to1522Octets" }, { 4, 0x6c, "RxOversizePkts" }, { 4, 0x70, "RxJabbers" }, { 4, 0x74, "RxAlignmentErrors" }, { 4, 0x78, "RxFCSErrors" }, { 8, 0x7c, "RxGoodOctets" }, { 4, 0x84, "RxDropPkts" }, { 4, 0x88, "RxUnicastPkts" }, { 4, 0x8c, "RxMulticastPkts" }, { 4, 0x90, "RxBroadcastPkts" }, { 4, 0x94, "RxSAChanges" }, { 4, 0x98, "RxFragments" }, { 4, 0xa0, "RxSymbolErrors" }, { 4, 0xa4, "RxQoSPkts" }, { 8, 0xa8, "RxQoSOctets" }, { 4, 0xb0, "Pkts1523to2047Octets" }, { 4, 0xb4, "Pkts2048to4095Octets" }, { 4, 0xb8, "Pkts4096to8191Octets" }, { 4, 0xbc, "Pkts8192to9728Octets" }, { 4, 0xc0, "RxDiscarded" }, }; #define B53_MIBS_63XX_SIZE ARRAY_SIZE(b53_mibs_63xx) /* MIB counters */ static const struct b53_mib_desc b53_mibs[] = { { 8, 0x00, "TxOctets" }, { 4, 0x08, "TxDropPkts" }, { 4, 0x10, "TxBroadcastPkts" }, { 4, 0x14, "TxMulticastPkts" }, { 4, 0x18, "TxUnicastPkts" }, { 4, 0x1c, "TxCollisions" }, { 4, 0x20, "TxSingleCollision" }, { 4, 0x24, "TxMultipleCollision" }, { 4, 0x28, "TxDeferredTransmit" }, { 4, 0x2c, "TxLateCollision" }, { 4, 0x30, "TxExcessiveCollision" }, { 4, 0x38, "TxPausePkts" }, { 8, 0x50, "RxOctets" }, { 4, 0x58, "RxUndersizePkts" }, { 4, 0x5c, "RxPausePkts" }, { 4, 0x60, "Pkts64Octets" }, { 4, 0x64, "Pkts65to127Octets" }, { 4, 0x68, "Pkts128to255Octets" }, { 4, 0x6c, "Pkts256to511Octets" }, { 4, 0x70, "Pkts512to1023Octets" }, { 4, 0x74, "Pkts1024to1522Octets" }, { 4, 0x78, "RxOversizePkts" }, { 4, 0x7c, "RxJabbers" }, { 4, 0x80, "RxAlignmentErrors" }, { 4, 0x84, "RxFCSErrors" }, { 8, 0x88, "RxGoodOctets" }, { 4, 0x90, "RxDropPkts" }, { 4, 0x94, "RxUnicastPkts" }, { 4, 0x98, "RxMulticastPkts" }, { 4, 0x9c, "RxBroadcastPkts" }, { 4, 0xa0, "RxSAChanges" }, { 4, 0xa4, "RxFragments" }, { 4, 0xa8, "RxJumboPkts" }, { 4, 0xac, "RxSymbolErrors" }, { 4, 0xc0, "RxDiscarded" }, }; #define B53_MIBS_SIZE ARRAY_SIZE(b53_mibs) static const struct b53_mib_desc b53_mibs_58xx[] = { { 8, 0x00, "TxOctets" }, { 4, 0x08, "TxDropPkts" }, { 4, 0x0c, "TxQPKTQ0" }, { 4, 0x10, "TxBroadcastPkts" }, { 4, 0x14, "TxMulticastPkts" }, { 4, 0x18, "TxUnicastPKts" }, { 4, 0x1c, "TxCollisions" }, { 4, 0x20, "TxSingleCollision" }, { 4, 0x24, "TxMultipleCollision" }, { 4, 0x28, "TxDeferredCollision" }, { 4, 0x2c, "TxLateCollision" }, { 4, 0x30, "TxExcessiveCollision" }, { 4, 0x34, "TxFrameInDisc" }, { 4, 0x38, "TxPausePkts" }, { 4, 0x3c, "TxQPKTQ1" }, { 4, 0x40, "TxQPKTQ2" }, { 4, 0x44, "TxQPKTQ3" }, { 4, 0x48, "TxQPKTQ4" }, { 4, 0x4c, "TxQPKTQ5" }, { 8, 0x50, "RxOctets" }, { 4, 0x58, "RxUndersizePkts" }, { 4, 0x5c, "RxPausePkts" }, { 4, 0x60, "RxPkts64Octets" }, { 4, 0x64, "RxPkts65to127Octets" }, { 4, 0x68, "RxPkts128to255Octets" }, { 4, 0x6c, "RxPkts256to511Octets" }, { 4, 0x70, "RxPkts512to1023Octets" }, { 4, 0x74, "RxPkts1024toMaxPktsOctets" }, { 4, 0x78, "RxOversizePkts" }, { 4, 0x7c, "RxJabbers" }, { 4, 0x80, "RxAlignmentErrors" }, { 4, 0x84, "RxFCSErrors" }, { 8, 0x88, "RxGoodOctets" }, { 4, 0x90, "RxDropPkts" }, { 4, 0x94, "RxUnicastPkts" }, { 4, 0x98, "RxMulticastPkts" }, { 4, 0x9c, "RxBroadcastPkts" }, { 4, 0xa0, "RxSAChanges" }, { 4, 0xa4, "RxFragments" }, { 4, 0xa8, "RxJumboPkt" }, { 4, 0xac, "RxSymblErr" }, { 4, 0xb0, "InRangeErrCount" }, { 4, 0xb4, "OutRangeErrCount" }, { 4, 0xb8, "EEELpiEvent" }, { 4, 0xbc, "EEELpiDuration" }, { 4, 0xc0, "RxDiscard" }, { 4, 0xc8, "TxQPKTQ6" }, { 4, 0xcc, "TxQPKTQ7" }, { 4, 0xd0, "TxPkts64Octets" }, { 4, 0xd4, "TxPkts65to127Octets" }, { 4, 0xd8, "TxPkts128to255Octets" }, { 4, 0xdc, "TxPkts256to511Ocets" }, { 4, 0xe0, "TxPkts512to1023Ocets" }, { 4, 0xe4, "TxPkts1024toMaxPktOcets" }, }; #define B53_MIBS_58XX_SIZE ARRAY_SIZE(b53_mibs_58xx) static int b53_do_vlan_op(struct b53_device *dev, u8 op) { unsigned int i; b53_write8(dev, B53_ARLIO_PAGE, dev->vta_regs[0], VTA_START_CMD | op); for (i = 0; i < 10; i++) { u8 vta; b53_read8(dev, B53_ARLIO_PAGE, dev->vta_regs[0], &vta); if (!(vta & VTA_START_CMD)) return 0; usleep_range(100, 200); } return -EIO; } static void b53_set_vlan_entry(struct b53_device *dev, u16 vid, struct b53_vlan *vlan) { if (is5325(dev)) { u32 entry = 0; if (vlan->members) { entry = ((vlan->untag & VA_UNTAG_MASK_25) << VA_UNTAG_S_25) | vlan->members; if (dev->core_rev >= 3) entry |= VA_VALID_25_R4 | vid << VA_VID_HIGH_S; else entry |= VA_VALID_25; } b53_write32(dev, B53_VLAN_PAGE, B53_VLAN_WRITE_25, entry); b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_25, vid | VTA_RW_STATE_WR | VTA_RW_OP_EN); } else if (is5365(dev)) { u16 entry = 0; if (vlan->members) entry = ((vlan->untag & VA_UNTAG_MASK_65) << VA_UNTAG_S_65) | vlan->members | VA_VALID_65; b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_WRITE_65, entry); b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_65, vid | VTA_RW_STATE_WR | VTA_RW_OP_EN); } else { b53_write16(dev, B53_ARLIO_PAGE, dev->vta_regs[1], vid); b53_write32(dev, B53_ARLIO_PAGE, dev->vta_regs[2], (vlan->untag << VTE_UNTAG_S) | vlan->members); b53_do_vlan_op(dev, VTA_CMD_WRITE); } dev_dbg(dev->ds->dev, "VID: %d, members: 0x%04x, untag: 0x%04x\n", vid, vlan->members, vlan->untag); } static void b53_get_vlan_entry(struct b53_device *dev, u16 vid, struct b53_vlan *vlan) { if (is5325(dev)) { u32 entry = 0; b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_25, vid | VTA_RW_STATE_RD | VTA_RW_OP_EN); b53_read32(dev, B53_VLAN_PAGE, B53_VLAN_WRITE_25, &entry); if (dev->core_rev >= 3) vlan->valid = !!(entry & VA_VALID_25_R4); else vlan->valid = !!(entry & VA_VALID_25); vlan->members = entry & VA_MEMBER_MASK; vlan->untag = (entry >> VA_UNTAG_S_25) & VA_UNTAG_MASK_25; } else if (is5365(dev)) { u16 entry = 0; b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_65, vid | VTA_RW_STATE_WR | VTA_RW_OP_EN); b53_read16(dev, B53_VLAN_PAGE, B53_VLAN_WRITE_65, &entry); vlan->valid = !!(entry & VA_VALID_65); vlan->members = entry & VA_MEMBER_MASK; vlan->untag = (entry >> VA_UNTAG_S_65) & VA_UNTAG_MASK_65; } else { u32 entry = 0; b53_write16(dev, B53_ARLIO_PAGE, dev->vta_regs[1], vid); b53_do_vlan_op(dev, VTA_CMD_READ); b53_read32(dev, B53_ARLIO_PAGE, dev->vta_regs[2], &entry); vlan->members = entry & VTE_MEMBERS; vlan->untag = (entry >> VTE_UNTAG_S) & VTE_MEMBERS; vlan->valid = true; } } static void b53_set_forwarding(struct b53_device *dev, int enable) { struct dsa_switch *ds = dev->ds; u8 mgmt; b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, &mgmt); if (enable) mgmt |= SM_SW_FWD_EN; else mgmt &= ~SM_SW_FWD_EN; b53_write8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, mgmt); /* Include IMP port in dumb forwarding mode when no tagging protocol is * set */ if (ds->ops->get_tag_protocol(ds) == DSA_TAG_PROTO_NONE) { b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_CTRL, &mgmt); mgmt |= B53_MII_DUMB_FWDG_EN; b53_write8(dev, B53_CTRL_PAGE, B53_SWITCH_CTRL, mgmt); } } static void b53_enable_vlan(struct b53_device *dev, bool enable) { u8 mgmt, vc0, vc1, vc4 = 0, vc5; b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, &mgmt); b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL0, &vc0); b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL1, &vc1); if (is5325(dev) || is5365(dev)) { b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_25, &vc4); b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5_25, &vc5); } else if (is63xx(dev)) { b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_63XX, &vc4); b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5_63XX, &vc5); } else { b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4, &vc4); b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5, &vc5); } mgmt &= ~SM_SW_FWD_MODE; if (enable) { vc0 |= VC0_VLAN_EN | VC0_VID_CHK_EN | VC0_VID_HASH_VID; vc1 |= VC1_RX_MCST_UNTAG_EN | VC1_RX_MCST_FWD_EN; vc4 &= ~VC4_ING_VID_CHECK_MASK; vc4 |= VC4_ING_VID_VIO_DROP << VC4_ING_VID_CHECK_S; vc5 |= VC5_DROP_VTABLE_MISS; if (is5325(dev)) vc0 &= ~VC0_RESERVED_1; if (is5325(dev) || is5365(dev)) vc1 |= VC1_RX_MCST_TAG_EN; } else { vc0 &= ~(VC0_VLAN_EN | VC0_VID_CHK_EN | VC0_VID_HASH_VID); vc1 &= ~(VC1_RX_MCST_UNTAG_EN | VC1_RX_MCST_FWD_EN); vc4 &= ~VC4_ING_VID_CHECK_MASK; vc5 &= ~VC5_DROP_VTABLE_MISS; if (is5325(dev) || is5365(dev)) vc4 |= VC4_ING_VID_VIO_FWD << VC4_ING_VID_CHECK_S; else vc4 |= VC4_ING_VID_VIO_TO_IMP << VC4_ING_VID_CHECK_S; if (is5325(dev) || is5365(dev)) vc1 &= ~VC1_RX_MCST_TAG_EN; } if (!is5325(dev) && !is5365(dev)) vc5 &= ~VC5_VID_FFF_EN; b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL0, vc0); b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL1, vc1); if (is5325(dev) || is5365(dev)) { /* enable the high 8 bit vid check on 5325 */ if (is5325(dev) && enable) b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL3, VC3_HIGH_8BIT_EN); else b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL3, 0); b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_25, vc4); b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5_25, vc5); } else if (is63xx(dev)) { b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_CTRL3_63XX, 0); b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_63XX, vc4); b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5_63XX, vc5); } else { b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_CTRL3, 0); b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4, vc4); b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5, vc5); } b53_write8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, mgmt); } static int b53_set_jumbo(struct b53_device *dev, bool enable, bool allow_10_100) { u32 port_mask = 0; u16 max_size = JMS_MIN_SIZE; if (is5325(dev) || is5365(dev)) return -EINVAL; if (enable) { port_mask = dev->enabled_ports; max_size = JMS_MAX_SIZE; if (allow_10_100) port_mask |= JPM_10_100_JUMBO_EN; } b53_write32(dev, B53_JUMBO_PAGE, dev->jumbo_pm_reg, port_mask); return b53_write16(dev, B53_JUMBO_PAGE, dev->jumbo_size_reg, max_size); } static int b53_flush_arl(struct b53_device *dev, u8 mask) { unsigned int i; b53_write8(dev, B53_CTRL_PAGE, B53_FAST_AGE_CTRL, FAST_AGE_DONE | FAST_AGE_DYNAMIC | mask); for (i = 0; i < 10; i++) { u8 fast_age_ctrl; b53_read8(dev, B53_CTRL_PAGE, B53_FAST_AGE_CTRL, &fast_age_ctrl); if (!(fast_age_ctrl & FAST_AGE_DONE)) goto out; msleep(1); } return -ETIMEDOUT; out: /* Only age dynamic entries (default behavior) */ b53_write8(dev, B53_CTRL_PAGE, B53_FAST_AGE_CTRL, FAST_AGE_DYNAMIC); return 0; } static int b53_fast_age_port(struct b53_device *dev, int port) { b53_write8(dev, B53_CTRL_PAGE, B53_FAST_AGE_PORT_CTRL, port); return b53_flush_arl(dev, FAST_AGE_PORT); } static int b53_fast_age_vlan(struct b53_device *dev, u16 vid) { b53_write16(dev, B53_CTRL_PAGE, B53_FAST_AGE_VID_CTRL, vid); return b53_flush_arl(dev, FAST_AGE_VLAN); } static void b53_imp_vlan_setup(struct dsa_switch *ds, int cpu_port) { struct b53_device *dev = ds->priv; unsigned int i; u16 pvlan; /* Enable the IMP port to be in the same VLAN as the other ports * on a per-port basis such that we only have Port i and IMP in * the same VLAN. */ b53_for_each_port(dev, i) { b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), &pvlan); pvlan |= BIT(cpu_port); b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), pvlan); } } static void b53_port_set_learning(struct b53_device *dev, int port, bool learning) { u16 reg; b53_read16(dev, B53_CTRL_PAGE, B53_DIS_LEARNING, ®); if (learning) reg &= ~BIT(port); else reg |= BIT(port); b53_write16(dev, B53_CTRL_PAGE, B53_DIS_LEARNING, reg); } static int b53_enable_port(struct dsa_switch *ds, int port, struct phy_device *phy) { struct b53_device *dev = ds->priv; unsigned int cpu_port = dev->cpu_port; u16 pvlan; b53_port_set_learning(dev, port, false); /* Clear the Rx and Tx disable bits and set to no spanning tree */ b53_write8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), 0); /* Set this port, and only this one to be in the default VLAN, * if member of a bridge, restore its membership prior to * bringing down this port. */ b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), &pvlan); pvlan &= ~0x1ff; pvlan |= BIT(port); pvlan |= dev->ports[port].vlan_ctl_mask; b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), pvlan); b53_imp_vlan_setup(ds, cpu_port); return 0; } static void b53_disable_port(struct dsa_switch *ds, int port, struct phy_device *phy) { struct b53_device *dev = ds->priv; u8 reg; /* Disable Tx/Rx for the port */ b53_read8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), ®); reg |= PORT_CTRL_RX_DISABLE | PORT_CTRL_TX_DISABLE; b53_write8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), reg); } static void b53_enable_cpu_port(struct b53_device *dev) { unsigned int cpu_port = dev->cpu_port; u8 port_ctrl; /* BCM5325 CPU port is at 8 */ if ((is5325(dev) || is5365(dev)) && cpu_port == B53_CPU_PORT_25) cpu_port = B53_CPU_PORT; port_ctrl = PORT_CTRL_RX_BCST_EN | PORT_CTRL_RX_MCST_EN | PORT_CTRL_RX_UCST_EN; b53_write8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(cpu_port), port_ctrl); b53_port_set_learning(dev, cpu_port, false); } static void b53_enable_mib(struct b53_device *dev) { u8 gc; b53_read8(dev, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, &gc); gc &= ~(GC_RESET_MIB | GC_MIB_AC_EN); b53_write8(dev, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, gc); } static int b53_configure_vlan(struct b53_device *dev) { struct b53_vlan vl = { 0 }; int i; /* clear all vlan entries */ if (is5325(dev) || is5365(dev)) { for (i = 1; i < dev->num_vlans; i++) b53_set_vlan_entry(dev, i, &vl); } else { b53_do_vlan_op(dev, VTA_CMD_CLEAR); } b53_enable_vlan(dev, false); b53_for_each_port(dev, i) b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_PORT_DEF_TAG(i), 1); if (!is5325(dev) && !is5365(dev)) b53_set_jumbo(dev, dev->enable_jumbo, false); return 0; } static void b53_switch_reset_gpio(struct b53_device *dev) { int gpio = dev->reset_gpio; if (gpio < 0) return; /* Reset sequence: RESET low(50ms)->high(20ms) */ gpio_set_value(gpio, 0); mdelay(50); gpio_set_value(gpio, 1); mdelay(20); dev->current_page = 0xff; } static int b53_switch_reset(struct b53_device *dev) { u8 mgmt; b53_switch_reset_gpio(dev); if (is539x(dev)) { b53_write8(dev, B53_CTRL_PAGE, B53_SOFTRESET, 0x83); b53_write8(dev, B53_CTRL_PAGE, B53_SOFTRESET, 0x00); } b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, &mgmt); if (!(mgmt & SM_SW_FWD_EN)) { mgmt &= ~SM_SW_FWD_MODE; mgmt |= SM_SW_FWD_EN; b53_write8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, mgmt); b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, &mgmt); if (!(mgmt & SM_SW_FWD_EN)) { dev_err(dev->dev, "Failed to enable switch!\n"); return -EINVAL; } } b53_enable_mib(dev); return b53_flush_arl(dev, FAST_AGE_STATIC); } static int b53_phy_read16(struct dsa_switch *ds, int addr, int reg) { struct b53_device *priv = ds->priv; u16 value = 0; int ret; if (priv->ops->phy_read16) ret = priv->ops->phy_read16(priv, addr, reg, &value); else ret = b53_read16(priv, B53_PORT_MII_PAGE(addr), reg * 2, &value); return ret ? ret : value; } static int b53_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val) { struct b53_device *priv = ds->priv; if (priv->ops->phy_write16) return priv->ops->phy_write16(priv, addr, reg, val); return b53_write16(priv, B53_PORT_MII_PAGE(addr), reg * 2, val); } static int b53_reset_switch(struct b53_device *priv) { /* reset vlans */ priv->enable_jumbo = false; memset(priv->vlans, 0, sizeof(*priv->vlans) * priv->num_vlans); memset(priv->ports, 0, sizeof(*priv->ports) * priv->num_ports); return b53_switch_reset(priv); } static int b53_apply_config(struct b53_device *priv) { /* disable switching */ b53_set_forwarding(priv, 0); b53_configure_vlan(priv); /* enable switching */ b53_set_forwarding(priv, 1); return 0; } static void b53_reset_mib(struct b53_device *priv) { u8 gc; b53_read8(priv, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, &gc); b53_write8(priv, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, gc | GC_RESET_MIB); msleep(1); b53_write8(priv, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, gc & ~GC_RESET_MIB); msleep(1); } static const struct b53_mib_desc *b53_get_mib(struct b53_device *dev) { if (is5365(dev)) return b53_mibs_65; else if (is63xx(dev)) return b53_mibs_63xx; else if (is58xx(dev)) return b53_mibs_58xx; else return b53_mibs; } static unsigned int b53_get_mib_size(struct b53_device *dev) { if (is5365(dev)) return B53_MIBS_65_SIZE; else if (is63xx(dev)) return B53_MIBS_63XX_SIZE; else if (is58xx(dev)) return B53_MIBS_58XX_SIZE; else return B53_MIBS_SIZE; } static void b53_get_strings(struct dsa_switch *ds, int port, uint8_t *data) { struct b53_device *dev = ds->priv; const struct b53_mib_desc *mibs = b53_get_mib(dev); unsigned int mib_size = b53_get_mib_size(dev); unsigned int i; for (i = 0; i < mib_size; i++) memcpy(data + i * ETH_GSTRING_LEN, mibs[i].name, ETH_GSTRING_LEN); } static void b53_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *data) { struct b53_device *dev = ds->priv; const struct b53_mib_desc *mibs = b53_get_mib(dev); unsigned int mib_size = b53_get_mib_size(dev); const struct b53_mib_desc *s; unsigned int i; u64 val = 0; if (is5365(dev) && port == 5) port = 8; mutex_lock(&dev->stats_mutex); for (i = 0; i < mib_size; i++) { s = &mibs[i]; if (s->size == 8) { b53_read64(dev, B53_MIB_PAGE(port), s->offset, &val); } else { u32 val32; b53_read32(dev, B53_MIB_PAGE(port), s->offset, &val32); val = val32; } data[i] = (u64)val; } mutex_unlock(&dev->stats_mutex); } static int b53_get_sset_count(struct dsa_switch *ds) { struct b53_device *dev = ds->priv; return b53_get_mib_size(dev); } static int b53_setup(struct dsa_switch *ds) { struct b53_device *dev = ds->priv; unsigned int port; int ret; ret = b53_reset_switch(dev); if (ret) { dev_err(ds->dev, "failed to reset switch\n"); return ret; } b53_reset_mib(dev); ret = b53_apply_config(dev); if (ret) dev_err(ds->dev, "failed to apply configuration\n"); for (port = 0; port < dev->num_ports; port++) { if (BIT(port) & ds->enabled_port_mask) b53_enable_port(ds, port, NULL); else if (dsa_is_cpu_port(ds, port)) b53_enable_cpu_port(dev); else b53_disable_port(ds, port, NULL); } return ret; } static void b53_adjust_link(struct dsa_switch *ds, int port, struct phy_device *phydev) { struct b53_device *dev = ds->priv; u8 rgmii_ctrl = 0, reg = 0, off; if (!phy_is_pseudo_fixed_link(phydev)) return; /* Override the port settings */ if (port == dev->cpu_port) { off = B53_PORT_OVERRIDE_CTRL; reg = PORT_OVERRIDE_EN; } else { off = B53_GMII_PORT_OVERRIDE_CTRL(port); reg = GMII_PO_EN; } /* Set the link UP */ if (phydev->link) reg |= PORT_OVERRIDE_LINK; if (phydev->duplex == DUPLEX_FULL) reg |= PORT_OVERRIDE_FULL_DUPLEX; switch (phydev->speed) { case 2000: reg |= PORT_OVERRIDE_SPEED_2000M; /* fallthrough */ case SPEED_1000: reg |= PORT_OVERRIDE_SPEED_1000M; break; case SPEED_100: reg |= PORT_OVERRIDE_SPEED_100M; break; case SPEED_10: reg |= PORT_OVERRIDE_SPEED_10M; break; default: dev_err(ds->dev, "unknown speed: %d\n", phydev->speed); return; } /* Enable flow control on BCM5301x's CPU port */ if (is5301x(dev) && port == dev->cpu_port) reg |= PORT_OVERRIDE_RX_FLOW | PORT_OVERRIDE_TX_FLOW; if (phydev->pause) { if (phydev->asym_pause) reg |= PORT_OVERRIDE_TX_FLOW; reg |= PORT_OVERRIDE_RX_FLOW; } b53_write8(dev, B53_CTRL_PAGE, off, reg); if (is531x5(dev) && phy_interface_is_rgmii(phydev)) { if (port == 8) off = B53_RGMII_CTRL_IMP; else off = B53_RGMII_CTRL_P(port); /* Configure the port RGMII clock delay by DLL disabled and * tx_clk aligned timing (restoring to reset defaults) */ b53_read8(dev, B53_CTRL_PAGE, off, &rgmii_ctrl); rgmii_ctrl &= ~(RGMII_CTRL_DLL_RXC | RGMII_CTRL_DLL_TXC | RGMII_CTRL_TIMING_SEL); /* PHY_INTERFACE_MODE_RGMII_TXID means TX internal delay, make * sure that we enable the port TX clock internal delay to * account for this internal delay that is inserted, otherwise * the switch won't be able to receive correctly. * * PHY_INTERFACE_MODE_RGMII means that we are not introducing * any delay neither on transmission nor reception, so the * BCM53125 must also be configured accordingly to account for * the lack of delay and introduce * * The BCM53125 switch has its RX clock and TX clock control * swapped, hence the reason why we modify the TX clock path in * the "RGMII" case */ if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) rgmii_ctrl |= RGMII_CTRL_DLL_TXC; if (phydev->interface == PHY_INTERFACE_MODE_RGMII) rgmii_ctrl |= RGMII_CTRL_DLL_TXC | RGMII_CTRL_DLL_RXC; rgmii_ctrl |= RGMII_CTRL_TIMING_SEL; b53_write8(dev, B53_CTRL_PAGE, off, rgmii_ctrl); dev_info(ds->dev, "Configured port %d for %s\n", port, phy_modes(phydev->interface)); } /* configure MII port if necessary */ if (is5325(dev)) { b53_read8(dev, B53_CTRL_PAGE, B53_PORT_OVERRIDE_CTRL, ®); /* reverse mii needs to be enabled */ if (!(reg & PORT_OVERRIDE_RV_MII_25)) { b53_write8(dev, B53_CTRL_PAGE, B53_PORT_OVERRIDE_CTRL, reg | PORT_OVERRIDE_RV_MII_25); b53_read8(dev, B53_CTRL_PAGE, B53_PORT_OVERRIDE_CTRL, ®); if (!(reg & PORT_OVERRIDE_RV_MII_25)) { dev_err(ds->dev, "Failed to enable reverse MII mode\n"); return; } } } else if (is5301x(dev)) { if (port != dev->cpu_port) { u8 po_reg = B53_GMII_PORT_OVERRIDE_CTRL(dev->cpu_port); u8 gmii_po; b53_read8(dev, B53_CTRL_PAGE, po_reg, &gmii_po); gmii_po |= GMII_PO_LINK | GMII_PO_RX_FLOW | GMII_PO_TX_FLOW | GMII_PO_EN | GMII_PO_SPEED_2000M; b53_write8(dev, B53_CTRL_PAGE, po_reg, gmii_po); } } } static int b53_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering) { return 0; } static int b53_vlan_prepare(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan, struct switchdev_trans *trans) { struct b53_device *dev = ds->priv; if ((is5325(dev) || is5365(dev)) && vlan->vid_begin == 0) return -EOPNOTSUPP; if (vlan->vid_end >= dev->num_vlans) return -ERANGE; b53_enable_vlan(dev, true); return 0; } static void b53_vlan_add(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan, struct switchdev_trans *trans) { struct b53_device *dev = ds->priv; bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; unsigned int cpu_port = dev->cpu_port; struct b53_vlan *vl; u16 vid; for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) { vl = &dev->vlans[vid]; b53_get_vlan_entry(dev, vid, vl); vl->members |= BIT(port) | BIT(cpu_port); if (untagged) vl->untag |= BIT(port); else vl->untag &= ~BIT(port); vl->untag &= ~BIT(cpu_port); b53_set_vlan_entry(dev, vid, vl); b53_fast_age_vlan(dev, vid); } if (pvid) { b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_PORT_DEF_TAG(port), vlan->vid_end); b53_fast_age_vlan(dev, vid); } } static int b53_vlan_del(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan) { struct b53_device *dev = ds->priv; bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; struct b53_vlan *vl; u16 vid; u16 pvid; b53_read16(dev, B53_VLAN_PAGE, B53_VLAN_PORT_DEF_TAG(port), &pvid); for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) { vl = &dev->vlans[vid]; b53_get_vlan_entry(dev, vid, vl); vl->members &= ~BIT(port); if (pvid == vid) { if (is5325(dev) || is5365(dev)) pvid = 1; else pvid = 0; } if (untagged) vl->untag &= ~(BIT(port)); b53_set_vlan_entry(dev, vid, vl); b53_fast_age_vlan(dev, vid); } b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_PORT_DEF_TAG(port), pvid); b53_fast_age_vlan(dev, pvid); return 0; } static int b53_vlan_dump(struct dsa_switch *ds, int port, struct switchdev_obj_port_vlan *vlan, int (*cb)(struct switchdev_obj *obj)) { struct b53_device *dev = ds->priv; u16 vid, vid_start = 0, pvid; struct b53_vlan *vl; int err = 0; if (is5325(dev) || is5365(dev)) vid_start = 1; b53_read16(dev, B53_VLAN_PAGE, B53_VLAN_PORT_DEF_TAG(port), &pvid); /* Use our software cache for dumps, since we do not have any HW * operation returning only the used/valid VLANs */ for (vid = vid_start; vid < dev->num_vlans; vid++) { vl = &dev->vlans[vid]; if (!vl->valid) continue; if (!(vl->members & BIT(port))) continue; vlan->vid_begin = vlan->vid_end = vid; vlan->flags = 0; if (vl->untag & BIT(port)) vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED; if (pvid == vid) vlan->flags |= BRIDGE_VLAN_INFO_PVID; err = cb(&vlan->obj); if (err) break; } return err; } /* Address Resolution Logic routines */ static int b53_arl_op_wait(struct b53_device *dev) { unsigned int timeout = 10; u8 reg; do { b53_read8(dev, B53_ARLIO_PAGE, B53_ARLTBL_RW_CTRL, ®); if (!(reg & ARLTBL_START_DONE)) return 0; usleep_range(1000, 2000); } while (timeout--); dev_warn(dev->dev, "timeout waiting for ARL to finish: 0x%02x\n", reg); return -ETIMEDOUT; } static int b53_arl_rw_op(struct b53_device *dev, unsigned int op) { u8 reg; if (op > ARLTBL_RW) return -EINVAL; b53_read8(dev, B53_ARLIO_PAGE, B53_ARLTBL_RW_CTRL, ®); reg |= ARLTBL_START_DONE; if (op) reg |= ARLTBL_RW; else reg &= ~ARLTBL_RW; b53_write8(dev, B53_ARLIO_PAGE, B53_ARLTBL_RW_CTRL, reg); return b53_arl_op_wait(dev); } static int b53_arl_read(struct b53_device *dev, u64 mac, u16 vid, struct b53_arl_entry *ent, u8 *idx, bool is_valid) { DECLARE_BITMAP(free_bins, B53_ARLTBL_MAX_BIN_ENTRIES); unsigned int i; int ret; ret = b53_arl_op_wait(dev); if (ret) return ret; bitmap_zero(free_bins, dev->num_arl_entries); /* Read the bins */ for (i = 0; i < dev->num_arl_entries; i++) { u64 mac_vid; u32 fwd_entry; b53_read64(dev, B53_ARLIO_PAGE, B53_ARLTBL_MAC_VID_ENTRY(i), &mac_vid); b53_read32(dev, B53_ARLIO_PAGE, B53_ARLTBL_DATA_ENTRY(i), &fwd_entry); b53_arl_to_entry(ent, mac_vid, fwd_entry); if (!(fwd_entry & ARLTBL_VALID)) { set_bit(i, free_bins); continue; } if ((mac_vid & ARLTBL_MAC_MASK) != mac) continue; *idx = i; return 0; } if (bitmap_weight(free_bins, dev->num_arl_entries) == 0) return -ENOSPC; *idx = find_first_bit(free_bins, dev->num_arl_entries); return -ENOENT; } static int b53_arl_op(struct b53_device *dev, int op, int port, const unsigned char *addr, u16 vid, bool is_valid) { struct b53_arl_entry ent; u32 fwd_entry; u64 mac, mac_vid = 0; u8 idx = 0; int ret; /* Convert the array into a 64-bit MAC */ mac = b53_mac_to_u64(addr); /* Perform a read for the given MAC and VID */ b53_write48(dev, B53_ARLIO_PAGE, B53_MAC_ADDR_IDX, mac); b53_write16(dev, B53_ARLIO_PAGE, B53_VLAN_ID_IDX, vid); /* Issue a read operation for this MAC */ ret = b53_arl_rw_op(dev, 1); if (ret) return ret; ret = b53_arl_read(dev, mac, vid, &ent, &idx, is_valid); /* If this is a read, just finish now */ if (op) return ret; switch (ret) { case -ETIMEDOUT: return ret; case -ENOSPC: dev_dbg(dev->dev, "{%pM,%.4d} no space left in ARL\n", addr, vid); return is_valid ? ret : 0; case -ENOENT: /* We could not find a matching MAC, so reset to a new entry */ dev_dbg(dev->dev, "{%pM,%.4d} not found, using idx: %d\n", addr, vid, idx); fwd_entry = 0; break; default: dev_dbg(dev->dev, "{%pM,%.4d} found, using idx: %d\n", addr, vid, idx); break; } memset(&ent, 0, sizeof(ent)); ent.port = port; ent.is_valid = is_valid; ent.vid = vid; ent.is_static = true; memcpy(ent.mac, addr, ETH_ALEN); b53_arl_from_entry(&mac_vid, &fwd_entry, &ent); b53_write64(dev, B53_ARLIO_PAGE, B53_ARLTBL_MAC_VID_ENTRY(idx), mac_vid); b53_write32(dev, B53_ARLIO_PAGE, B53_ARLTBL_DATA_ENTRY(idx), fwd_entry); return b53_arl_rw_op(dev, 0); } static int b53_fdb_prepare(struct dsa_switch *ds, int port, const struct switchdev_obj_port_fdb *fdb, struct switchdev_trans *trans) { struct b53_device *priv = ds->priv; /* 5325 and 5365 require some more massaging, but could * be supported eventually */ if (is5325(priv) || is5365(priv)) return -EOPNOTSUPP; return 0; } static void b53_fdb_add(struct dsa_switch *ds, int port, const struct switchdev_obj_port_fdb *fdb, struct switchdev_trans *trans) { struct b53_device *priv = ds->priv; if (b53_arl_op(priv, 0, port, fdb->addr, fdb->vid, true)) pr_err("%s: failed to add MAC address\n", __func__); } static int b53_fdb_del(struct dsa_switch *ds, int port, const struct switchdev_obj_port_fdb *fdb) { struct b53_device *priv = ds->priv; return b53_arl_op(priv, 0, port, fdb->addr, fdb->vid, false); } static int b53_arl_search_wait(struct b53_device *dev) { unsigned int timeout = 1000; u8 reg; do { b53_read8(dev, B53_ARLIO_PAGE, B53_ARL_SRCH_CTL, ®); if (!(reg & ARL_SRCH_STDN)) return 0; if (reg & ARL_SRCH_VLID) return 0; usleep_range(1000, 2000); } while (timeout--); return -ETIMEDOUT; } static void b53_arl_search_rd(struct b53_device *dev, u8 idx, struct b53_arl_entry *ent) { u64 mac_vid; u32 fwd_entry; b53_read64(dev, B53_ARLIO_PAGE, B53_ARL_SRCH_RSTL_MACVID(idx), &mac_vid); b53_read32(dev, B53_ARLIO_PAGE, B53_ARL_SRCH_RSTL(idx), &fwd_entry); b53_arl_to_entry(ent, mac_vid, fwd_entry); } static int b53_fdb_copy(struct net_device *dev, int port, const struct b53_arl_entry *ent, struct switchdev_obj_port_fdb *fdb, int (*cb)(struct switchdev_obj *obj)) { if (!ent->is_valid) return 0; if (port != ent->port) return 0; ether_addr_copy(fdb->addr, ent->mac); fdb->vid = ent->vid; fdb->ndm_state = ent->is_static ? NUD_NOARP : NUD_REACHABLE; return cb(&fdb->obj); } static int b53_fdb_dump(struct dsa_switch *ds, int port, struct switchdev_obj_port_fdb *fdb, int (*cb)(struct switchdev_obj *obj)) { struct b53_device *priv = ds->priv; struct net_device *dev = ds->ports[port].netdev; struct b53_arl_entry results[2]; unsigned int count = 0; int ret; u8 reg; /* Start search operation */ reg = ARL_SRCH_STDN; b53_write8(priv, B53_ARLIO_PAGE, B53_ARL_SRCH_CTL, reg); do { ret = b53_arl_search_wait(priv); if (ret) return ret; b53_arl_search_rd(priv, 0, &results[0]); ret = b53_fdb_copy(dev, port, &results[0], fdb, cb); if (ret) return ret; if (priv->num_arl_entries > 2) { b53_arl_search_rd(priv, 1, &results[1]); ret = b53_fdb_copy(dev, port, &results[1], fdb, cb); if (ret) return ret; if (!results[0].is_valid && !results[1].is_valid) break; } } while (count++ < 1024); return 0; } static int b53_br_join(struct dsa_switch *ds, int port, struct net_device *bridge) { struct b53_device *dev = ds->priv; s8 cpu_port = ds->dst->cpu_port; u16 pvlan, reg; unsigned int i; /* Make this port leave the all VLANs join since we will have proper * VLAN entries from now on */ if (is58xx(dev)) { b53_read16(dev, B53_VLAN_PAGE, B53_JOIN_ALL_VLAN_EN, ®); reg &= ~BIT(port); if ((reg & BIT(cpu_port)) == BIT(cpu_port)) reg &= ~BIT(cpu_port); b53_write16(dev, B53_VLAN_PAGE, B53_JOIN_ALL_VLAN_EN, reg); } dev->ports[port].bridge_dev = bridge; b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), &pvlan); b53_for_each_port(dev, i) { if (dev->ports[i].bridge_dev != bridge) continue; /* Add this local port to the remote port VLAN control * membership and update the remote port bitmask */ b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), ®); reg |= BIT(port); b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), reg); dev->ports[i].vlan_ctl_mask = reg; pvlan |= BIT(i); } /* Configure the local port VLAN control membership to include * remote ports and update the local port bitmask */ b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), pvlan); dev->ports[port].vlan_ctl_mask = pvlan; b53_port_set_learning(dev, port, true); return 0; } static void b53_br_leave(struct dsa_switch *ds, int port) { struct b53_device *dev = ds->priv; struct net_device *bridge = dev->ports[port].bridge_dev; struct b53_vlan *vl = &dev->vlans[0]; s8 cpu_port = ds->dst->cpu_port; unsigned int i; u16 pvlan, reg, pvid; b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), &pvlan); b53_for_each_port(dev, i) { /* Don't touch the remaining ports */ if (dev->ports[i].bridge_dev != bridge) continue; b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), ®); reg &= ~BIT(port); b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), reg); dev->ports[port].vlan_ctl_mask = reg; /* Prevent self removal to preserve isolation */ if (port != i) pvlan &= ~BIT(i); } b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), pvlan); dev->ports[port].vlan_ctl_mask = pvlan; dev->ports[port].bridge_dev = NULL; if (is5325(dev) || is5365(dev)) pvid = 1; else pvid = 0; /* Make this port join all VLANs without VLAN entries */ if (is58xx(dev)) { b53_read16(dev, B53_VLAN_PAGE, B53_JOIN_ALL_VLAN_EN, ®); reg |= BIT(port); if (!(reg & BIT(cpu_port))) reg |= BIT(cpu_port); b53_write16(dev, B53_VLAN_PAGE, B53_JOIN_ALL_VLAN_EN, reg); } else { b53_get_vlan_entry(dev, pvid, vl); vl->members |= BIT(port) | BIT(dev->cpu_port); vl->untag |= BIT(port) | BIT(dev->cpu_port); b53_set_vlan_entry(dev, pvid, vl); } b53_port_set_learning(dev, port, false); } static void b53_br_set_stp_state(struct dsa_switch *ds, int port, u8 state) { struct b53_device *dev = ds->priv; u8 hw_state; u8 reg; switch (state) { case BR_STATE_DISABLED: hw_state = PORT_CTRL_DIS_STATE; break; case BR_STATE_LISTENING: hw_state = PORT_CTRL_LISTEN_STATE; break; case BR_STATE_LEARNING: hw_state = PORT_CTRL_LEARN_STATE; break; case BR_STATE_FORWARDING: hw_state = PORT_CTRL_FWD_STATE; break; case BR_STATE_BLOCKING: hw_state = PORT_CTRL_BLOCK_STATE; break; default: dev_err(ds->dev, "invalid STP state: %d\n", state); return; } b53_read8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), ®); reg &= ~PORT_CTRL_STP_STATE_MASK; reg |= hw_state; b53_write8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), reg); } static void b53_br_fast_age(struct dsa_switch *ds, int port) { struct b53_device *dev = ds->priv; if (b53_fast_age_port(dev, port)) dev_err(ds->dev, "fast ageing failed\n"); } static enum dsa_tag_protocol b53_get_tag_protocol(struct dsa_switch *ds) { return DSA_TAG_PROTO_NONE; } static struct dsa_switch_ops b53_switch_ops = { .get_tag_protocol = b53_get_tag_protocol, .setup = b53_setup, .get_strings = b53_get_strings, .get_ethtool_stats = b53_get_ethtool_stats, .get_sset_count = b53_get_sset_count, .phy_read = b53_phy_read16, .phy_write = b53_phy_write16, .adjust_link = b53_adjust_link, .port_enable = b53_enable_port, .port_disable = b53_disable_port, .port_bridge_join = b53_br_join, .port_bridge_leave = b53_br_leave, .port_stp_state_set = b53_br_set_stp_state, .port_fast_age = b53_br_fast_age, .port_vlan_filtering = b53_vlan_filtering, .port_vlan_prepare = b53_vlan_prepare, .port_vlan_add = b53_vlan_add, .port_vlan_del = b53_vlan_del, .port_vlan_dump = b53_vlan_dump, .port_fdb_prepare = b53_fdb_prepare, .port_fdb_dump = b53_fdb_dump, .port_fdb_add = b53_fdb_add, .port_fdb_del = b53_fdb_del, }; struct b53_chip_data { u32 chip_id; const char *dev_name; u16 vlans; u16 enabled_ports; u8 cpu_port; u8 vta_regs[3]; u8 arl_entries; u8 duplex_reg; u8 jumbo_pm_reg; u8 jumbo_size_reg; }; #define B53_VTA_REGS \ { B53_VT_ACCESS, B53_VT_INDEX, B53_VT_ENTRY } #define B53_VTA_REGS_9798 \ { B53_VT_ACCESS_9798, B53_VT_INDEX_9798, B53_VT_ENTRY_9798 } #define B53_VTA_REGS_63XX \ { B53_VT_ACCESS_63XX, B53_VT_INDEX_63XX, B53_VT_ENTRY_63XX } static const struct b53_chip_data b53_switch_chips[] = { { .chip_id = BCM5325_DEVICE_ID, .dev_name = "BCM5325", .vlans = 16, .enabled_ports = 0x1f, .arl_entries = 2, .cpu_port = B53_CPU_PORT_25, .duplex_reg = B53_DUPLEX_STAT_FE, }, { .chip_id = BCM5365_DEVICE_ID, .dev_name = "BCM5365", .vlans = 256, .enabled_ports = 0x1f, .arl_entries = 2, .cpu_port = B53_CPU_PORT_25, .duplex_reg = B53_DUPLEX_STAT_FE, }, { .chip_id = BCM5389_DEVICE_ID, .dev_name = "BCM5389", .vlans = 4096, .enabled_ports = 0x1f, .arl_entries = 4, .cpu_port = B53_CPU_PORT, .vta_regs = B53_VTA_REGS, .duplex_reg = B53_DUPLEX_STAT_GE, .jumbo_pm_reg = B53_JUMBO_PORT_MASK, .jumbo_size_reg = B53_JUMBO_MAX_SIZE, }, { .chip_id = BCM5395_DEVICE_ID, .dev_name = "BCM5395", .vlans = 4096, .enabled_ports = 0x1f, .arl_entries = 4, .cpu_port = B53_CPU_PORT, .vta_regs = B53_VTA_REGS, .duplex_reg = B53_DUPLEX_STAT_GE, .jumbo_pm_reg = B53_JUMBO_PORT_MASK, .jumbo_size_reg = B53_JUMBO_MAX_SIZE, }, { .chip_id = BCM5397_DEVICE_ID, .dev_name = "BCM5397", .vlans = 4096, .enabled_ports = 0x1f, .arl_entries = 4, .cpu_port = B53_CPU_PORT, .vta_regs = B53_VTA_REGS_9798, .duplex_reg = B53_DUPLEX_STAT_GE, .jumbo_pm_reg = B53_JUMBO_PORT_MASK, .jumbo_size_reg = B53_JUMBO_MAX_SIZE, }, { .chip_id = BCM5398_DEVICE_ID, .dev_name = "BCM5398", .vlans = 4096, .enabled_ports = 0x7f, .arl_entries = 4, .cpu_port = B53_CPU_PORT, .vta_regs = B53_VTA_REGS_9798, .duplex_reg = B53_DUPLEX_STAT_GE, .jumbo_pm_reg = B53_JUMBO_PORT_MASK, .jumbo_size_reg = B53_JUMBO_MAX_SIZE, }, { .chip_id = BCM53115_DEVICE_ID, .dev_name = "BCM53115", .vlans = 4096, .enabled_ports = 0x1f, .arl_entries = 4, .vta_regs = B53_VTA_REGS, .cpu_port = B53_CPU_PORT, .duplex_reg = B53_DUPLEX_STAT_GE, .jumbo_pm_reg = B53_JUMBO_PORT_MASK, .jumbo_size_reg = B53_JUMBO_MAX_SIZE, }, { .chip_id = BCM53125_DEVICE_ID, .dev_name = "BCM53125", .vlans = 4096, .enabled_ports = 0xff, .arl_entries = 4, .cpu_port = B53_CPU_PORT, .vta_regs = B53_VTA_REGS, .duplex_reg = B53_DUPLEX_STAT_GE, .jumbo_pm_reg = B53_JUMBO_PORT_MASK, .jumbo_size_reg = B53_JUMBO_MAX_SIZE, }, { .chip_id = BCM53128_DEVICE_ID, .dev_name = "BCM53128", .vlans = 4096, .enabled_ports = 0x1ff, .arl_entries = 4, .cpu_port = B53_CPU_PORT, .vta_regs = B53_VTA_REGS, .duplex_reg = B53_DUPLEX_STAT_GE, .jumbo_pm_reg = B53_JUMBO_PORT_MASK, .jumbo_size_reg = B53_JUMBO_MAX_SIZE, }, { .chip_id = BCM63XX_DEVICE_ID, .dev_name = "BCM63xx", .vlans = 4096, .enabled_ports = 0, /* pdata must provide them */ .arl_entries = 4, .cpu_port = B53_CPU_PORT, .vta_regs = B53_VTA_REGS_63XX, .duplex_reg = B53_DUPLEX_STAT_63XX, .jumbo_pm_reg = B53_JUMBO_PORT_MASK_63XX, .jumbo_size_reg = B53_JUMBO_MAX_SIZE_63XX, }, { .chip_id = BCM53010_DEVICE_ID, .dev_name = "BCM53010", .vlans = 4096, .enabled_ports = 0x1f, .arl_entries = 4, .cpu_port = B53_CPU_PORT_25, /* TODO: auto detect */ .vta_regs = B53_VTA_REGS, .duplex_reg = B53_DUPLEX_STAT_GE, .jumbo_pm_reg = B53_JUMBO_PORT_MASK, .jumbo_size_reg = B53_JUMBO_MAX_SIZE, }, { .chip_id = BCM53011_DEVICE_ID, .dev_name = "BCM53011", .vlans = 4096, .enabled_ports = 0x1bf, .arl_entries = 4, .cpu_port = B53_CPU_PORT_25, /* TODO: auto detect */ .vta_regs = B53_VTA_REGS, .duplex_reg = B53_DUPLEX_STAT_GE, .jumbo_pm_reg = B53_JUMBO_PORT_MASK, .jumbo_size_reg = B53_JUMBO_MAX_SIZE, }, { .chip_id = BCM53012_DEVICE_ID, .dev_name = "BCM53012", .vlans = 4096, .enabled_ports = 0x1bf, .arl_entries = 4, .cpu_port = B53_CPU_PORT_25, /* TODO: auto detect */ .vta_regs = B53_VTA_REGS, .duplex_reg = B53_DUPLEX_STAT_GE, .jumbo_pm_reg = B53_JUMBO_PORT_MASK, .jumbo_size_reg = B53_JUMBO_MAX_SIZE, }, { .chip_id = BCM53018_DEVICE_ID, .dev_name = "BCM53018", .vlans = 4096, .enabled_ports = 0x1f, .arl_entries = 4, .cpu_port = B53_CPU_PORT_25, /* TODO: auto detect */ .vta_regs = B53_VTA_REGS, .duplex_reg = B53_DUPLEX_STAT_GE, .jumbo_pm_reg = B53_JUMBO_PORT_MASK, .jumbo_size_reg = B53_JUMBO_MAX_SIZE, }, { .chip_id = BCM53019_DEVICE_ID, .dev_name = "BCM53019", .vlans = 4096, .enabled_ports = 0x1f, .arl_entries = 4, .cpu_port = B53_CPU_PORT_25, /* TODO: auto detect */ .vta_regs = B53_VTA_REGS, .duplex_reg = B53_DUPLEX_STAT_GE, .jumbo_pm_reg = B53_JUMBO_PORT_MASK, .jumbo_size_reg = B53_JUMBO_MAX_SIZE, }, { .chip_id = BCM58XX_DEVICE_ID, .dev_name = "BCM585xx/586xx/88312", .vlans = 4096, .enabled_ports = 0x1ff, .arl_entries = 4, .cpu_port = B53_CPU_PORT_25, .vta_regs = B53_VTA_REGS, .duplex_reg = B53_DUPLEX_STAT_GE, .jumbo_pm_reg = B53_JUMBO_PORT_MASK, .jumbo_size_reg = B53_JUMBO_MAX_SIZE, }, { .chip_id = BCM7445_DEVICE_ID, .dev_name = "BCM7445", .vlans = 4096, .enabled_ports = 0x1ff, .arl_entries = 4, .cpu_port = B53_CPU_PORT, .vta_regs = B53_VTA_REGS, .duplex_reg = B53_DUPLEX_STAT_GE, .jumbo_pm_reg = B53_JUMBO_PORT_MASK, .jumbo_size_reg = B53_JUMBO_MAX_SIZE, }, }; static int b53_switch_init(struct b53_device *dev) { unsigned int i; int ret; for (i = 0; i < ARRAY_SIZE(b53_switch_chips); i++) { const struct b53_chip_data *chip = &b53_switch_chips[i]; if (chip->chip_id == dev->chip_id) { if (!dev->enabled_ports) dev->enabled_ports = chip->enabled_ports; dev->name = chip->dev_name; dev->duplex_reg = chip->duplex_reg; dev->vta_regs[0] = chip->vta_regs[0]; dev->vta_regs[1] = chip->vta_regs[1]; dev->vta_regs[2] = chip->vta_regs[2]; dev->jumbo_pm_reg = chip->jumbo_pm_reg; dev->cpu_port = chip->cpu_port; dev->num_vlans = chip->vlans; dev->num_arl_entries = chip->arl_entries; break; } } /* check which BCM5325x version we have */ if (is5325(dev)) { u8 vc4; b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_25, &vc4); /* check reserved bits */ switch (vc4 & 3) { case 1: /* BCM5325E */ break; case 3: /* BCM5325F - do not use port 4 */ dev->enabled_ports &= ~BIT(4); break; default: /* On the BCM47XX SoCs this is the supported internal switch.*/ #ifndef CONFIG_BCM47XX /* BCM5325M */ return -EINVAL; #else break; #endif } } else if (dev->chip_id == BCM53115_DEVICE_ID) { u64 strap_value; b53_read48(dev, B53_STAT_PAGE, B53_STRAP_VALUE, &strap_value); /* use second IMP port if GMII is enabled */ if (strap_value & SV_GMII_CTRL_115) dev->cpu_port = 5; } /* cpu port is always last */ dev->num_ports = dev->cpu_port + 1; dev->enabled_ports |= BIT(dev->cpu_port); dev->ports = devm_kzalloc(dev->dev, sizeof(struct b53_port) * dev->num_ports, GFP_KERNEL); if (!dev->ports) return -ENOMEM; dev->vlans = devm_kzalloc(dev->dev, sizeof(struct b53_vlan) * dev->num_vlans, GFP_KERNEL); if (!dev->vlans) return -ENOMEM; dev->reset_gpio = b53_switch_get_reset_gpio(dev); if (dev->reset_gpio >= 0) { ret = devm_gpio_request_one(dev->dev, dev->reset_gpio, GPIOF_OUT_INIT_HIGH, "robo_reset"); if (ret) return ret; } return 0; } struct b53_device *b53_switch_alloc(struct device *base, const struct b53_io_ops *ops, void *priv) { struct dsa_switch *ds; struct b53_device *dev; ds = devm_kzalloc(base, sizeof(*ds) + sizeof(*dev), GFP_KERNEL); if (!ds) return NULL; dev = (struct b53_device *)(ds + 1); ds->priv = dev; ds->dev = base; dev->dev = base; dev->ds = ds; dev->priv = priv; dev->ops = ops; ds->ops = &b53_switch_ops; mutex_init(&dev->reg_mutex); mutex_init(&dev->stats_mutex); return dev; } EXPORT_SYMBOL(b53_switch_alloc); int b53_switch_detect(struct b53_device *dev) { u32 id32; u16 tmp; u8 id8; int ret; ret = b53_read8(dev, B53_MGMT_PAGE, B53_DEVICE_ID, &id8); if (ret) return ret; switch (id8) { case 0: /* BCM5325 and BCM5365 do not have this register so reads * return 0. But the read operation did succeed, so assume this * is one of them. * * Next check if we can write to the 5325's VTA register; for * 5365 it is read only. */ b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_25, 0xf); b53_read16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_25, &tmp); if (tmp == 0xf) dev->chip_id = BCM5325_DEVICE_ID; else dev->chip_id = BCM5365_DEVICE_ID; break; case BCM5389_DEVICE_ID: case BCM5395_DEVICE_ID: case BCM5397_DEVICE_ID: case BCM5398_DEVICE_ID: dev->chip_id = id8; break; default: ret = b53_read32(dev, B53_MGMT_PAGE, B53_DEVICE_ID, &id32); if (ret) return ret; switch (id32) { case BCM53115_DEVICE_ID: case BCM53125_DEVICE_ID: case BCM53128_DEVICE_ID: case BCM53010_DEVICE_ID: case BCM53011_DEVICE_ID: case BCM53012_DEVICE_ID: case BCM53018_DEVICE_ID: case BCM53019_DEVICE_ID: dev->chip_id = id32; break; default: pr_err("unsupported switch detected (BCM53%02x/BCM%x)\n", id8, id32); return -ENODEV; } } if (dev->chip_id == BCM5325_DEVICE_ID) return b53_read8(dev, B53_STAT_PAGE, B53_REV_ID_25, &dev->core_rev); else return b53_read8(dev, B53_MGMT_PAGE, B53_REV_ID, &dev->core_rev); } EXPORT_SYMBOL(b53_switch_detect); int b53_switch_register(struct b53_device *dev) { int ret; if (dev->pdata) { dev->chip_id = dev->pdata->chip_id; dev->enabled_ports = dev->pdata->enabled_ports; } if (!dev->chip_id && b53_switch_detect(dev)) return -EINVAL; ret = b53_switch_init(dev); if (ret) return ret; pr_info("found switch: %s, rev %i\n", dev->name, dev->core_rev); return dsa_register_switch(dev->ds, dev->ds->dev->of_node); } EXPORT_SYMBOL(b53_switch_register); MODULE_AUTHOR("Jonas Gorski "); MODULE_DESCRIPTION("B53 switch library"); MODULE_LICENSE("Dual BSD/GPL");