/* * q_hfsc.c HFSC. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Authors: Patrick McHardy, <kaber@trash.net> * */ #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <syslog.h> #include <fcntl.h> #include <sys/socket.h> #include <netinet/in.h> #include <arpa/inet.h> #include <string.h> #include <math.h> #include "utils.h" #include "tc_util.h" static int hfsc_get_sc(int *, char ***, struct tc_service_curve *); static void explain_qdisc(void) { fprintf(stderr, "Usage: ... hfsc [ default CLASSID ]\n" "\n" " default: default class for unclassified packets\n" ); } static void explain_class(void) { fprintf(stderr, "Usage: ... hfsc [ [ rt SC ] [ ls SC ] | [ sc SC ] ] [ ul SC ]\n" "\n" "SC := [ [ m1 BPS ] d SEC ] m2 BPS\n" "\n" " m1 : slope of first segment\n" " d : x-coordinate of intersection\n" " m2 : slope of second segment\n" "\n" "Alternative format:\n" "\n" "SC := [ [ umax BYTE ] dmax SEC ] rate BPS\n" "\n" " umax : maximum unit of work\n" " dmax : maximum delay\n" " rate : rate\n" "\n" "Remarks:\n" " - at least one of 'rt', 'ls' or 'sc' must be specified\n" " - 'ul' can only be specified with 'ls' or 'sc'\n" "\n" ); } static void explain1(char *arg) { fprintf(stderr, "HFSC: Illegal \"%s\"\n", arg); } static int hfsc_parse_opt(struct qdisc_util *qu, int argc, char **argv, struct nlmsghdr *n) { struct tc_hfsc_qopt qopt = {}; while (argc > 0) { if (matches(*argv, "default") == 0) { NEXT_ARG(); if (qopt.defcls != 0) { fprintf(stderr, "HFSC: Double \"default\"\n"); return -1; } if (get_u16(&qopt.defcls, *argv, 16) < 0) { explain1("default"); return -1; } } else if (matches(*argv, "help") == 0) { explain_qdisc(); return -1; } else { fprintf(stderr, "HFSC: What is \"%s\" ?\n", *argv); explain_qdisc(); return -1; } argc--, argv++; } addattr_l(n, 1024, TCA_OPTIONS, &qopt, sizeof(qopt)); return 0; } static int hfsc_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt) { struct tc_hfsc_qopt *qopt; if (opt == NULL) return 0; if (RTA_PAYLOAD(opt) < sizeof(*qopt)) return -1; qopt = RTA_DATA(opt); if (qopt->defcls != 0) fprintf(f, "default %x ", qopt->defcls); return 0; } static int hfsc_print_xstats(struct qdisc_util *qu, FILE *f, struct rtattr *xstats) { struct tc_hfsc_stats *st; if (xstats == NULL) return 0; if (RTA_PAYLOAD(xstats) < sizeof(*st)) return -1; st = RTA_DATA(xstats); fprintf(f, " period %u ", st->period); if (st->work != 0) fprintf(f, "work %llu bytes ", (unsigned long long) st->work); if (st->rtwork != 0) fprintf(f, "rtwork %llu bytes ", (unsigned long long) st->rtwork); fprintf(f, "level %u ", st->level); fprintf(f, "\n"); return 0; } static int hfsc_parse_class_opt(struct qdisc_util *qu, int argc, char **argv, struct nlmsghdr *n) { struct tc_service_curve rsc = {}, fsc = {}, usc = {}; int rsc_ok = 0, fsc_ok = 0, usc_ok = 0; struct rtattr *tail; while (argc > 0) { if (matches(*argv, "rt") == 0) { NEXT_ARG(); if (hfsc_get_sc(&argc, &argv, &rsc) < 0) { explain1("rt"); return -1; } rsc_ok = 1; } else if (matches(*argv, "ls") == 0) { NEXT_ARG(); if (hfsc_get_sc(&argc, &argv, &fsc) < 0) { explain1("ls"); return -1; } fsc_ok = 1; } else if (matches(*argv, "sc") == 0) { NEXT_ARG(); if (hfsc_get_sc(&argc, &argv, &rsc) < 0) { explain1("sc"); return -1; } memcpy(&fsc, &rsc, sizeof(fsc)); rsc_ok = 1; fsc_ok = 1; } else if (matches(*argv, "ul") == 0) { NEXT_ARG(); if (hfsc_get_sc(&argc, &argv, &usc) < 0) { explain1("ul"); return -1; } usc_ok = 1; } else if (matches(*argv, "help") == 0) { explain_class(); return -1; } else { fprintf(stderr, "HFSC: What is \"%s\" ?\n", *argv); explain_class(); return -1; } argc--, argv++; } if (!(rsc_ok || fsc_ok || usc_ok)) { fprintf(stderr, "HFSC: no parameters given\n"); explain_class(); return -1; } if (usc_ok && !fsc_ok) { fprintf(stderr, "HFSC: Upper-limit Service Curve without Link-Share Service Curve\n"); explain_class(); return -1; } tail = NLMSG_TAIL(n); addattr_l(n, 1024, TCA_OPTIONS, NULL, 0); if (rsc_ok) addattr_l(n, 1024, TCA_HFSC_RSC, &rsc, sizeof(rsc)); if (fsc_ok) addattr_l(n, 1024, TCA_HFSC_FSC, &fsc, sizeof(fsc)); if (usc_ok) addattr_l(n, 1024, TCA_HFSC_USC, &usc, sizeof(usc)); tail->rta_len = (void *) NLMSG_TAIL(n) - (void *) tail; return 0; } static void hfsc_print_sc(FILE *f, char *name, struct tc_service_curve *sc) { SPRINT_BUF(b1); fprintf(f, "%s ", name); fprintf(f, "m1 %s ", sprint_rate(sc->m1, b1)); fprintf(f, "d %s ", sprint_time(tc_core_ktime2time(sc->d), b1)); fprintf(f, "m2 %s ", sprint_rate(sc->m2, b1)); } static int hfsc_print_class_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt) { struct rtattr *tb[TCA_HFSC_MAX+1]; struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL; if (opt == NULL) return 0; parse_rtattr_nested(tb, TCA_HFSC_MAX, opt); if (tb[TCA_HFSC_RSC]) { if (RTA_PAYLOAD(tb[TCA_HFSC_RSC]) < sizeof(*rsc)) fprintf(stderr, "HFSC: truncated realtime option\n"); else rsc = RTA_DATA(tb[TCA_HFSC_RSC]); } if (tb[TCA_HFSC_FSC]) { if (RTA_PAYLOAD(tb[TCA_HFSC_FSC]) < sizeof(*fsc)) fprintf(stderr, "HFSC: truncated linkshare option\n"); else fsc = RTA_DATA(tb[TCA_HFSC_FSC]); } if (tb[TCA_HFSC_USC]) { if (RTA_PAYLOAD(tb[TCA_HFSC_USC]) < sizeof(*usc)) fprintf(stderr, "HFSC: truncated upperlimit option\n"); else usc = RTA_DATA(tb[TCA_HFSC_USC]); } if (rsc != NULL && fsc != NULL && memcmp(rsc, fsc, sizeof(*rsc)) == 0) hfsc_print_sc(f, "sc", rsc); else { if (rsc != NULL) hfsc_print_sc(f, "rt", rsc); if (fsc != NULL) hfsc_print_sc(f, "ls", fsc); } if (usc != NULL) hfsc_print_sc(f, "ul", usc); return 0; } struct qdisc_util hfsc_qdisc_util = { .id = "hfsc", .parse_qopt = hfsc_parse_opt, .print_qopt = hfsc_print_opt, .print_xstats = hfsc_print_xstats, .parse_copt = hfsc_parse_class_opt, .print_copt = hfsc_print_class_opt, }; static int hfsc_get_sc1(int *argcp, char ***argvp, struct tc_service_curve *sc) { char **argv = *argvp; int argc = *argcp; unsigned int m1 = 0, d = 0, m2 = 0; if (matches(*argv, "m1") == 0) { NEXT_ARG(); if (get_rate(&m1, *argv) < 0) { explain1("m1"); return -1; } NEXT_ARG(); } if (matches(*argv, "d") == 0) { NEXT_ARG(); if (get_time(&d, *argv) < 0) { explain1("d"); return -1; } NEXT_ARG(); } if (matches(*argv, "m2") == 0) { NEXT_ARG(); if (get_rate(&m2, *argv) < 0) { explain1("m2"); return -1; } } else return -1; sc->m1 = m1; sc->d = tc_core_time2ktime(d); sc->m2 = m2; *argvp = argv; *argcp = argc; return 0; } static int hfsc_get_sc2(int *argcp, char ***argvp, struct tc_service_curve *sc) { char **argv = *argvp; int argc = *argcp; unsigned int umax = 0, dmax = 0, rate = 0; if (matches(*argv, "umax") == 0) { NEXT_ARG(); if (get_size(&umax, *argv) < 0) { explain1("umax"); return -1; } NEXT_ARG(); } if (matches(*argv, "dmax") == 0) { NEXT_ARG(); if (get_time(&dmax, *argv) < 0) { explain1("dmax"); return -1; } NEXT_ARG(); } if (matches(*argv, "rate") == 0) { NEXT_ARG(); if (get_rate(&rate, *argv) < 0) { explain1("rate"); return -1; } } else return -1; if (umax != 0 && dmax == 0) { fprintf(stderr, "HFSC: umax given but dmax is zero.\n"); return -1; } if (dmax != 0 && ceil(1.0 * umax * TIME_UNITS_PER_SEC / dmax) > rate) { /* * concave curve, slope of first segment is umax/dmax, * intersection is at dmax */ sc->m1 = ceil(1.0 * umax * TIME_UNITS_PER_SEC / dmax); /* in bps */ sc->d = tc_core_time2ktime(dmax); sc->m2 = rate; } else { /* * convex curve, slope of first segment is 0, intersection * is at dmax - umax / rate */ sc->m1 = 0; sc->d = tc_core_time2ktime(ceil(dmax - umax * TIME_UNITS_PER_SEC / rate)); sc->m2 = rate; } *argvp = argv; *argcp = argc; return 0; } static int hfsc_get_sc(int *argcp, char ***argvp, struct tc_service_curve *sc) { if (hfsc_get_sc1(argcp, argvp, sc) < 0 && hfsc_get_sc2(argcp, argvp, sc) < 0) return -1; if (sc->m1 == 0 && sc->m2 == 0) { fprintf(stderr, "HFSC: Service Curve has two zero slopes\n"); return -1; } return 0; }